首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of opioid addiction in subjects with established chronic pain is an area that is poorly understood. It is critically important to clearly understand the neurobiology associated with propensity toward conversion to addiction under conditions of chronic pain. To pose the question whether the presence of chronic pain influences motivation to self-administer opioids for reward, we applied a combination of rodent models of chronic mechanical hyperalgesia and opioid self-administration. We studied fentanyl self-administration in mice under three conditions that induce chronic mechanical hyperalgesia: inflammation, peripheral nerve injury, and repeated chemotherapeutic injections. Responding for fentanyl was compared among these conditions and their respective standard controls (naïve condition, vehicle injection or sham surgery). Acquisition of fentanyl self-administration behavior was reduced or absent in all three conditions of chronic hyperalgesia relative to control mice with normal sensory thresholds. To control for potential impairment in ability to learn the lever-pressing behavior or perform the associated motor tasks, all three groups were evaluated for acquisition of food-maintained responding. In contrast to the opioid, chronic hyperalgesia did not interfere with the reinforcing effect of food. These studies indicate that the establishment of chronic hyperalgesia is associated with reduced or ablated motivation to seek opioid reward in mice.  相似文献   

2.
Mast cells mediate allergies, hypersensitivities, host defense, and venom neutralization. An area of recent interest is the contribution of mast cells to inflammatory pain. Here we found that specific, local activation of mast cells produced plantar hyperalgesia in mice. Basic secretagogue compound 48/80 induced plantar mast cell degranulation accompanied by thermal hyperalgesia, tissue edema, and neutrophil influx in the hindpaws of ND4 Swiss mice. Blocking mast cell degranulation, neutrophil extravasation, and histamine signaling abrogated these responses. Compound 48/80 also produced edema, pain, and neutrophil influx in WT C57BL/6 but not in genetically mast cell-deficient C57BL/6-Kit(W-sh)(/)(W-sh) mice. These responses were restored following plantar reconstitution with bone marrow-derived cultured mast cells.  相似文献   

3.
The objective of this study was to explore the relationship between psychological and physiological processes and how these interact in the case of vulvodynia. The study design consisted of a retrospective review of predominantly premenopausal women presenting with vulvodynia via analyses of questionnaires, psychometric tests, sexual history, surface electromyographic (sEMG) assessments, and clinical notes. Five hundred and twenty-nine patients with vulvodynia (mean age 27.7 years) were studied. The average age of symptom onset was 22.8 years and the average duration of symptoms was 5.0 years. Patients scored higher than the comparison group on global dimensions of the Symptom Checklist—90 Revised (SCL-90R), with anxiety and depression scores showing a significant but modest correlation with severity of pain. sEMG data confirmed an association with pelvic muscle dysfunction but there was no correlation with severity of vulvar pain. A negative correlation between sEMG readings and duration of pain was noted and may be due to progressive time-related quieting of electrical activity in muscle tissues, which is commonly associated with the development of a functional muscle contracture. In conclusion, it is important to view chronic pain syndromes like vulvodynia from a psychophysiological perspective which recognizes the potential contribution of psychological and physiological variables in the aetiology of chronic vulvar pain.  相似文献   

