首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Borna disease virus (BDV) is a non-segmented, negative-sense RNA virus and has the property of persistently infecting the cell nucleus. BDV encodes a 10-kDa non-structural protein, X, which is a negative regulator of viral polymerase activity but is essential for virus propagation. Recently, we have demonstrated that interaction of X with the viral polymerase cofactor, phosphoprotein (P), facilitates translocation of P from the nucleus to the cytoplasm. However, the mechanism by which the intracellular localization of X is controlled remains unclear. In this report, we demonstrate that BDV X interacts with the 71 kDa molecular chaperon protein, Hsc70. Immunoprecipitation assays revealed that Hsc70 associates with the same region of X as P and, interestingly, that expression of P interferes competitively with the interaction between X and Hsc70. A heat shock experiment revealed that BDV X translocates into the nucleus, dependent upon the nuclear accumulation of Hsc70. Furthermore, we show that knockdown of Hsc70 by short interfering RNA decreases the nuclear localization of both X and P and markedly reduces the expression of viral genomic RNA in persistently infected cells. These data indicate that Hsc70 may be involved in viral replication by regulating the intracellular distribution of X.  相似文献   

3.
4.
Borna disease virus (BDV) is a nonsegmented, negative-strand RNA virus that replicates and transcribes in the nucleus of infected cells. Recently, we have demonstrated that BDV phosphoprotein (P) can modulate its subcellular localization through binding to the protein X, which is encoded in the overlapping open reading frame (T. Kobayashi et al., J. Virol. 77:8099-8107, 2003). This observation suggested a unique strategy of intracellular trafficking of a viral protein that is essential for the formation of a functional BDV ribonucleoprotein (RNP). However, neither the mechanism nor the consequences of the cytoplasmic retention or nuclear export of BDV X-P complex have been elucidated. In this study, we show that BDV P contains a bona fide nuclear export signal (NES) and can actively shuttle between the nucleus and cytoplasm. A transient transfection analysis of cDNA clones that mimic the BDV bicistronic X/P mRNA revealed that the methionine-rich (MetR) domain of P is responsible for the X-dependent cytoplasmic localization of the protein complex. Mutational and functional analysis revealed that the methionine residues within the MetR domain are critical for the activity of the NES of P. Furthermore, leptomycin B or small interfering RNA for inhibition of CRM1 strongly suggested that a CRM1-dependent pathway mediates nuclear export of P. Fluorescence loss in photobleaching analysis confirmed the nucleocytoplasmic shuttling of P. Moreover, we revealed that the nuclear export of P is not involved in the inhibition of the polymerase activity by X in the BDV minireplicon system. Our results may provide a unique strategy for the nucleocytoplasmic transport of viral RNP, which could be critical for the formation of not only infectious virions in the cytoplasm but also a persistent viral state in the nucleus.  相似文献   

5.
The production of infectious virus, hemagglutinin, and viral (V) antigens and the changes in ribonucleoprotein (RNP) and lipoprotein metabolism have been studied in four sublines of HeLa cells infected with the PR8 and a PR8 recombinant strain of influenza virus. Much greater amounts of infectious virus and much less hemagglutinin were produced by the PR8 recombinant than by PR8 virus in all four cell lines. Different amounts of infectious virus per infected cell were produced by the recombinant in the four cell lines, whereas very little infectious virus was produced by the PR8 strain in any of the HeLa cells. In all cell lines infected with both strains of virus, "soluble" (S) antigen appeared early in the nucleolus. In cells infected with PR8 recombinant, S antigen subsequently filled the nucleus and later appeared in the cytoplasm. In most cells infected with PR8 virus, nuclear S antigen did not fuse to fill the nucleus, and S antigen was not detected in the cytoplasm. V antigen was observed in the cytoplasm of cells when diffuse nuclear S antigen had formed. The earliest and most frequent change in the RNP of the infected cells was a decrease in stainable RNP spherules (nucleolini) in the nucleolus. This was followed, in a smaller proportion of cells, by the appearance of nuclear and cytoplasmic inclusions containing RNP. There was a characteristic difference in the morphology of the cytoplasmic inclusions produced by the two strains of virus, but the same types of inclusions were observed in all four HeLa lines. A significant increase in lipoprotein was observed only in association with the cytoplasmic inclusions produced by PR8 recombinant virus. There was a striking difference in the proportion of cells with cytochemical changes in RNP in the four cell lines. A significant cytopathic effect (CPE) was observed only in three virus-cell systems in which a high proportion of cells exhibited changes in nucleolinar RNP. It is suggested that disappearance of RNP in the nucleolini may be an indication of shutdown of host ribonucleic acid synthesis and that this in turn results in a CPE. Virus infection resulted in a C-mitotic block that was followed by karyorrhexis. Infection of the cell did not always result in the production of infectious virus, in changes in the RNP of the nucleolini, in the development of nuclear or cytoplasmic RNP inclusions, or in CPE. The results suggest that production of infectious virus, shutdown of cellular RNP synthesis with accompanying CPE, and the formation of inclusions appear to be independent events.  相似文献   

