首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
We examined stable carbon and nitrogen isotope ratios for a large variety of consumers in intertidal and subtidal habitats, and their potential primary food sources [i.e., microphytobenthos (MPB), phytoplankton, and Phragmites australis] in a coastal bay system, Yeoja Bay of Korea, to test the hypothesis that the transfer of intertidal MPB-derived organic carbon to the subtidal food web can be mediated by motile consumers. Compared to a narrow δ13C range (−18 to −16‰) of offshore consumers, a broad δ13C range (−18 to −12‰) of both intertidal and subtidal consumers indicated that 13C-enriched sources of organic matter are an important trophic source to coastal consumers. In the intertidal areas, δ13C of most consumers overlapped with or was 13C-enriched relative to MPB. Despite the scarcity of MPB in the subtidal, highly motile consumers in subtidal habitat had nearly identical δ13C range with many intertidal foragers (including crustaceans and fish), overlapping with the range of MPB. In contrast, δ13C values of many sedentary benthic invertebrates in the subtidal areas were similar to those of offshore consumers and more 13C-depleted than motile foragers, indicating high dependence on phytoplankton-derived carbon. The isotopic mixing model calculation confirms that the majority of motile consumers and also some of subtidal sedentary ones depend on intertidal MPB for more than a half of their tissue carbon. Finally, although further quantitative estimates are needed, these results suggest that direct foraging by motile consumers on intertidal areas, and thereby biological transport of MPB-derived organic carbon to the subtidal areas, may provide important trophic connection between intertidal production and the nearshore shallow subtidal food webs.  相似文献   

2.
ABSTRACT Off-road vehicle (ORV) traffic is one of several forms of disturbance thought to affect shorebirds at migration stopover sites. Attempts to measure disturbance effects on shorebird habitat use and behavior at stopover sites are difficult because ORV disturbance is frequently confounded with habitat and environmental factors. We used a before-after-control-impact experimental design to isolate effects of vehicle disturbance from shorebird responses to environmental and habitat factors. We manipulated disturbance levels within beach closures along South Core Banks, North Carolina, USA, and measured changes in shorebird abundance and location, as well as the activity of one focal species, the sanderling (Calidris alba), within paired control and impact plots. We applied a discrete treatment level of one flee-response-inducing event every 10 minutes on impact plots. We found that disturbance reduced total shorebird and black-bellied plover (Pluvialis squatarola) abundance and reduced relative use of microhabitat zones above the swash zone (wet sand and dry sand) by sanderlings, black-bellied plovers, willets (Tringa semipalmata), and total shorebirds. Sanderlings and total shorebirds increased use of the swash zone in response to vehicle disturbance. Disturbance reduced use of study plots by sanderlings for resting and increased sanderling activity, but we did not detect an effect of vehicle disturbance on sanderling foraging activity. We provide the first estimates of how a discrete level of disturbance affects shorebird distributions among ocean beach microhabitats. Our findings provide a standard to which managers can compare frequency and intensity of disturbance events at other shorebird stopover and roosting sites and indicate that limiting disturbance will contribute to use of a site by migratory shorebirds.  相似文献   

3.
Conservation of shorebirds throughout their breeding and migratory ranges has become a priority as shorebird populations decline globally. Along the North Atlantic Coast, management efforts have particularly focused on preserving nesting habitat for piping plovers (Charadrius melodus), which are protected under the Endangered Species Act. It is unclear whether these conservation measures suffice to protect foraging habitat for piping plovers and other shorebirds on stopover during migration along the Atlantic Flyway. To evaluate the extent to which conservation of piping plover nesting areas extends to all habitats used by plovers, and to determine whether these protections also benefited non-breeding migratory shorebirds in the region, we conducted weekly shorebird surveys, recording the number and locations of piping plovers and other species, during northward and southward migration on Fire Island and Westhampton Island, New York, USA, from 2014–2016. We used canonical correspondence analysis (CCA) to assess the degree of spatiotemporal overlap between breeding plovers, foraging plovers, and other migratory shorebirds that temporarily stage at the site. The spatiotemporal distribution of migratory shorebirds matched more closely with piping plovers seen during foraging than piping plovers observed tending nests and engaging in other breeding activities. Migratory shorebirds and foraging piping plovers were more abundant and frequent in wet intertidal zones outside of fenced-off nesting areas, which were not protected under current management regimes. Therefore, additional protection of piping plover foraging habitat could benefit plovers and migratory shorebirds that use similar feeding grounds during stopover on northward and southward migration. © 2020 The Wildlife Society.  相似文献   