4.
Mas-related G protein-coupled receptor D (MrgprD) is mainly expressed in small-diameter sensory neurons of the dorsal root ganglion (DRG). Results from previous studies suggest that MrgprD participates in mechanical hyperalgesia and nerve injury-induced neuropathic pain. However, it remains elusive whether and how MrgprD is involved in inflammatory pain. Here, we used a mouse model of chronic inflammatory pain established by intraperitoneal administration of lipopolysaccharide (LPS). The LPS injection induced an evident peripheral neuroinflammation and mechanical hyperalgesia in the mice and increased MrgprD expression in the DRG. The LPS administration also augmented the proportion of MrgprD-expressing neurons in the lumbar 4 DRG. Behaviorally, the LPS-induced hypersensitivities to mechanical and cold stimuli, but not to a heat stimulus, were substantially attenuated in Mrgprd-knockout mice compared with wildtype littermates. Mrgprd deletion in DRGs suppressed the LPS-triggered activation of the NF-κB signaling pathway and attenuated LPS-induced up-regulation of pro-inflammatory factors. Moreover, ectopic overexpression of MrgprD in HEK293 cells stably expressing mouse toll-like receptor 4 (TLR4) markedly promoted the LPS-induced NF-κB activation and enhanced NF-κB's DNA-binding activity. Furthermore, MrgprD physically interacted with TGF-β-activated kinase 1 (TAK1) and I-kappa-B-kinase (IKK) complexes, but not with mitogen-activated protein kinases (MAPKs) in mouse DRGs. In macrophage-like RAW 264.7 cells, MrgprD also interacted with TAK1 and IKK complex, and the treatment of MrgprD agonist elicited the activation of NF-κB signaling, but not of mitogen-activated protein kinases (MAPKs) signaling pathway. Our findings indicate that MrgprD facilitates the development of LPS-triggered persistent inflammatory hyperalgesia by promoting canonical NF-κB activation, highlighting the important roles of MrgprD in NF-κB-mediated inflammation and chronic pain.  相似文献   

5.

Number of ligations made in the chronic constriction injury (CCI) neuropathic pain model has raised serious concerns. We compared behavioural responses, nerve morphology and expression of pain marker, c-fos among CCI models developed with one, two, three and four ligations. The numbers of ligation(s) on sciatic nerve shows no significant difference in displaying mechanical and cold allodynia, and mechanical and thermal hyperalgesia throughout 84 days. All groups underwent similar levels of nerve degeneration post-surgery. Similar c-fos level in brain cingulate cortex, parafascicular nuclei and amygdala were observed in all CCI models compared to sham-operated group. Therefore, number of ligations does not impact intensity of pain symptoms, pathogenesis and neuronal activation. A single ligation is sufficient to develop neuropathic pain, in contrast to the established model of four ligations. This study dissects and characterises the CCI model, ascertaining a more uniform animal model to surrogate actual neuropathic pain condition.

  相似文献   

6.
PK Chao  KT Lu  YL Lee  JC Chen  HL Wang  YL Yang  MY Cheng  MF Liao  LS Ro 《PloS one》2012,7(8):e43680
Recent studies have shown that opioid treatment can reduce pro-inflammatory cytokine production and counteract various neuropathic pain syndromes. Granulocyte colony-stimulating factor (G-CSF) can promote immune cell differentiation by increasing leukocytes (mainly opioid-containing polymorphonuclear (PMN) cells), suggesting a potential beneficial role in treating chronic pain. This study shows the effectiveness of exogenous G-CSF treatment (200 μg/kg) for alleviating thermal hyperalgesia and mechanical allodynia in rats with chronic constriction injury (CCI), during post-operative days 1-25, compared to that of vehicle treatment. G-CSF also increases the recruitment of opioid-containing PMN cells into the injured nerve. After CCI, single administration of G-CSF on days 0, 1, and 2, but not on day 3, relieved thermal hyperalgesia, which indicated that its effect on neuropathic pain had a therapeutic window of 0-48 h after nerve injury. CCI led to an increase in the levels of interleukin-6 (IL-6) mRNA and tumor necrosis factor-α (TNF-α) protein in the dorsal root ganglia (DRG). These high levels of IL-6 mRNA and TNF-α were suppressed by a single administration of G-CSF 48-144 h and 72-144 h after CCI, respectively. Furthermore, G-CSF administered 72-144 h after CCI suppressed the CCI-induced upregulation of microglial activation in the ipsilateral spinal dorsal horn, which is essential for sensing neuropathic pain. Moreover, the opioid receptor antagonist naloxone methiodide (NLXM) reversed G-CSF-induced antinociception 3 days after CCI, suggesting that G-CSF alleviates hyperalgesia via opioid/opioid receptor interactions. These results suggest that an early single systemic injection of G-CSF alleviates neuropathic pain via activation of PMN cell-derived endogenous opioid secretion to activate opioid receptors in the injured nerve, downregulate IL-6 and TNF-α inflammatory cytokines, and attenuate microglial activation in the spinal dorsal horn. This indicates that G-CSF treatment can suppress early inflammation and prevent the subsequent development of neuropathic pain.  相似文献   