6.
The phosphoprotein P of Borna disease virus (BDV) is an essential cofactor of the viral RNA-dependent RNA polymerase. It is preferentially phosphorylated at serine residues 26 and 28 by protein kinase C epsilon (PKCepsilon) and, to a lesser extent, at serine residues 70 and 86 by casein kinase II (CKII). To determine whether P phosphorylation is required for viral polymerase activity, we generated P mutants lacking either the PKCepsilon or the CKII phosphate acceptor sites by replacing the corresponding serine residues with alanine (A). Alternatively, these sites were replaced by aspartic acid (D) to mimic phosphorylation. Functional characterization of the various mutants in the BDV minireplicon assay revealed that D substitutions at the CKII sites inhibited the polymerase-supporting activity of P, while A substitutions maintained wild-type activity. Likewise, D substitutions at the PKC sites did not impair the cofactor function of BDV-P, whereas A substitutions at these sites led to increased activity. Interestingly, recombinant viruses could be rescued only when P mutants with modified PKCepsilon sites were used but not when both CKII sites were altered. PKCepsilon mutant viruses showed a reduced capacity to spread in cell culture, while viral RNA and protein expression levels in persistently infected cells were almost normal. Further mutational analyses revealed that substitutions at individual CKII sites were, with the exception of a substitution of A for S86, detrimental for viral rescue. These data demonstrate that, in contrast to other viral P proteins, the cofactor activity of BDV-P is negatively regulated by phosphorylation.  相似文献   

7.
Borna disease virus (BDV) is a highly neurotropic RNA virus that causes neurological disorders in many vertebrate species. Although BDV readily establishes lasting persistence, persistently infected cells maintain an apparently normal cell phenotype in terms of morphology, viability, and proliferation. In this study, to understand the regulation of stress responses in BDV infection, we investigated the expression of heat shock proteins (HSPs) in glial cells persistently infected with BDV. Interestingly, we found that BDV persistence did not upregulate HSP70 expression even in cells treated with heat stress. Furthermore, BDV-infected glial cells exhibited rapid rounding and detachment from the culture plate under various stressful conditions. Immunofluorescence analysis demonstrated that heat stress rapidly disrupts the cell cytoskeleton only in persistently infected cells, suggesting a lack of thermotolerance. Intriguingly, we found that although persistently infected glial cells expressed HSP70 mRNA after heat stress, its expression rapidly disappeared during the recovery period. These observations indicated that persistent BDV infection may affect the stability of HSP70 mRNA. Finally, we found that the double-stranded RNA-dependent protein kinase (PKR) is expressed at a constant level in persistently infected cells with or without heat shock. Considering the interrelationship between HSP70 and PKR production, our data suggest that BDV infection disturbs the cellular stress responses to abolish antiviral activities and maintain persistence.  相似文献   