4.
5.
6.
7.
郭依泉  赵志模 《生态学杂志》1992,11(3):65-68,71
群落是指一定地段或生境里各种生物种群构成的结构单元。群落内各物种不是孤立存在的,它们之间存在着极为复杂的营养联系。一种植物常有多种害虫取食,一种害虫可取食多种植物,同时又被多种天敌捕食或寄  相似文献   

8.
The fate of diazotrophic nitrogen (ND) fixed by planktonic cyanobacteria in pelagic food webs remains unresolved, particularly for toxic cyanophytes that are selectively avoided by most herbivorous zooplankton. Current theory suggests that ND fixed during cyanobacterial blooms can enter planktonic food webs contemporaneously with peak bloom biomass via direct grazing of zooplankton on cyanobacteria or via the uptake of bioavailable ND (exuded from viable cyanobacterial cells) by palatable phytoplankton or microbial consortia. Alternatively, ND can enter planktonic food webs post-bloom following the remineralization of bloom detritus. Although the relative contribution of these processes to planktonic nutrient cycles is unknown, we hypothesized that assimilation of bioavailable ND (e.g., nitrate, ammonium) by palatable phytoplankton and subsequent grazing by zooplankton (either during or after the cyanobacterial bloom) would be the primary pathway by which ND was incorporated into the planktonic food web. Instead, in situ stable isotope measurements and grazing experiments clearly documented that the assimilation of ND by zooplankton outpaced assimilation by palatable phytoplankton during a bloom of toxic Nodularia spumigena Mertens. We identified two distinct temporal phases in the trophic transfer of ND from N. spumigena to the plankton community. The first phase was a highly dynamic transfer of ND to zooplankton with rates that covaried with bloom biomass while bypassing other phytoplankton taxa; a trophic transfer that we infer was routed through bloom-associated bacteria. The second phase was a slowly accelerating assimilation of the dissolved-ND pool by phytoplankton that was decoupled from contemporaneous variability in N. spumigena concentrations. These findings provide empirical evidence that ND can be assimilated and transferred rapidly throughout natural plankton communities and yield insights into the specific processes underlying the propagation of ND through pelagic food webs.  相似文献   

9.
10.
Food webs near the interface of adjacent ecosystems are potentially subsidised by the flux of organic matter across system boundaries. Such subsidies, including carrion of marine provenance, are predicted to be instrumental on open-coast sandy shores where in situ productivity is low and boundaries are long and highly permeable to imports from the sea. We tested the effect of carrion supply on the structure of consumer dynamics in a beach-dune system using broad-scale, repeated additions of carcasses at the strandline of an exposed beach in eastern Australia. Carrion inputs increased the abundance of large invertebrate scavengers (ghost crabs, Ocypode spp.), a numerical response most strongly expressed by the largest size-class in the population, and likely due to aggregative behaviour in the short term. Consumption of carrion at the beach-dune interface was rapid and efficient, driven overwhelmingly by facultative avian scavengers. This guild of vertebrate scavengers comprises several species of birds of prey (sea eagles, kites), crows and gulls, which reacted strongly to concentrations of fish carrion, creating hotspots of intense scavenging activity along the shoreline. Detection of carrion effects at several trophic levels suggests that feeding links arising from carcasses shape the architecture and dynamics of food webs at the land-ocean interface.  相似文献   

11.
This paper explores the extent to which life histories of infaunalprey have been molded and maintained by predation. It is arguedsuch relationships should be most evident for episodic predation,where the predation is predictable, intense and short-lived.Migratory shorebirds are used herein as model episodic predators.Four stop-over areas in North America, for which experimentaldata exist, are compared. Evidence exists that SemipalmatedSandpipers in the upper Bay of Fundy maintain the observed lifehistory of their major prey, the amphipod Corophium volutator.In southeastern Massachusetts, shorebirds significantly reducethe abundance of their prey but in a frequency-dependent fashion,precluding life history responses of the prey. For Grays Harbor,Washington and Delaware Bay, there is no detectable effect ofshorebird predation on the infauna. In three of the four studies,there is no apparent effect of early shorebird migrants in significantlyincreasing the required stop-over of later migrants by depressionof prey densities. The data support the characterization ofsoft-sediment communities as loosely organized assemblages whosespecific constitution is determined more by ecological combiningability than by specific evolutionary responses to associatedspecies.  相似文献   