7.
Endovanilloid signaling in pain   总被引:16,自引:0,他引:16  
Recent work has addressed the role of vanilloid receptor type 1 (VR1) in pain perception. VR1 activity is regulated both directly and indirectly by endogenous factors. For example, protein kinase C sensitizes human VR1 to mild decreases in pH, which are commonly encountered during inflammation, and renders the endocannabinoid anandamide a more potent 'endovanilloid'. Bradykinin and nerve growth factor release VR1 from the inhibitory control of phosphatidylinositol (4,5)-bisphosphate and anti-VR1 serum ameliorates thermal allodynia and hyperalgesia in diabetic mice. There is strong evidence that not only the sensitivity but also the density of expression of VR1 is enhanced during inflammatory conditions. These observations provide an empirical foundation which could explain the reduced inflammatory hyperalgesia in VR1 knockout mice, and they imply an important role for endovanilloid signaling via VR1 in the development of ongoing pain in humans that occurs in most inflammatory conditions. Conversely, downregulation of VR1 expression and/or activity is a promising therapeutic strategy for novel analgesic drugs.  相似文献   

8.
The present study was undertaken to determine the effects of intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) melatonin on mechanical allodynia and thermal hyperalgesia in mice with partial tight ligation of the sciatic nerve, and how the nitric oxide (NO) precursor l-arginine and the opiate antagonist naloxone influence this effect. A plantar analgesic meter was used to assess thermal hyperalgesia, and nerve injury-induced mechanical hyperalgesia was assessed with von Frey filaments. 1-5 weeks following the surgery, marked mechanical allodynia and thermal hyperalgesia developed in neuropathic mice. Intracerebroventricular and intraperitoneal melatonin, with its higher doses, produced a blockade of thermal hyperalgesia, but not mechanical allodynia. Administration of both l-arginine and naloxone, at doses which produced no effect on their own, partially reversed antihyperalgesic effect of melatonin. These results suggest that although it has different effects on neuropathic pain-related behaviors, melatonin may have clinical utility in neuropathic pain therapy in the future. It is also concluded that l-arginine-NO pathway and opioidergic system are involved in the antihyperalgesic effect of melatonin in nerve-injured mice.  相似文献   

9.
This study establishes a mechanism for metabolic hyperalgesia based on the glycolytic metabolite methylglyoxal. We found that concentrations of plasma methylglyoxal above 600 nM discriminate between diabetes-affected individuals with pain and those without pain. Methylglyoxal depolarizes sensory neurons and induces post-translational modifications of the voltage-gated sodium channel Na(v)1.8, which are associated with increased electrical excitability and facilitated firing of nociceptive neurons, whereas it promotes the slow inactivation of Na(v)1.7. In mice, treatment with methylglyoxal reduces nerve conduction velocity, facilitates neurosecretion of calcitonin gene-related peptide, increases cyclooxygenase-2 (COX-2) expression and evokes thermal and mechanical hyperalgesia. This hyperalgesia is reflected by increased blood flow in brain regions that are involved in pain processing. We also found similar changes in streptozotocin-induced and genetic mouse models of diabetes but not in Na(v)1.8 knockout (Scn10(-/-)) mice. Several strategies that include a methylglyoxal scavenger are effective in reducing methylglyoxal- and diabetes-induced hyperalgesia. This previously undescribed concept of metabolically driven hyperalgesia provides a new basis for the design of therapeutic interventions for painful diabetic neuropathy.  相似文献   

10.

Background

Nitric oxide generated by neuronal (NOS1), inducible (NOS2) or endothelial (NOS3) nitric oxide synthases contributes to pain processing, but the exact role of NOS1 and NOS2 in the maintenance of chronic peripheral neuropathic pain as well as the possible compensatory changes in their expression in the spinal cord of wild type (WT) and NOS knockout (KO) mice at 21 days after total sciatic nerve ligation remains unknown.