8.
Growing subcloned CV1-cells were infected with simian virus 40, and the time course of virus formation was determined. When infected cells were fractionated into cytoplasmic and nuclear fractions, most of the progeny virus particles were recovered in the cytoplasmic extract and not in the nuclei. This result was independent of the technique used for the preparation of nuclei and of the time after infection at which the extracts were prepared. Leakage of the virions from the nucleus occurred during the course of cell fractionation, suggesting that the nuclear membrane of the infected cells is damaged. Virions were found to accumulate in a nonlinear fashion, at the time when the number of viral deoxyribonucleic acid (DNA) molecules increases linearly with time after infection. This suggests that the size of the intracellular pool of capsid proteins increases constantly during the late phase of virus replication. Progeny viral DNA to become encapsidated is withdrawn at random from the pool of replicated DNA molecules.  相似文献   

9.
The RNA genome of Borna disease virus (BDV) shows extraordinary stability in persistently infected cell cultures. We performed bottleneck experiments in which virus populations from single infected cells were allowed to spread through cultures of uninfected cells and in which RNase protection assays were used to identify virus variants with mutations in a 535-nucleotide fragment of the M-G open reading frames. In one of the cell cultures, the major virus species (designated 2/1) was a variant with two point mutations in the G open reading frame. When fresh cells were infected with a low dose of a virus stock prepared from 2/1-containing cells, only a minority of the resulting persistently infected cultures contained detectable levels of the variant, whereas the others all seemed to contain wild-type virus. The BDV variant 2/1 remained stable in the various persistently infected cell cultures, indicating that the cells were resistant to superinfection by wild-type virus. Indeed, cells persistently infected with prototype BDV He/80 were also found to resist superinfection with strain V and vice versa. Our screen for mutations in the viral M and G genes of different rat-derived BDV virus stocks revealed that only one of four stocks believed to contain He/80 harbored virus with the original sequence. Two stocks mainly contained a novel virus variant with about 3% sequence divergence, whereas the fourth stock contained a mixture of both viruses. When the mixture was inoculated into the brains of newborn mice, the novel variant was preferentially amplified. These results provide evidence that the BDV genome is mutating more frequently than estimated from its invariant appearance in persistently infected cell cultures and that resistance to superinfection might strongly select against novel variants.  相似文献   

10.
We developed the antigen capture enzyme-linked immunosorbent assay (ELISA) systems for quantification of Borna disease virus (BDV) major antigens, p40 and p24. Using these ELISAs, we quantified the two proteins in various BDV-infected materials, including the cell lysates and culture supernatants as well as the homogenates of experimental animal brains. The ELISAs were also applied to measure the infectious titer of BDV in persistently infected cell lines. Quantitative analysis with these ELISAs allowed us to measure the molecular ratio between the p40 and p24 in infected samples. Interestingly, the ratio of p24 to p40 in persistently infected cells was much higher than that observed in acutely infected cells although the ratios in the supernatants from both cell lines were quite similar. BDV-inoculated gerbil brain cells showed a relatively high ratio of p24 to p40 as compared with acutely infected cells. These observations suggested that the molecular ratio between the proteins strongly depended on the infectious status of BDV in the host cells. The ELISA system developed here could be a convenient method for the quantification of BDV infection and may also be beneficial for understanding viral replication and infectious status in the host cells.  相似文献   

11.
Studies on the intracellular trafficking of influenza virus ribonucleoproteins are currently limited by the lack of a method enabling their visualization during infection in single cells. This is largely due to the difficulty of encoding fluorescent fusion proteins within the viral genome. To circumvent this limitation, we used the split-green fluorescent protein (split-GFP) system (S. Cabantous, T. C. Terwilliger, and G. S. Waldo, Nat. Biotechnol. 23:102-107, 2005) to produce a quasi-wild-type recombinant A/WSN/33/influenza virus which allows expression of individually fluorescent PB2 polymerase subunits in infected cells. The viral PB2 proteins were fused to the 16 C-terminal amino acids of the GFP, whereas the large transcomplementing GFP fragment was supplied by transient or stable expression in cultured cells that were permissive to infection. This system was used to characterize the intranuclear dynamics of PB2 by fluorescence correlation spectroscopy and to visualize the trafficking of viral ribonucleoproteins (vRNPs) by dynamic light microscopy in live infected cells. Following nuclear export, vRNPs showed a transient pericentriolar accumulation and intermittent rapid (~1 μm/s), directional movements in the cytoplasm, dependent on both microtubules and actin filaments. Our data establish the potential of split-GFP-based recombinant viruses for the tracking of viral proteins during a quasi-wild-type infection. This new virus, or adaptations of it, will be of use in elucidating many aspects of influenza virus host cell interactions as well as in screening for new antiviral compounds. Furthermore, the existence of cell lines stably expressing the complementing GFP fragment will facilitate applications to many other viral and nonviral systems.  相似文献   