12.
The effect of temperature changes on the marine pelagic food web was studied in three successive mesocosm experiments, performed during the spring bloom 2001 in the northern Baltic Sea. The temperature was varied from 5 to 20 °C in each experiment, running over a 3-week period. The experiments included food webs of at least four trophic levels: (1) phytoplankton-bacteria, (2) flagellates, (3) ciliates and (4) metazooplankton. The results showed that heterotrophic to autotrophic biomass ratio (H/A) increased 5 times when temperature was raised from 5 to 10 °C. In agreement, the carbon fixation to respiration ratio indicated a decrease of six times over the same temperature range. Furthermore, the sedimentation decreased by 45% when the temperature was elevated from 5 to 10 °C, probably as a consequence of the increased respiration losses and bacterial biodegradation of settling material. Analyzed parameters, thus, indicated that the degree of heterotrophy increased in the temperature interval of 5–10 °C. Above 10 °C, the analyzed parameters in general were more stable. Our results indicate that moderately elevated seawater temperatures, due to climate change or weather alterations, may affect the entire ecosystem function in temperate sea areas by altering the balance between autotrophy and heterotrophy.  相似文献   

13.
ABSTRACT The study of microbial food webs is dominated by field measurements of microbial standing stocks and rate processes and to a lesser extent by laboratory studies. These approaches reflect the concerns of microbial ecologists to assess accurately the capabilities of microorganisms and to compare microbial processes to other ecosystem parameters. These approaches have led to enormous advances in understanding microbial food webs. Reconciling our expanding knowledge with general questions about the significance and representation of microbial food webs in ecosystem studies requires additional approaches including comparative studies and field experiments. Comparative studies, analyses of microbial stocks or rates across a wide range of ecosystems, lead to quantitative models of microbial processes. These models facilitate testing of hypotheses at a very general level, allow the comparison of different stocks or rate processes across a gradient of systems, and detect unusual situations or outlier systems. Field experimental manipulations offer the advantages of working with intact natural communities, of direct evaluation of results with statistical methods, and of testing important qualitative hypotheses. Both comparative and field manipulation studies have led to important advances in the study of microbial food webs and should be expanded.  相似文献   

14.
The asexual spores (conidia) of Aspergillus niger germinate to produce hyphae under appropriate conditions. Germination is initiated by conidial swelling and mobilization of internal carbon and energy stores, followed by polarization and emergence of a hyphal germ tube. The effects of different pyranose sugars, all analogues of d-glucose, on the germination of A. niger conidia were explored, and we define germination as the transition from a dormant conidium into a germling. Within germination, we distinguish two distinct stages, the initial swelling of the conidium and subsequent polarized growth. The stage of conidial swelling requires a germination trigger, which we define as a compound that is sensed by the conidium and which leads to catabolism of d-trehalose and isotropic growth. Sugars that triggered germination and outgrowth included d-glucose, d-mannose, and d-xylose. Sugars that triggered germination but did not support subsequent outgrowth included d-tagatose, d-lyxose, and 2-deoxy-d-glucose. Nontriggering sugars included d-galactose, l-glucose, and d-arabinose. Certain nontriggering sugars, including d-galactose, supported outgrowth if added in the presence of a complementary triggering sugar. This division of functions indicates that sugars are involved in two separate events in germination, triggering and subsequent outgrowth, and the structural features of sugars that support each, both, or none of these events are discussed. We also present data on the uptake of sugars during the germination process and discuss possible mechanisms of triggering in the absence of apparent sugar uptake during the initial swelling of conidia.  相似文献   