Methodology/Principal Findings

The mechanical and thermal allodynia as well as thermal hyperalgesia induced by sciatic nerve injury was evaluated in WT, NOS1-KO and NOS2-KO mice from 1 to 21 days after surgery. The mRNA and protein levels of NOS1, NOS2 and NOS3 in the spinal cord of WT and KO mice, at 21 days after surgery, were also assessed. Sciatic nerve injury led to a neuropathic syndrome in WT mice, in contrast to the abolished mechanical allodynia and thermal hyperalgesia as well as the decreased or suppressed thermal allodynia observed in NOS1-KO and NOS2-KO animals, respectively. Sciatic nerve injury also increases the spinal cord expression of NOS1 and NOS2 isoforms, but not of NOS3, in WT and NOS1-KO mice respectively. Moreover, the presence of NOS2 is required to increase the spinal cord expression of NOS1 whereas an increased NOS1 expression might avoid the up-regulation of NOS2 in the spinal cord of nerve injured WT mice.

Conclusions/Significance

These data suggest that the increased spinal cord expression of NOS1, regulated by NOS2, might be responsible for the maintenance of chronic peripheral neuropathic pain in mice and propose these enzymes as interesting therapeutic targets for their treatment.  相似文献   

11.
Fibromyalgia (FM) is among the most common chronic pain syndromes encountered in clinical practice, but there is limited understanding of FM pathogenesis. We examined the contribution of transient receptor potential vanilloid 1 (TRPV1) and TRPV4 channels to chronic pain in the repeated acid injection mouse model of FM and the potential therapeutic efficacy of electroacupuncture. Electroacupuncture (EA) at the bilateral Zusanli (ST36) acupoint reduced the long-lasting mechanical hyperalgesia induced by repeated acid saline (pH 4) injection in mouse hindpaw. Isolated L5 dorsal root ganglion (DRG) neurons from FM model mice (FM group) were hyperexcitable, an effect reversed by EA pretreatment (FM + EA group). The increase in mechanical hyperalgesia was also accompanied by upregulation of TRPV1 expression and phosphoactivation of extracellular signal regulated kinase (pERK) in the DRG, whereas DRG expression levels of TRPV4, p-p38, and p-JNK were unaltered. Blockade of TRPV1, which was achieved using TRPV1 knockout mice or via antagonist injection, and pERK suppressed development of FM-like pain. Both TRPV1 and TRPV4 protein expression levels were increased in the spinal cord (SC) of model mice, and EA at the ST36 acupoint decreased overexpression. This study strongly suggests that DRG TRPV1 overexpression and pERK signaling, as well as SC TRPV1 and TRPV4 overexpression, mediate hyperalgesia in a mouse FM pain model. The therapeutic efficacy of EA may result from the reversal of these changes in pain transmission pathways.  相似文献   

12.
Damaj MI  Zheng J  Martin BR  Kuhar MJ 《Peptides》2006,27(8):2019-2023
CART peptides are found in brain and spinal cord areas involved in pain transmission. In the present study, we investigated the role of rat CART (55-102) in the modulation of chronic pain using models of chronic neuropathic (nerve injury model) and inflammatory (carrageenan test) pain models in the mouse after intrathecal administration. The results show that CART (55-102) was highly effective in reversing the hyperalgesia and allodynia signs of chronic neuropathic pain in a dose-related manner at doses (0.05-2 microg/mouse) that did not affect motor coordination of the animals. These effects lasted for at least 3 h after injection and were not blocked by naloxone, an opiate antagonist. Although CART (55-102) attenuated carrageenan-induced hyperalgesia, it failed to reduce the inflammation associated with this model. These results suggest the involvement of the CART peptides in the development of hyperalgesia and allodynia associated with neuropathic pain.  相似文献   

