首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive Indo-Pacific red lionfish (Pterois volitans) have become well-established residents within reef communities across the western Atlantic Ocean where they pose substantial threats to native fish communities and reef ecosystems. Species-specific identification of prey is necessary to elucidate predator–prey interactions, but can be challenging with traditional visual identification methods given prey are often highly digested, thus not identifiable visually. To supplement visual diet analysis of lionfish (n = 934) sampled in the northern Gulf of Mexico, we applied DNA barcoding to identify otherwise unidentifiable fish prey (n = 696) via amplification of the cytochrome c oxidase subunit I (COI) of the mitochondrial genome. Barcoding nearly doubled the number of identifiable fish prey, thereby greatly enhancing our ability to describe lionfish diet. Thirty-three fish prey species were identified via barcoding, twenty-four of which were not previously detected by traditional methods. Some exploited reef fishes were newly reported (e.g., red snapper, Lutjanus campechanus) or found to constitute higher proportions of lionfish diet than previously reported (e.g., vermilion snapper, Rhomboplites aurorubens). Barcoding added a significant amount of new dietary information, and we observed the highest prey diversity reported to date for invasive lionfish. Potential cannibalism on juveniles also was identified via DNA barcoding, with the highest incidence corresponding to high lionfish densities, thus suggesting density-dependent prey demand may have driven this response. Overall, DNA barcoding greatly enhanced our ability to describe invasive lionfish diet in this study, suggesting that even studies with relatively large diet sample sizes could benefit from barcoding analysis.  相似文献   

2.
The recent irruption of Pacific red lionfish (Pterois volitans) on Caribbean and Atlantic coral reefs could prove to be one of the most damaging marine invasions to date. Invasive lionfish are reaching densities much higher than those reported from their native range, and they have a strong negative effect on the recruitment and abundance of a broad diversity of native coral-reef fishes. Otherwise, little is known about how lionfish affect native coral-reef communities, especially compared to ecologically similar native predators. A controlled field experiment conducted on small patch-reefs in the Bahamas over an 8-week-period demonstrated that (1) lionfish caused a reduction in the abundance of small native coral-reef fishes that was 2.5?±?0.5 times (mean?±?SEM) greater than that caused by a similarly sized native piscivore, the coney grouper Cephalopholis fulva (93.7 vs. 36.3?% reduction); (2) lionfish caused a reduction in the species richness of small coral-reef fishes (loss of 4.6?±?1.6 species), whereas the native piscivore did not have a significant effect on prey richness; (3) the greatest effects on the reef-fish community, in terms of both abundance and richness, occurred when both native and invasive predators were present; and (4) lionfish grew significantly faster (>6 times) than the native predator under the same field conditions. These results suggest that invasive lionfish have stronger ecological effects than similarly sized native piscivores, and may pose a substantial threat to native coral-reef fish communities.  相似文献   

3.
Culling can be an effective management tool for reducing populations of invasive species to levels that minimize ecological effects. However, culling is labour-intensive, costly, and may have unintended ecological consequences. In the Caribbean, culling is widely used to control invasive Indo-Pacific lionfish, Pterois volitans and P. miles, but the effectiveness of infrequent culling in terms of reducing lionfish abundance and halting native prey decline is unclear. In a 21-month-long field experiment on natural reefs, we found that culling effectiveness changed after the passage of a hurricane part-way through the experiment. Before the hurricane, infrequent culling resulted in substantial reductions in lionfish density (60–79%, on average, albeit with large uncertainty) and slight increases in native prey species richness, but was insufficient to stem the decline in native prey biomass. Culling every 3 months (i.e., quarterly) and every 6 months (i.e., biannually) had similar effects on lionfish density and native prey fishes because of high rates of lionfish colonization among reefs. After the hurricane, lionfish densities were greater on all culled reefs compared to non-culled reefs, and prey biomass declined by 92%, and species richness by 71%, on biannually culled reefs. The two culling frequencies we examined therefore seem to offer a poor trade-off between the demonstrated conservation gains that can be achieved with frequent culling and the economy of time and money realized by infrequent culling. Moreover, stochastic events such as hurricanes can drastically limit the effectiveness of culling efforts.  相似文献   

