首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The antiapoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL play important roles in inhibiting mitochondria-dependent extrinsic and intrinsic cell death pathways. It seems that these two proteins have distinct functions for inhibiting extrinsic and intrinsic cell death pathways. The overexpression of Bcl-2 is able to inhibit not only apoptotic cell death but also in part nonapoptotic cell death, which has the role of cell cycle arrest in the G1 phase, which may promote cellular senescence. The overexpression of Bcl-2 may also have the ability to enhance cell death in the interaction of Bcl-xL with other factors. The overexpression of Bcl-xL enhances autophagic cell death when apoptotic cell death is inhibited in Bax(-/-)/Bak(-/-) double knockout cells. This review discusses the previously unexplained aspects of Bcl-2 and Bcl-xL functions associated with cell death, for better understanding of their functions in the regulation.  相似文献   

2.
Though the activation of c-Jun NH2-terminal kinase (JNK) has been reported to be essential for autophagic cell death in response to various stressors, the molecular links between JNK activation and autophagic cell death signaling remain elusive. Here we report that, in the JNK-dependent autophagic cell death of HCT116 cells induced by an agonistic single chain variable fragment antibody, HW1, against human death receptor 5 (DR5), JNK activation upregulated Beclin-1 expression and induced Bcl-2 and p53 phosphorylation. Further, the p53-deficient HCT116 cells showed less susceptibility to the HW1-mediated autophagic cell death than the wild type cells, suggesting that JNK-mediated p53 phosphorylation promotes the autophagic cell death. Our results suggest that DR5-stimulated JNK activation and its consequent fluxes into the pro-autophagic signaling pathways contribute to the autophagic cell death in cancer cells.  相似文献   

3.
Structural modifications of the left-hand side of compound 1 were identified which retained or improved potent binding to Bcl-2 and Bcl-xL in in vitro biochemical assays and had strong activity in an RS4;11 apoptotic cellular assay. For example, sulfoxide diastereomer 13 maintained good binding affinity and comparable cellular potency to 1 while improving aqueous solubility. The corresponding diastereomer (14) was significantly less potent in the cell, and docking studies suggest that this is due to a stereochemical preference for the RS versus SS sulfoxide. Appending a dimethylaminoethoxy side chain (27) adjacent to the benzylic position of the biphenyl moiety of 1 improved cellular activity by approximately three-fold, and this activity was corroborated in cell lines overexpressing Bcl-2 and Bcl-xL.  相似文献   

4.
The high-mobility group A (HMGA) proteins are a family of non-histone chromatin factors, encoded by the HMGA1 and HMGA2 genes. Several studies demonstrate that HMGA proteins have a critical role in neoplastic transformation, and their overexpression is mainly associated with a highly malignant phenotype, also representing a poor prognostic index. Even though a cytoplasmic localization of these proteins has been previously reported in some highly malignant neoplasias, a clear role for this localization has not been defined. Here, we first confirm the localization of the HMGA1 proteins in the cytoplasm of cancer cells, and then we report a novel mechanism through which HMGA1 inhibits p53-mitochondrial apoptosis by counteracting the binding of p53 to the anti-apoptotic factor Bcl-2. Indeed, we demonstrate a physical and functional interaction between HMGA1 and Bcl-2 proteins. This interaction occurs at mitochondria interfering with the ability of p53 protein to bind Bcl-2, thus counteracting p53-mediated mitochondrial apoptosis. This effect is associated with the inhibition of cytochrome c release and activation of caspases. Consistent with this mechanism, a strong correlation between HMGA1 cytoplasmic localization and a more aggressive histotype of thyroid, breast and colon carcinomas has been observed. Therefore, cytoplasmic localization of HMGA1 proteins in malignant tissues is a novel mechanism of inactivation of p53 apoptotic function.  相似文献   