13.
Pain symptoms are a common complication of diabetic peripheral neuropathy or an inflammatory condition. In the most experiments, only one or two evident pain modalities are observed at diabetic peripheral neuropathy according to experimental conditions. Following diabetic peripheral neuropathy or inflammation, spinal glial activation may be considered as an important mediator in the development of pain. For this reason, the present study was aimed to address the induction of pain modalities and spinal glial expression after streptozotocin injection as compared with that of zymosan inflammation in the rat. Evaluation of pain behavior by either thermal or mechanical stimuli was performed at 3 weeks or 5 hours after either intravenous streptozotocin or zymosan. Degrees of pain were divided into 4 groups: severe, moderate, mild, and non-pain induction. On the mechanical allodynia test, zymosan evoked predominantly a severe type of pain, whereas streptozotocin induced a weak degree of pain (severe+moderate: 57.1%). Although zymosan did not evoke cold allodynia, streptozotocin evoked stronger pain behavior, compared with zymosan (severe+moderate: 50.0%). On the other hand, the high incidence of thermal hyperalgesia (severe+moderate: 90.0%) and mechanical hyperalgesia (severe+moderate: 85.7%) by streptozotocin was observed, as similar to that of zymosan. In the spinal cord, the increase of microglia and astrocyte was evident by streptozotocin, only microglia was activated by zymosan. Therefore, it is recommended that the selection of mechanical and thermal hyperalgesia is suitable for the evaluation of streptozotocin induced diabetic peripheral neuropathy. Moreover, spinal glial activation may be considered an important factor.  相似文献   

14.
Sensory neurons innervating different tissues converge onto second-order neurons in the spinal cord. We examined whether inflammation or transient overexpression of nerve growth factor (NGF) in one tissue triggers hypersensitivity in referral sites. Thresholds to mechanical and thermal stimulation of the hindpaw, visceromotor responses to colorectal distension, and cystometrograms were performed in appropriate controls and mice with experimentally induced cystitis, inflammation of the hindpaw or front paw, or injection of viral vectors encoding NGF or green fluorescent protein (GFP). Cystitis and NGF but not GFP overexpression in the bladder triggered bladder hyperactivity associated with mechanical and thermal hypersensitivity in cutaneous referral sites and enhanced responses to colorectal distension. Hindpaw inflammation and injection of the NGF- but not GFP-encoding viral vector or front paw inflammation induced mechanical and thermal hyperalgesia in the affected hindpaw and increased responses to colorectal distension without altering the micturition reflex. In conclusion, sensitization of sensory pathways by inflammation or NGF contributes to the development of hypersensitivity in neighboring organs and cutaneous referral sites and provides a potential mechanism underlying the coexistence of pain syndromes in patients with functional diseases.  相似文献   

15.
目的 化疗药物所致的外周神经病变(chemotherapy-induced peripheral neuropathy,CIPN)是多种化疗药物的共同而严重的不良反应.目前,国内外最常用的CIPN模型是紫杉醇(PTX)腹腔注射建立的SD大鼠模型,但关于影响CIPN模型建立的相关因素却少有涉及.本实验拟考察影响PTX所致SD大鼠CIPN模型的影响因素,为筛选和研究防治CIPN药物提供理想的动物模型.方法 大鼠隔日一次腹腔注射给予PTX,采用测痛丝致痛行为学实验考察PTX对大鼠机械性异常性疼痛和机械性痛觉过敏的影响,免疫荧光法检测大鼠后足表皮下神经纤维(intraepidermal nerve fiber,IENF)的形态及数目,电子显微镜检测坐骨神经细胞线粒体的形态及数目.结果 隔日腹腔注射2 mg/kgPTX四次对SD大鼠的体重增长无明显影响;给予PTX后,初始体重为200 g的大鼠在34 d的实验周期内未观察到机械性异常性疼痛,仅在第17天出现了一次机械性痛觉过敏;而初始体重为400 g的大鼠则在第17天表现出了机械性异常性疼痛,第8-26天表现出了机械性痛觉过敏,免疫荧光显示PTX处理组大鼠后足表皮下IENF断裂,IENF密度显著降低,电镜观察可见空泡变性的异常线粒体的比例升高,PTX处理组大鼠表现出明显的外周神经病变.结论 初始体重400 g的SD大鼠对PTX所致的外周神经病变较敏感,适合作为PTX所致外周神经病变的模型动物.  相似文献   