4.
Escape from parasites in their native range is one of many mechanisms that can contribute to the success of an invasive species. Gnathiid isopods are blood-feeding ectoparasites that infest a wide range of fish hosts, mostly in coral reef habitats. They are ecologically similar to terrestrial ticks, with the ability to transmit blood-borne parasites and cause damage or even death to heavily infected hosts. Therefore, being highly resistant or highly susceptible to gnathiids can have significant fitness consequences for reef-associated fishes. Indo-Pacific red lionfish (Pterois volitans) have invaded coastal habitats of the western tropical and subtropical Atlantic and Caribbean regions. We assessed the susceptibility of red lionfish to parasitic gnathiid isopods in both their native Pacific and introduced Atlantic ranges via experimental field studies during which lionfish and other, ecologically-similar reef fishes were caged and exposed to gnathiid infestation on shallow coral reefs. Lionfish in both ranges had very few gnathiids when compared with other species, suggesting that lionfish are not highly susceptible to infestation by generalist ectoparasitic gnathiids. While this pattern implies that release from gnathiid infestation is unlikely to contribute to the success of lionfish as invaders, it does suggest that in environments with high gnathiid densities, lionfish may have an advantage over species that are more susceptible to gnathiids. Also, because lionfish are not completely resistant to gnathiids, our results suggest that lionfish could possibly have transported blood parasites between their native Pacific and invaded Atlantic ranges.  相似文献   

5.
DNA barcoding is used in a variety of ecological applications to identify organisms, including partially digested prey items from diet samples. That particular application can enhance the ability to characterize diet and predator–prey dynamics but is problematic when genetic sequences of prey match those of consumer species (i.e., self-DNA). Such a result may indicate cannibalism, but false positives can result from contamination of degraded prey samples with consumer DNA. Here, nuclear-encoded microsatellite markers were used to genotype invasive lionfish, Pterois volitans, consumers and their prey (n?=?80 pairs) previously barcoded as lionfish. Cannibalism was confirmed when samples exhibited two or more different alleles between lionfish and prey DNA across multiple microsatellite loci. This occurred in 26.2% of all samples and in 42% of samples for which the data were considered conclusive. These estimates should be considered conservative given rigorous assignment criteria and low allelic diversity in invasive lionfish populations. The highest incidence of cannibalism corresponded to larger sized consumers from areas with high lionfish densities, suggesting cannibalism in northern Gulf of Mexico lionfish is size- and density-dependent. Cannibalism has the potential to influence population dynamics of lionfish which lack native western Atlantic predators. These results also have important implications for interpreting DNA barcoding analysis of diet in other predatory species where cannibalism may be underreported.  相似文献   

6.
Direct demographic density dependence is necessary for population regulation and is a central concept in ecology, yet has not been studied in many invasive species, including any invasive marine fish. The red lionfish (Pterois volitans) is an invasive predatory marine fish that is undergoing exponential population growth throughout the tropical western Atlantic. Invasive lionfish threaten coral-reef ecosystems, but there is currently no evidence of any natural population control. Therefore, a manipulative field experiment was conducted to test for density dependence in lionfish. Juvenile lionfish densities were adjusted on small reefs and several demographic rates (growth, recruitment, immigration, and loss) were measured throughout an 8-week period. Invasive lionfish exhibited direct density dependence in individual growth rates, as lionfish grew slower at higher densities throughout the study. Individual growth in length declined linearly with increasing lionfish density, while growth in mass declined exponentially with increasing density. There was no evidence, however, for density dependence in recruitment, immigration, or loss (mortality plus emigration) of invasive lionfish. The observed density-dependent growth rates may have implications for which native species are susceptible to lionfish predation, as the size and type of prey that lionfish consume is directly related to their body size. The absence of density-dependent loss, however, contrasts with many native coral-reef fish species and suggests that for the foreseeable future manual removals may be the only effective local control of this invasion.  相似文献   