5.
The antiapoptotic protein Bcl-2, overexpressed in many tumor cells, is an attractive target for potential small molecule anticancer drug discovery. Herein, we report a different structural modification approach on ABT-263 by merging the piperazinyl-phenyl fragment into a bicyclic framework leading to a series of novel analogues, among which tetrahydroisoquinoline 13 was nearly equally potent against Bcl-2 as ABT-263. Further SAR in the P4-interaction pocket affored the difluoroazetidine substituted analogue 55, which retained good Bcl-2 activity with improved Bcl-2/Bcl-xL selectivity.  相似文献   

6.
Mammalian cells may undergo permanent growth arrest/senescence when they incur excessive DNA damage. As a key player during DNA damage response (DDR), p53 transactivates an array of target genes that are involved in various cellular processes including the induction of cellular senescence. Chemokine receptor CXCR2 was previously reported to mediate replicative and oncogene‐induced senescence in a DDR and p53‐dependent manner. Here, we report that CXCR2 is upregulated in various types of cells in response to genotoxic or oxidative stress. Unexpectedly, we found that the upregulation of CXCR2 depends on the function of p53. Like other p53 target genes such as p21, CXCR2 is transactivated by p53. We identified a p53‐binding site in the CXCR2 promoter that responds to changes in p53 functional status. Thus, CXCR2 may act downstream of p53. While the senescence‐associated secretory phenotype (SASP) exhibits a kinetics that is distinct from that of CXCR2 expression and does not require p53, it reinforces senescence. We further showed that the cellular senescence caused by CXCR2 upregulation is mediated by p38 activation. Our results thus demonstrate CXCR2 as a critical mediator of cellular senescence downstream of p53 in response to DNA damage.  相似文献   

7.
目的:研究凋亡抑制因子Survivin蛋白在大肠癌中的表达及其与患者临床病理和预后的关系。检测大肠癌组织中Survivin的表达与Bcl-2,P53的表达的关系。方法:用免疫组织化学方法检测115例大肠癌组织中Survivin,Bcl-2及P53的蛋白表达,并对病例随访5年。结果:Survivin在大肠癌中的阳性表达率为74/115(64.3%)。正常肠黏膜组织不表达Survivin。Survivin与患者的临床病理特征无显著相关性(P>0.05)。Survivin的表达率在Bcl-2阳性的患者明显高于Bcl-2阴性的患者(P<0.001),但是和P53的表达无显著相关性(P>0.05)。Survivin阳性的患者5年生存率明显低于Survivin阴性的患者(P=0.001)。结论:在大肠癌组织中检测Survivin对于肿瘤患者的预后以及基于抗凋亡机制的肿瘤靶向治疗都有很重要的意义。  相似文献   

8.
《Molecular cell》2020,77(4):901-912.e9
  1. Download : Download high-res image (197KB)
  2. Download : Download full-size image
  相似文献   

9.
10.
胃癌在中国的发病率和死亡率居恶性肿瘤前列,现在胃癌的治疗主要以手术和化疗为主的综合治疗,新辅助化疗是胃癌综合治疗的重要组成部分,通过新辅助化疗能够有效抑制癌细胞增殖、缩小肿瘤体积等优点,从而为手术切除创造条件。本研究用新辅助化疗处理患胃癌的小鼠,并检测了新辅助化疗处理前后胃癌细胞内p53和Bcl-2 (细胞凋亡相关因子)基因在组织内的表达变化情况,以及与对照相比新辅助化疗对肿瘤大小的影响。结果表明,新辅助化疗可以减缓肿瘤的增长,显著上调小鼠胃癌组织内细胞凋亡因子p53的表达,并且显著下调Bcl-2抗凋亡因子的表达,从而有效地抑制胃癌细胞的增殖。这一结果可能为新辅助化疗对胃癌的治疗分子机制提供一些理论支持。  相似文献   