16.
Oxidation products of the naturally occurring phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycerol-3-phosphatidylcholine (PAPC), which are known as OxPAPC, accumulate in atherosclerotic lesions and at other sites of inflammation in conditions such as septic inflammation and acute lung injury to exert pro- or anti-inflammatory effects. It is currently unknown whether OxPAPC also contributes to inflammatory pain and peripheral neuronal excitability in these conditions. Here, we observed that OxPAPC dose-dependently and selectively activated human TRPA1 nociceptive ion channels expressed in HEK293 cells in vitro, without any effect on other TRP channels, including TRPV1, TRPV4 and TRPM8. OxPAPC agonist activity was dependent on essential cysteine and lysine residues within the N-terminus of the TRPA1 channel protein. OxPAPC activated calcium influx into a subset of mouse sensory neurons which were also sensitive to the TRPA1 agonist mustard oil. Neuronal OxPAPC responses were largely abolished in neurons isolated from TRPA1-deficient mice. Intraplantar injection of OxPAPC into the mouse hind paw induced acute pain and persistent mechanical hyperalgesia and this effect was attenuated by the TRPA1 inhibitor, HC-030031. More importantly, we found levels of OxPAPC to be significantly increased in inflamed tissue in a mouse model of chronic inflammatory pain, identified by the binding of an OxPAPC-specific antibody. These findings suggest that TRPA1 is a molecular target for OxPAPC and OxPAPC may contribute to chronic inflammatory pain through TRPA1 activation. Targeting against OxPAPC and TRPA1 signaling pathway may be promising in inflammatory pain treatment.  相似文献   

17.

Background

A subset of the population receiving opioids for the treatment of acute and chronic clinical pain develops a paradoxical increase in pain sensitivity known as opioid-induced hyperalgesia. Given that opioid analgesics are one of few treatments available against clinical pain, it is critical to determine the key molecular mechanisms that drive opioid-induced hyperalgesia in order to reduce its prevalence. Recent evidence implicates a splice variant of the mu opioid receptor known as MOR-1K in the emergence of opioid-induced hyperalgesia. Results from human genetic association and cell signaling studies demonstrate that MOR-1K contributes to decreased opioid analgesic responses and produces increased cellular activity via Gs signaling. Here, we conducted the first study to directly test the role of MOR-1K in opioid-induced hyperalgesia.

Methods and Results

In order to examine the role of MOR-1K in opioid-induced hyperalgesia, we first assessed pain responses to mechanical and thermal stimuli prior to, during, and following chronic morphine administration. Results show that genetically diverse mouse strains (C57BL/6J, 129S6, and CXB7/ByJ) exhibited different morphine response profiles with corresponding changes in MOR-1K gene expression patterns. The 129S6 mice exhibited an analgesic response correlating to a measured decrease in MOR-1K gene expression levels, while CXB7/ByJ mice exhibited a hyperalgesic response correlating to a measured increase in MOR-1K gene expression levels. Furthermore, knockdown of MOR-1K in CXB7/ByJ mice via chronic intrathecal siRNA administration not only prevented the development of opioid-induced hyperalgesia, but also unmasked morphine analgesia.

Conclusions

These findings suggest that MOR-1K is likely a necessary contributor to the development of opioid-induced hyperalgesia. With further research, MOR-1K could be exploited as a target for antagonists that reduce or prevent opioid-induced hyperalgesia.  相似文献   

18.
There are two cyclooxygenase (COX) genes encoding characterized enzymes, COX-1 and COX-2. Nonsteroidal anti-inflammatory drugs are commonly used as analgesics in inflammatory arthritis, and these often inhibit both cyclooxygenases. Recently, inhibitors of COX-2 have been used in the treatment of inflammatory arthritis, as this isoform is thought to be critical in inflammation and pain. The objective of this study was to determine the effect of COX-1 or COX-2 gene disruption on the development of chronic Freund's adjuvant-induced arthritis and inflammatory pain in male and female mice. The effect of COX-1 or COX-2 gene disruption on inflammatory hyperalgesia, allodynia, inflammatory edema, and arthritic joint destruction was studied. COX-2 knockout mice (COX-2-/-) showed reduced edema and joint destruction in female, but not male, animals. In addition, neither male nor female COX-2-/- mice developed thermal hyperalgesia or mechanical allodynia, either ipsilateral or contralateral to the inflammation. COX-1 gene disruption also reduced inflammatory edema and joint destruction in female, but not male mice, although females of both COX-/- lines did show some bony destruction. There was no difference in ipsilateral allodynia between COX-1 knockout and wild-type animals, but female COX-1-/- mice showed reduced contralateral allodynia compared with male COX-1-/- or wild-type mice. These data show that the gene products of both COX genes contribute to pain and local inflammation in inflammatory arthritis. There are sex differences in some of these effects, and this suggests that the effects of COX inhibitors may be sex dependent.  相似文献   