7.
Biotic resistance, the process by which new colonists are excluded from a community by predation from and/or competition with resident species, can prevent or limit species invasions. We examined whether biotic resistance by native predators on Caribbean coral reefs has influenced the invasion success of red lionfishes (Pterois volitans and Pterois miles), piscivores from the Indo-Pacific. Specifically, we surveyed the abundance (density and biomass) of lionfish and native predatory fishes that could interact with lionfish (either through predation or competition) on 71 reefs in three biogeographic regions of the Caribbean. We recorded protection status of the reefs, and abiotic variables including depth, habitat type, and wind/wave exposure at each site. We found no relationship between the density or biomass of lionfish and that of native predators. However, lionfish densities were significantly lower on windward sites, potentially because of habitat preferences, and in marine protected areas, most likely because of ongoing removal efforts by reserve managers. Our results suggest that interactions with native predators do not influence the colonization or post-establishment population density of invasive lionfish on Caribbean reefs.  相似文献   

8.
Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish''s introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively associated with the condition index of the native grouper but not that of the lionfish or lizardfish. While two co-occurring native fishes were more heavily parasitized compared to lionfish in Panama any indirect benefits of differential parasitism requires further investigation. Future parasitological surveys of lionfish across the eastern coast of North America and the Lesser Antilles would further resolve geographic patterns of parasitism in invasive lionfish.  相似文献   

9.
Invasive Indo-Pacific red lionfish, Pterois volitans, were first reported in the northern Gulf of Mexico (nGOM) in summer 2010. To examine potential impacts on native reef fish communities, lionfish density and size distributions were estimated from fall 2010 to fall 2013 with a remotely operated vehicle at natural (n = 16) and artificial (n = 22) reef sites. Lionfish (n = 934) also were sampled via spearfishing to examine effects of habitat type, season, and fish size on their diet and trophic ecology. There was an exponential increase in lionfish density at both natural and artificial reefs over the study period. By fall 2013, mean lionfish density at artificial reefs (14.7 fish 100 m−2) was two orders of magnitude higher than at natural reefs (0.49 fish 100 m−2), and already was among the highest reported in the western Atlantic. Lionfish diet was significantly different among habitats, seasons, and size classes, with smaller (<250 mm total length) fish consuming more benthic invertebrates and the diet of lionfish sampled from artificial reefs being composed predominantly of non-reef associated prey. The ontogenetic shift in lionfish feeding ecology was consistent with δ15N values of white muscle tissue that were positively related to total length. Overall, diet results indicate lionfish are generalist mesopredators in the nGOM that become more piscivorous at larger size. However, lionfish diet was much more varied at artificial reef sites where they clearly were foraging on open substrates away from reef structure. These results have important implications for tracking the lionfish invasion in the nGOM, as well as estimating potential direct and indirect impacts on native reef fish communities in this region.  相似文献   

10.
In Caribbean reefs, the lionfish Pterois volitans is an invasive species that causes severe negative ecological effects, especially as this crepuscular predator consumes very diverse prey. Lionfish are not active during the day and stay in their refuges, sharing these spaces with various other fishes. The aim of this study is to determine which fishes are associated with the lionfish in their shelters, and what characteristics of both the invasive and native species may influence and explain such coexistence between a predator and its potential prey. Through diving and snorkelling, we visited 141 lionfish refuges, mostly caves, where we observed 204 lionfish and 494 other fish from 16 native species. We recorded species and abundance, as well as lionfish size and abundance. Half of the lionfish were observed in groups and the majority were large-sized. The association with most fish species seems fortuitous, but three species, Gramma loreto, Chromis cyanea and Canthigaster rostrata, were frequently observed in association with lionfish. Numerous fish juveniles, most likely Scarus coeruleus, were also observed together with the invasive predator. The more commonly associated fishes, particularly G. loreto, are mostly associated with large-sized lionfish that were found in groups. The associated fishes are also generally found in groups. Gramma loreto is a potential cleaner of the lionfish; the reasons for the association between these fish species and the invasive lionfish may be more complex than a simple predator-prey relationship and are discussed based on their biological traits and previously reported lionfish trophic ecology and predation behaviour.  相似文献   