12.
13.
Recently developed vector systems based on Borna disease virus (BDV) hold promise as platforms for efficient and stable gene delivery to the central nervous system (CNS). However, because it currently takes several weeks to rescue recombinant BDV (rBDV), an improved rescue procedure would enhance the utility of this system. Heat stress reportedly enhances the rescue efficiency of other recombinant viruses. Here, heat stress was demonstrated to increase the amount of BDV genome in persistently BDV‐infected cells without obvious cytotoxicity. Further analyses suggested that the effect of heat stress on BDV infection is not caused by an increase in the activity of BDV polymerase. More cells in which BDV replication occurs were obtained in the initial phase of rBDV rescue by using heat stress than when it was not used. Thus, heat stress is a useful improvement on the published rescue procedure for rBDV. The present findings may accelerate the practical use of BDV vector systems in basic science and the clinic and thus enable broader adoption of this viral vector, which is uniquely suited for gene delivery to the CNS.  相似文献   

14.
目的分析博尔纳病病毒(Borna disease virus,BDV)H1766株对BALB/c小鼠的感染性。方法选择病毒滴度为2.0×107FFU/ml的BDV病毒液分别对新生和成年BALB/c小鼠进行脑内接种,并用相同病毒液对原代培养的新生BALB/c小鼠脑细胞进行接种。经过一定时间的病毒作用后分别提取总RNA,采用巢式RT-PCR方法检测BDV-p40基因,并通过免疫组化方法检测脑内接种脑组织中BDV-P40蛋白。结果脑内接种病毒的小鼠脑组织中可以检测到BDV-p40基因和BDV-P40蛋白,培养的小鼠脑细胞中可以检测到BDV-p40基因。结论BDVH1766株可以感染新生和成年的BALB/c小鼠。  相似文献   

15.
The nucleus of interphase eukaryotic cell is a highly compartmentalized structure containing the three-dimensional network of chromatin and numerous proteinaceous subcompartments. DNA viruses induce profound changes in the intranuclear structures of their host cells. We are applying a combination of confocal imaging including photobleaching microscopy and computational methods to analyze the modifications of nuclear architecture and dynamics in parvovirus infected cells. Upon canine parvovirus infection, expansion of the viral replication compartment is accompanied by chromatin marginalization to the vicinity of the nuclear membrane. Dextran microinjection and fluorescence recovery after photobleaching (FRAP) studies revealed the homogeneity of this compartment. Markedly, in spite of increase in viral DNA content of the nucleus, a significant increase in the protein mobility was observed in infected compared to non-infected cells. Moreover, analyzis of the dynamics of photoactivable capsid protein demonstrated rapid intranuclear dynamics of viral capsids. Finally, quantitative FRAP and cellular modelling were used to determine the duration of viral genome replication. Altogether, our findings indicate that parvoviruses modify the nuclear structure and dynamics extensively. Intranuclear crowding of viral components leads to enlargement of the interchromosomal domain and to chromatin marginalization via depletion attraction. In conclusion, parvoviruses provide a useful model system for understanding the mechanisms of virus-induced intranuclear modifications.  相似文献   