11.
12.
Fucoxanthin, a natural carotenoid, has been reported to have anti-cancer activity in human colon cancer cells, human prostate cancer cells, human leukemia cells, and human epithelial cervical cancer cells. This study was undertaken to evaluate the molecular mechanisms of fuco- xanthin against human bladder cancer T24 cell line. MTT analysis results showed that 5 and 10 ixM fucoxanthin inhibited the proliferation of T24 cells in a dose- and time- dependent manner accompanied by the growth arrest at Go/G1 phase of cell cycle, which is mediated by the up-regu- lation of p21, a cyclin-dependent kinase (CDK)-inhibitory protein and the down-regulation of CDK-2, CDK-4, cyclin D1, and cyclin E. In addition, 20 and 40 μM fucoxanthin induced apoptosis of T24 cells by the abrogation of morta- lin-p53 complex and the reactivation of nuclear mutant- type p53, which also had tumor suppressor function as wild-type p53. All these results demonstrated that the anti- cancer activity of fucoxanthin on T24 cells was associated with cell cycle arrest at Go/G1 phase by up-regulation of p21 at low doses and apoptosis via decrease in the expres- sion level of mortalin, which is a stress regulator and a mem- ber of heat shock protein 70, followed by up-regulation of cleaved caspase-3 at high doses.  相似文献   

13.
For subsets of colorectal adenocarcinoma (CRC) patients, nuclear accumulation of p53 (p53(nac)) and Bcl-2 expression are prognostic indicators. To understand their role in the progression of CRC we evaluated 90 CRCs and their contiguous adenomatous components (CAdCs) for immunohistochemical expression of these markers. In general, p53(nac) and Bcl-2 expression was significantly increased when comparing normal colonic epithelia to CAdCs and CRCs. Thirteen (14%) CAdCs that demonstrated p53(nac) continued to express p53(nac) in their contiguous CRCs. A similar trend was observed in Bcl-2 expression in that the majority of CAdCs expressing Bcl-2 continued to express it in their matching CRCs (39/44). Patients whose CAdCs and their contiguous CRCs demonstrate p53(nac) had shorter median survival (35.9 months) than those patients whose CAdCs and CRCs did not (80.56 months). However, patients whose CAdCs had p53(nac) and lacked Bcl-2 expression had the lowest median survival (15.74 months) when compared with patients whose CAdCs did not demonstrate p53(nac) but had increased expression of Bcl-2 (71.77 months). These findings suggest that in those adenomas that demonstrate p53(nac) but lack Bcl-2 expression, their contiguous CRCs are more likely to be aggressive as they progress.  相似文献   

14.
15.
The functions of the antiapoptotic proteins Bcl-2 and Bcl-xL were examined in glioblastoma cells. Expression of both Bcl-2 and Bcl-xL were found to be elevated in protein lysates from seven early passage cell lines derived from human glioblastoma tumors compared with non-neoplastic glial cells. Down-regulation of both bcl-2 and bcl-xL expression in glioblastoma cell lines U87 and NS008 with bcl-2/bcl-xL bispecific antisense oligonucleotide resulted in spontaneous cell death. The mechanism of cell death was partially caspase-dependent. Executioner caspase 6 and caspase 7, but not caspase 3, were involved in apoptosis induced by bcl-2/bcl-xL antisense treatment. Interestingly, western blots failed to demonstrate expression of caspase 3 in two of the seven glioblastoma cell lines examined. The data support the hypothesis that Bcl-2 and Bcl-xL are important in preventing cell death in glioblastoma cells. It also suggests that there are functional pathways capable of successful completion of caspase-dependent cell death in gliomas. These findings support a potential role of bcl-2/bcl-xL bispecifc antisense oligonucleotide therapy as a treatment strategy to enhance caspase-dependent cell death in patients with glioblastoma.  相似文献   