11.
The invasion by Indo-Pacific lionfish (Pterois volitans and P. miles) of the western Atlantic, Caribbean and Gulf of Mexico is emerging as a major threat to coral reef communities across the region. Comparing native and introduced populations of invasive species can reveal shifts in ecology and behaviour that can accompany successful invasions. Using standardized field surveys replicated at multiple sites in Kenya and the Bahamas, we present the first direct comparisons of lionfish density, body size, biomass and behaviour between native and invaded coral reefs. We found that lionfish occur at higher densities with larger body sizes and total biomass on invaded Bahamian coral reefs than the ecologically equivalent species (P. miles) does on native Kenyan reefs. However, the combined average density of the five lionfish species (Pterois miles, P. antennata, P. radiata, Dendrochirus brachypterus and D. zebra) on Kenyan reefs was similar to the density of invasive lionfish in the Bahamas. Understanding the ecological processes that drive these differences can help inform the management and control of invasive lionfish.  相似文献   

12.
Invasive predators typically have larger effects on native prey populations than native predators, yet the potential roles of their consumptive versus non-consumptive effects (CEs vs. NCEs) in structuring invaded systems remains unclear. Invasive lionfish (Pterois volitans) may have ecosystem-level effects by altering native fish grazing on benthic algae that could otherwise displace corals. Lionfish could reduce grazing by decreasing the abundance of herbivorous fishes (CEs), and/or the predation risk posed by lionfish could alter grazing behavior of fishes (NCEs). To test for these CEs, we manipulated lionfish densities on large reefs in The Bahamas and surveyed fish populations throughout June 2009–2011. In July 2011, NCEs of lionfish were measured by observing fish grazing behavior on algal-covered substrata placed in microhabitats varying in lionfish presence at different spatial scales, and quantifying any resulting algal loss. Lionfish reduced small herbivorous fish density by the end of the 2010 summer recruitment season. Grazing by small and large fishes was reduced on high-lionfish-density reefs, and small fish grazing further decreased when in the immediate presence of lionfish within-reefs. Lionfish had a negative indirect effect on algal loss, with 66–80 % less algae removed from substrata in high-lionfish-density reefs. Parrotfishes were likely driving the response of herbivorous fishes to both CEs and NCEs of lionfish. These results demonstrate the importance of considering NCEs in addition to CEs of invasive predators when assessing the effects of invasions.  相似文献   

13.
The ecological implications of biotic interactions, such as predator-prey relationships, are often context-dependent. Comparative functional responses analysis can be used under different abiotic contexts to improve understanding and prediction of the ecological impact of invasive species. Pterois volitans (Lionfish) [Linnaeus 1758] is an established invasive species in the Caribbean and Gulf of Mexico, with a more recent invasion into the Mediterranean. Lionfish are generalist predators that impact a wide range of commercial and non-commercial species. Functional response analysis was employed to quantify interaction strength between lionfish and a generic prey species, the shrimp (Paleomonetes varians) [Leach 1814], under the contexts of differing temperature, habitat complexity and light wavelength. Lionfish have prey population destabilising Type II functional responses under all contexts examined. Significantly more prey were consumed at 26 °C than at 22 °C. Habitat complexity did not significantly alter the functional response parameters. Significantly more prey were consumed under white light and blue light than under red light. Attack rate was significantly higher under white light than under blue or red light. Light wavelength did not significantly change handling times. The impacts on prey populations through feeding rates may increase with concomitant temperature increase. As attack rates are very high at low habitat complexity this may elucidate the cause of high impact upon degraded reef ecosystems with low-density prey populations, although there was little protection conferred through habitat complexity. Only red light (i.e. dark) afforded any reduction in predation pressure. Management initiatives should account for these environmental factors when planning mitigation and prevention strategies.  相似文献   