19.
UV-irradiation is a well-known translational pain model inducing local inflammation and primary hyperalgesia. The mediators and receptor proteins specifically contributing to mechanical or heat hyperalgesia are still unclear. Therefore, we irradiated buttock skin of humans (n = 16) with 5-fold MED of UV-C and assessed the time course of hyperalgesia and axon reflex erythema. In parallel, we took skin biopsies at 3, 6 and 24 h after UVC irradiation and assessed gene expression levels (RT-PCR ) of neurotrophins (e.g. NGF, BDNF, GDNF), ion channels (e.g. NaV1.7, TRPV1), inflammatory mediators (e.g. CCL-2, CCL-3) and enzymes (e.g. PGES, COX2). Hyperalgesia to mechanical impact (12 m/s) and heat (48 °C) stimuli was significant at 6 h (p<0.05 and p<0.01) and 24 h (p<0.005 and p<0.01) after irradiation. Axon reflex erythema upon mechanical and thermal stimuli was significantly increased 3 h after irradiation and particularly strong at 6 h. A significant modulation of 9 genes was found post UV-C irradiation, including NGF (3, 6, 24 h), TrkA (6, 24 h), artemin, bradykinin-1 receptor, COX-2, CCL-2 and CCL-3 (3 and 6 h each). A significant down-regulation was observed for TRPV1 and iNOS (6, 24 h). Individual one-to-one correlation analysis of hyperalgesia and gene expression revealed that changes of Nav1.7 (SCN9A) mRNA levels at 6 and 24 h correlated to the intensity of mechanical hyperalgesia recorded at 24 h post UV-irradiation (Pearson r: 0.57, p<0.04 and r: 0.82, p<0.001). Expression of COX-2 and mPGES at 6 h correlated to the intensity of heat-induced erythema 24 h post UV (r: 0.57, p<0.05 for COX-2 and r: 0.83, p<0.001 for PGES). The individual correlation analyses of functional readouts (erythema and pain response) with local expression changes provided evidence for a potential role of Nav1.7 in mechanical hyperalgesia.  相似文献   

20.
Voltage-sensitive calcium channels (VSCCs) underlie cell excitability and are involved in the mechanisms that generate and maintain neuropathic and inflammatory pain. We evaluated in rats the effects of two VSCC blockers, ω-conotoxin MVIIA and Phα1β, in models of inflammatory and neuropathic pain induced with complete Freund’s adjuvant (CFA) and chronic constrictive injury (CCI), respectively. We also evaluated the effects of the toxins on capsaicin-induced Ca2+ influx in dorsal root ganglion (DRG) neurons obtained from rats exposed to both models of pain. A single intrathecal injection of Phα1β reversibly inhibits CFA and CCI-induced mechanical hyperalgesia longer than a single injection of ω-conotoxin MVIIA. Phα1β and MVIIA also inhibited capsaicin-induced Ca2+ influx in DRG neurons. The inhibitory effect of Phα1β on capsaicin-induced calcium transients in DRG neurons was greater in the CFA model of pain, while the inhibitory effect of ω-conotoxin MVIIA was greater in the CCI model. The management of chronic inflammatory and neuropathic pain is still a major challenge for clinicians. Phα1β, a reversible inhibitor of VSCCs with a preference for N-type Ca2+ channels, has potential as a novel therapeutic agent for inflammatory and neuropathic pain. Clinical studies are necessary to establish the role of Phα1β in the treatment of chronic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号