15.
Efforts to conserve, restore, or otherwise manage large rivers and the services they provide are hindered by limited understanding of the functional dynamics of these systems. This shortcoming is especially evident with regard to trophic structure and energy flow. We used natural abundances of carbon and nitrogen isotopes to examine patterns of material flow in ten large-river food webs characterized by different landscape-scale hydrologic characteristics (low-gradient river, high-gradient river, river stretches downstream of reservoirs, and reservoirs), and tested predictions from three ecosystem concepts commonly applied to large-rivers: The River Continuum Concept, The Flood Pulse Concept and the Riverine Productivity Model. Carbon derived from aquatic C3 plants and phytoplankton were the dominant energy sources supporting secondary consumers across the ten large-river food webs examined, but relative contributions differed significantly among landscape types. For low-gradient river food webs, aquatic C3 plants were the principal carbon source, contributing as much as 80% of carbon assimilated by top consumers, with phytoplankton secondarily important. The estimated relative importance of phytoplankton was greatest for food webs of reservoirs and river stretches downriver from impoundments, although aquatic C3 plants contributed similar amounts in both landscape types. Highest 99th percentile source contribution estimates for C4 plants and filamentous algae (both approximately 40%) were observed for high-gradient river food webs. Our results for low-gradient rivers supported predictions of the Flood Pulse Concept, whereas results for the three other landscape types supported the Riverine Productivity Model to varying degrees. Incorporation of landscape-scale hydrologic or geomorphic characteristics, such as river slope or floodplain width, may promote integration of fluvial ecosystem concepts. Expanding these models to include hydrologically impacted landscapes should lead to a more holistic understanding of ecosystem processes in large-river systems.  相似文献   

16.
In the second half of the 20th century, investigations of indigenous environmental knowledge have been the subject of broader anthropological debates over how knowledge and experience are formed. Many such approaches have focused on environmental nomenclature and taxonomy, or what Roy Ellen has called “formal lexical knowledge” (1999). Such knowledge is readily available to an ethnographer and also more easily transmitted through language between subjects. These characteristics of formal lexical knowledge have led to considerable attention given to differences in environmental knowledge between cultures and have possibly resulted in the inflation of the efficacy of language in forming knowledge. However, if a different form of environmental knowledge is examined are there differences that emerge within communities and other processes beyond symbolic systems that shape knowledge? To address these questions, individuals in two Balinese agricultural communities were asked to construct food webs by linking photos of plant and animal species according to ecological interaction. The results showed significant variation in subjects’ knowledge by gender, which corresponds to labor experience in Balinese wet rice agricultural systems. By shifting attention toward emic models of ecological interactions, this article attempts to demonstrate (1) that environmental knowledge differs within a single community; and, (2) the role of labor experience or praxis has in forming environmental knowledge.  相似文献   

17.
Cyclical industrial networks are becoming highly desirable for their efficient use of resources and capital. Progress toward this ideal can be enhanced by mimicking the structure of naturally sustainable ecological food webs (FWs). The structures of cyclic industrial networks, sometimes known as eco‐industrial parks (EIPs), are compared to FWs using a variety of important structural ecological parameters. This comparison uses a comprehensive data set of 144 FWs that provides a more ecologically correct understanding of how FWs are organized than previous efforts. In conjunction, an expanded data set of 48 EIPs gives new insights into similarities and differences between the two network types. The new information shows that, at best, current EIPs are most similar to those FWs that lack the components that create a biologically desirable cyclical structure. We propose that FWs collected from 1993 onward should be used in comparisons with EIPs, given that these networks are much more likely to include important network functions that directly affect the structure. We also propose that the metrics used in an ecological analysis of EIPs be calculated from an FW matrix, as opposed to a community matrix, which, to this point, has been widely used. These new insights into the design of ecologically inspired industrial networks clarify the path toward superior material and energy cycling for environmental and financial success.  相似文献   

18.
19.

Background

Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing.

Methodology

In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors.

Principal findings

Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae, and invertebrates). Keystone groups were prevalent in estuarine or small/shallow systems, and in systems with reduced fishing pressure. Changes to the abundance of key functional groups might have significant implications for the functioning of ecosystems and should be avoided through management.

Conclusion/significance

Our results provide additional understanding of patterns of structural and functional indicators in different ecosystems. Ecosystem traits such as type, size, depth, and location need to be accounted for when setting reference levels as these affect absolute values of ecological indicators. Therefore, establishing absolute reference values for ecosystem indicators may not be suitable to the ecosystem-based, precautionary approach. Reference levels for ecosystem indicators should be developed for individual ecosystems or ecosystems with the same typologies (similar location, ecosystem type, etc.) and not benchmarked against all other ecosystems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号