14.
The opportunistic feeder Pterois volitans is a voracious invader, causing large impacts in marine food-webs. We have used a Ecopath-with-Ecosim model to hypothesize an invasion by lionfish and to predict the likely impact of this potential generalist mesopredator in a subtropical food-web model. With thirty-three functional groups, the initial Ecopath model was balanced with a low biomass of lionfish (0.07 t/km2). In Ecosim, three scenarios of different vulnerability settings for the linkages between the introduced fish and its prey were tested, representing the default setting, a top-down control, and an extreme top-down control. The scenarios were tested using different assumptions on the ability of the invasive fish to change the proportions of prey consumed according to prey availability. Our model predicted that the hypothesized lionfish invasion would have a strong impact on this subtropical marine food web: (1) by reducing prey populations and, consequently, food for native predators, and; (2) by predating on key species, causing direct impacts and possibly cascading trophic effects. Reef fish were the most affected, including some groups ecologically and economically important, like lutjanids and groupers. However, some adaptations in the fishing strategy of fishermen are expected which may affect other fish groups. Stakeholders should be warned of the potential ecological and socio-economic impacts that may arise from a lionfish invasion and various strategies and policy options should be immediately developed and applied (1) to prevent the arrival and establishment of the lionfish, and; (2) to make the ecosystem more resilient to this and other possible exotic species.  相似文献   

15.
Lionfish (Pterois volitans), venomous predators from the Indo-Pacific, are recent invaders of the Caribbean Basin and southeastern coast of North America. Quantification of invasive lionfish abundances, along with potentially important physical and biological environmental characteristics, permitted inferences about the invasion process of reefs on the island of San Salvador in the Bahamas. Environmental wave-exposure had a large influence on lionfish abundance, which was more than 20 and 120 times greater for density and biomass respectively at sheltered sites as compared with wave-exposed environments. Our measurements of topographic complexity of the reefs revealed that lionfish abundance was not driven by habitat rugosity. Lionfish abundance was not negatively affected by the abundance of large native predators (or large native groupers) and was also unrelated to the abundance of medium prey fishes (total length of 5–10 cm). These relationships suggest that (1) higher-energy environments may impose intrinsic resistance against lionfish invasion, (2) habitat complexity may not facilitate the lionfish invasion process, (3) predation or competition by native fishes may not provide biotic resistance against lionfish invasion, and (4) abundant prey fish might not facilitate lionfish invasion success. The relatively low biomass of large grouper on this island could explain our failure to detect suppression of lionfish abundance and we encourage continuing the preservation and restoration of potential lionfish predators in the Caribbean. In addition, energetic environments might exert direct or indirect resistance to the lionfish proliferation, providing native fish populations with essential refuges.  相似文献   

16.
As a result of being hunted, animals often alter their behaviour in ways that make future encounters with predators less likely. When hunting is carried out for conservation, for example to control invasive species, these behavioural changes can inadvertently impede the success of future efforts. We examined the effects of repeated culling by spearing on the behaviour of invasive predatory lionfish (Pterois volitans/miles) on Bahamian coral reef patches. We compared the extent of concealment and activity levels of lionfish at dawn and midday on 16 coral reef patches off Eleuthera, The Bahamas. Eight of the patches had been subjected to regular daytime removals of lionfish by spearing for two years. We also estimated the distance at which lionfish became alert to slowly approaching divers on culled and unculled reef patches. Lionfish on culled reefs were less active and hid deeper within the reef during the day than lionfish on patches where no culling had occurred. There were no differences at dawn when removals do not take place. Lionfish on culled reefs also adopted an alert posture at a greater distance from divers than lionfish on unculled reefs. More crepuscular activity likely leads to greater encounter rates by lionfish with more native fish species because the abundance of reef fish outside of shelters typically peaks at dawn and dusk. Hiding deeper within the reef could also make remaining lionfish less likely to be encountered and more difficult to catch by spearfishers during culling efforts. Shifts in the behaviour of hunted invasive animals might be common and they have implications both for the impact of invasive species and for the design and success of invasive control programs.  相似文献   