16.
17.
18.
HAMLET (Human α-lactalbumin Made Lethal to Tumor cells) triggers selective tumor cell death in vitro and limits tumor progression in vivo. Dying cells show features of apoptosis but it is not clear if the apoptotic response explains tumor cell death. This study examined the contribution of apoptosis to cell death in response to HAMLET. Apoptotic changes like caspase activation, phosphatidyl serine externalization, chromatin condensation were detected in HAMLET-treated tumor cells, but caspase inhibition or Bcl-2 over-expression did not prolong cell survival and the caspase response was Bcl-2 independent. HAMLET translocates to the nuclei and binds directly to chromatin, but the death response was unrelated to the p53 status of the tumor cells. p53 deletions or gain of function mutations did not influence the HAMLET sensitivity of tumor cells. Chromatin condensation was partly caspase dependent, but apoptosis-like marginalization of chromatin was also observed. The results show that tumor cell death in response to HAMLET is independent of caspases, p53 and Bcl-2 even though HAMLET activates an apoptotic response. The use of other cell death pathways allows HAMLET to successfully circumvent fundamental anti-apoptotic strategies that are present in many tumor cells.  相似文献   

19.
Overexpression of anti-apoptotic Bcl-2 family proteins may play an important role in the aggressive behavior of prostate cancer cells and their resistance to therapy. The Bcl-2 homology 3 domain (BH3) is a uniquely important functional element within the pro-apoptotic class of the Bcl-2-related proteins, mediating their ability to dimerize with other Bcl-2-related proteins and promote apoptosis. The BH3 inhibitors (BH3Is) function by disrupting the interactions mediated by the BH3 domain between pro- and anti-apoptotic members of the Bcl-2 family and liberating more Bax/Bak to induce mitochondrial membrane permeabilization. LNCaP-derived C4-2 human prostate cancer cells are quite resistant to non-tagged, human recombinant soluble Apo2 ligand [Apo2L, also Tumor necrosis factor (TNF)-related apoptosis-inducing ligand, TRAIL], a tumor specific drug that is now in clinical trials. However, when Apo2L/TRAIL was combined with the Bcl-xL inhibitor, BH3I-2′, it induced apoptosis synergistically through activation of Caspase-8 and the proapoptotic Bcl-2 family member Bid, resulting in the activation of effector Caspase-3 and proteolytic cleavage of Poly(ADP-ribose) polymerase, events that were blocked by the pan-caspase inhibitor zVAD-fmk. Our data indicate that, in combination with the BH3 mimetic, BH3I-2′, Apo2L/TRAIL synergistically induces apoptosis in C4-2 human prostate cancer cells through both the extrinsic and intrinsic apoptotic pathways.  相似文献   

20.
Apoptosis is a fundamental biological phenomenon, in which anti- or proapoptotic proteins of the Bcl-2 family regulate a committed step. Overexpression of Bcl-2, the prototypical antiapoptotic protein in this family, is associated with therapy resistance in various human cancers. Accordingly, Bcl-2 inhibitors intended for cancer therapy have been developed, typically against the BH3 domain. Recent experimental evidences have shown that the antiapoptotic function of Bcl-2 is not immutable, and that BDA-366, a novel antagonist of the BH4 domain, converts Bcl-2 from a survival molecule to an inducer of cell death. In this study, the underlying mechanisms of this functional conversion were investigated by accelerated molecular dynamics simulation. Results revealed that Pro127 and Trp30 in the BH4 domain rotate to stabilize BDA-366 via π-π interactions, and trigger a series of significant conformational changes of the α3 helix. This rearrangement blocks the hydrophobic binding site (HBS) in the BH3 domain and further prevents binding of BH3-only proteins, which consequently allows the BH3-only proteins to activate the proapoptotic proteins. Analysis of binding free energy confirmed that BDA-366 cross-inhibits BH3-only proteins, implying negative cooperative effects across separate binding sites. The newly identified blocked conformation of the HBS along with the open to closed transition pathway revealed by this study advances the understanding of the Bcl-2 transition from antiapoptotic to proapoptotic function, and yielded new structural insights for novel drug design against the BH4 domain.

Communicated by Ramaswamy H. Sarma  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号