16.
Borna disease virus (BDV) can persistently infect the central nervous system (CNS) of mice. The infection remains nonsymptomatic as long as antiviral CD8 T cells do not infiltrate the infected brain. BDV mainly infects neurons which reportedly carry few, if any, major histocompatibility complex class I molecules on the surface. Therefore, it remains unclear whether T cells can recognize replicating virus in these cells or whether cross-presentation of viral antigen by other cell types is important for immune recognition of BDV. To distinguish between these possibilities, we used two lines of transgenic mice that strongly express the N protein of BDV in either neurons (Neuro-N) or astrocytes (Astro-N). Since these animals are tolerant to the neo-self-antigen, we adoptively transferred T cells with specificity for BDV N. In nontransgenic mice persistently infected with BDV, the transferred cells accumulated in the brain parenchyma along with immune cells of host origin and efficiently induced neurological disease. Neurological disease was also observed if antiviral T cells were injected into the brains of Astro-N or Neuro-N but not nontransgenic control mice. Our results demonstrate that CD8 T cells can recognize foreign antigen on neurons and astrocytes even in the absence of infection or inflammation, indicating that these CNS cell types are playing an active role in immune recognition of viruses.  相似文献   

17.
Sequential morphological changes occurring in sheep choroid plexus cells infected with visna virus were studied by direct immunofluorescence, acridine orange, and hematoxylin and eosin staining methods. Specific immunofluorescence was first detected in the perinuclear cytoplasm of solitary cells 24 hr after infection. As the infection progressed, viral antigen appeared in an increasing number of cells, and rounded globular cells with long slender processes harboring intense fluorescence were seen. Nuclear fluorescence was not observed in infected monolayers. Polykaryocytes formed within 6 hr after inoculation due to the direct cell-fusing effect of the virus inoculum did not show specific fluorescence. Viral antigen was found, however, in the cytoplasm of multinucleated giant cells in cover slips harvested after new infective virus had been released, and later in the course of infection circular fluorescent inclusions were seen in the cytoplasm of polykaryocytes. Comparable eosinophilic inclusions were observed in hematoxylin and eosin preparations, and acridine orange staining of infected monolayers demonstrated similar inclusions which fluoresced with the color characteristic of single-stranded nucleic acid and were susceptible to digestion with ribonuclease. Visna virus appears to be a ribonucleic acid virus which replicates in the cytoplasm.  相似文献   

18.
Rabies virus replicates in the cytoplasm of host cells, but rabies virus phosphoprotein (P-protein) undergoes active nucleocytoplasmic trafficking. Here we show that the largely nuclear P-protein isoform P3 can localize to nucleoli and forms specific interactions with nucleolin. Importantly, depletion of nucleolin expression inhibits viral protein expression and infectious virus production by infected cells. This provides the first evidence that lyssaviruses interact with nucleolin and that nucleolin is important to lyssavirus infection.  相似文献   

19.
Peng G  Yan Y  Zhu C  Wang S  Yan X  Lu L  Li W  Hu J  Wei W  Mu Y  Chen Y  Feng Y  Gong R  Wu K  Zhang F  Zhang X  Zhu Y  Wu J 《Journal of virology》2008,82(24):12487-12497
Borna disease virus (BDV) is one of the infectious agents that causes diseases of the central nervous system in a wide range of vertebrate species and, perhaps, in humans. The phosphoprotein (P) of BDV, an essential cofactor of virus RNA-dependent RNA polymerase, is required for virus replication. In this study, we identified the gamma-aminobutyric acid receptor-associated protein (GABARAP) with functions in neurobiology as one of the viral P protein-interacting cellular factors by using an approach of phage display-based protein-protein interaction analysis. Direct binding between GABARAP and P protein was confirmed by coimmunoprecipitation, protein pull-down, and mammalian two-hybrid analyses. GABARAP originally was identified as a linker between the gamma-aminobutyric acid receptor (GABAR) and the microtubule to regulate receptor trafficking and plays important roles in the regulation of the inhibitory neural transmitter gamma-aminobutyric acid (GABA). We showed that GABARAP colocalizes with P protein in the cells infected with BDV or transfected with the P gene, which resulted in shifting the localization of GABARAP from the cytosol to the nucleus. We further demonstrated that P protein blocks the trafficking of GABAR, a principal GABA-gated ion channel that plays important roles in neural transmission, to the surface of cells infected with BDV or transfected with the P gene. We proposed that during BDV infection, P protein binds to GABARAP, shifts the distribution of GABARAP from the cytoplasm to the nucleus, and disrupts the trafficking of GABARs to the cell membranes, which may result in the inhibition of GABA-induced currents and in the enhancement of hyperactivity and anxiety.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号