17.
Successful invasions are largely explained by some combination of enemy release, where the invader escapes its natural enemies from its native range, and low biotic resistance, where native species in the introduced range fail to control the invader. We examined the extent to which parasites may mediate both release and resistance in the introduction of Pacific red lionfish (Pterois volitans) to Atlantic coral reefs. We found that fewer lionfish were parasitized at two regions in their introduced Atlantic range (The Bahamas and the Cayman Islands) than at two regions in their native Pacific range (the Northern Marianas Islands and the Philippines). This pattern was largely driven by relatively high infection rates of lionfish by didymozoan fluke worms and parasitic copepods (which may be host-specific to Pterois lionfishes) in the Marianas and the Philippines, respectively. When compared with sympatric, native fishes in the Atlantic, invasive lionfish were at least 18 times less likely to host a parasite in The Bahamas and at least 40 times less likely to host a parasite in the Cayman Islands. We found no indication that lionfish introduced Pacific parasites into the Atlantic. In conjunction with demographic signs of enemy release such as increased density, fish size, and growth of invasive lionfish, it is possible that escape from parasites may have contributed to the success of lionfish. This is especially true if future studies reveal that such a loss of parasites has led to more energy available for lionfish growth, reproduction, and/or immunity.  相似文献   

18.
A standard approach to improving the accuracy of reef fish population estimates derived from underwater visual censuses (UVCs) is the application of species-specific correction factors, which assumes that a species’ detectability is constant under all conditions. To test this assumption, we quantified detection rates for invasive Indo-Pacific lionfish (Pterois volitans and P. miles), which are now a primary threat to coral reef conservation throughout the Caribbean. Estimates of lionfish population density and distribution, which are essential for managing the invasion, are currently obtained through standard UVCs. Using two conventional UVC methods, the belt transect and stationary visual census (SVC), we assessed how lionfish detection rates vary with lionfish body size and habitat complexity (measured as rugosity) on invaded continuous and patch reefs off Cape Eleuthera, the Bahamas. Belt transect and SVC surveys performed equally poorly, with both methods failing to detect the presence of lionfish in >50 % of surveys where thorough, lionfish-focussed searches yielded one or more individuals. Conventional methods underestimated lionfish biomass by ~200 %. Crucially, detection rate varied significantly with both lionfish size and reef rugosity, indicating that the application of a single correction factor across habitats and stages of invasion is unlikely to accurately characterize local populations. Applying variable correction factors that account for site-specific lionfish size and rugosity to conventional survey data increased estimates of lionfish biomass, but these remained significantly lower than actual biomass. To increase the accuracy and reliability of estimates of lionfish density and distribution, monitoring programs should use detailed area searches rather than standard visual survey methods. Our study highlights the importance of accounting for sources of spatial and temporal variation in detection to increase the accuracy of survey data from coral reef systems.  相似文献   

19.
Feeding ecology of the lionfish (Pterois volitans), an invasive species in the Western North Atlantic, was examined by collecting stomach content data from fishes taken throughout the Bahamian archipelago. Three relative metrics of prey quantity, including percent number, percent frequency, and percent volume, were used to compare three indices of dietary importance. Lionfish largely prey upon teleosts (78% volume) and crustaceans (14% volume). Twenty-one families and 41 species of teleosts were represented in the diet of lionfish; the top 10 families of dietary importance were Gobiidae, Labridae, Grammatidae, Apogonidae, Pomacentridae, Serranidae, Blenniidae, Atherinidae, Mullidae, and Monacanthidae. The proportional importance of crustaceans in the diet was inversely related to size with the largest lionfish preying almost exclusively on teleosts. Lionfish were found to be diurnal feeders with the highest predation occurring in the morning (08:00–11:00).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号