首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Song J  Feng H  Xu J  Zhao D  Shi J  Li Y  Deng G  Jiang Y  Li X  Zhu P  Guan Y  Bu Z  Kawaoka Y  Chen H 《Journal of virology》2011,85(5):2180-2188
During their circulation in nature, H5N1 avian influenza viruses (AIVs) have acquired the ability to kill their natural hosts, wild birds and ducks. The genetic determinants for this increased virulence are largely unknown. In this study, we compared two genetically similar H5N1 AIVs, A/duck/Hubei/49/05 (DK/49) and A/goose/Hubei/65/05 (GS/65), that are lethal for chickens but differ in their virulence levels in ducks. To explore the genetic basis for this difference in virulence, we generated a series of reassortants and mutants of these two viruses. The virulence of the reassortant bearing the PA gene from DK/49 in the GS/65 background increased 10(5)-fold relative to that of the GS/65 virus. Substitution of two amino acids, S224P and N383D, in PA contributed to the highly virulent phenotype. The amino acid 224P in PA increased the replication of the virus in duck embryo fibroblasts, and the amino acid 383D in PA increased the polymerase activity in duck embryo fibroblasts and delayed the accumulation of the PA and PB1 polymerase subunits in the nucleus of virus-infected cells. Our results provide strong evidence that the polymerase PA subunit is a virulence factor for H5N1 AIVs in ducks.  相似文献   

2.
The highly pathogenic (HP) influenza viruses H5 and H7 are usually nonpathogenic in mallard ducks. However, the currently circulating HP H5N1 viruses acquired a different phenotype and are able to cause mortality in mallards. To establish the molecular basis of this phenotype, we cloned the human A/Vietnam/1203/04 (H5N1) influenza virus isolate that is highly pathogenic in ferrets, mice, and mallards and found it to be a heterogeneous mixture. Large-plaque isolates were highly pathogenic to ducks, mice, and ferrets, whereas small-plaque isolates were nonpathogenic in these species. Sequence analysis of the entire genome revealed that the small-plaque and the large-plaque isolates differed in the coding of five amino acids. There were two differences in the hemagglutinin (HA) gene (K52T and A544V), one in the PA gene (T515A), and two in the PB1 gene (K207R and Y436H). We inserted the amino acid changes into the wild-type reverse genetic virus construct to assess their effects on pathogenicity in vivo. The HA gene mutations and the PB1 gene K207R mutation did not alter the HP phenotype of the large-plaque virus, whereas constructs with the PA (T515A) and PB1 (Y436H) gene mutations were nonpathogenic in orally inoculated ducks. The PB1 (Y436H) construct was not efficiently transmitted in ducks, whereas the PA (T515A) construct replicated as well as the wild-type virus did and was transmitted efficiently. These results show that the PA and PB1 genes of HP H5N1 influenza viruses are associated with lethality in ducks. The mechanisms of lethality and the perpetuation of this lethal phenotype in ducks in nature remain to be determined.  相似文献   

3.
There has been multiple evidence that domestic poultry may act as a vessel for the generation of novel influenza A viruses. In this study, we have analyzed the evolution and pathogenicity of 4 H5N2 avian influenza viruses isolated from apparently healthy poultry from H5N1 virus endemic areas in China. Phylogenetic analysis revealed that two of these viruses, A/duck/Eastern China/1111/2011 (DK/EC/1111/11) and A/goose/Eastern China/1112/2011 (GS/EC/1112/11) were derived from reassortment events in which clade 2.3.4 highly pathogenic avian influenza (HPAI) H5N1 viruses acquired novel neuraminidase and nonstructural protein genes. Another two isolates, A/chicken/Hebei/1102/2010 (CK/HB/1102/10) and A/duck/Hebei/0908/2009 (DK/HB/0908/09), possess hemagglutinin (HA) gene belong to clade 7 H5 viruses and other genes from endemic H9N2 viruses, or from viruses of various subtypes of the natural gene pool. All of these H5N2 isolates bear characteristic sequences of HPAI virus at the cleavage site of HA, and animal experiments indicated that all of these viruses but DK/HB/0908/09 is highly pathogenic to chickens. In particular, DK/EC/1111/11 and GS/EC/1112/11 are also highly pathogenic to ducks and moderately pathogenic to mice. All of these 4 viruses were able to replicate in domestic ducks and mice without prior adaptation. The emergence of these novel H5N2 viruses adds more evidence for the active evolution of H5 viruses in Asia. The maintenance of the highly pathogenic phenotype of some of these viruses even after reassortment with a new NA subtypes, their ability to replicate and transmit in domestic poultry, and the pathogenicity in the mammalian mouse model, highlight the potential threat posed by these viruses to both veterinary and public health.  相似文献   

4.
Li Z  Jiang Y  Jiao P  Wang A  Zhao F  Tian G  Wang X  Yu K  Bu Z  Chen H 《Journal of virology》2006,80(22):11115-11123
In the present study, we explored the genetic basis underlying the virulence and host range of two H5N1 influenza viruses in chickens. A/goose/Guangdong/1/96 (GS/GD/1/96) is a highly pathogenic virus for chickens, whereas A/goose/Guangdong/2/96 (GS/GD/2/96) is unable to replicate in chickens. These two H5N1 viruses differ in sequence by only five amino acids mapping to the PA, NP, M1, and NS1 genes. We used reverse genetics to create four single-gene recombinants that contained one of the sequence-differing genes from nonpathogenic GS/GD/2/96 and the remaining seven gene segments from highly pathogenic GS/GD/1/96. We determined that the NS1 gene of GS/GD/2/96 inhibited the replication of GS/GD/1/96 in chickens, while the substitution of the PA, NP, or M gene did not change the highly pathogenic properties of GS/GD/1/96. Conversely, of the recombinant viruses generated in the GS/GD/2/96 background, only the virus containing the NS1 gene of GS/GD/1/96 was able to replicate and cause disease and death in chickens. The single-amino-acid difference in the sequence of these two NS1 genes resides at position 149. We demonstrate that a recombinant virus expressing the GS/GD/1/96 NS1 protein with Ala149 is able to antagonize the induction of interferon protein levels in chicken embryo fibroblasts (CEFs), but a recombinant virus carrying a Val149 substitution is not capable of the same effect. These results indicate that the NS1 gene is critical for the pathogenicity of avian influenza virus in chickens and that the amino acid residue Ala149 correlates with the ability of these viruses to antagonize interferon induction in CEFs.  相似文献   

5.
HA基因322位和329位氨基酸对H5N1亚型禽流感病毒毒力的影响   总被引:1,自引:0,他引:1  
A/mallard/Huadong/S/2005(S,IVPI=2.65)和A/mallard/Huadong/Y/2003(Y,IVPI=O),是对麻鸭具有不同致病力的病毒.两病毒的HA裂解位点区有2个氨基酸差异,S病毒在HA裂解位点区322是Leu(L322),329位缺失(-329),而Y病毒322位是Gin(Q 322),329位是Lys(K329).根据这两个位点的差异,利用反向遗传系统,以S和Y病毒各自为骨架,拯救HA基因突变病毒,检测获救的突变病毒对麻鸭的毒力.可以得知,以S病毒为骨架,将S病毒HA基因322位Leu替换为Gln和(或)在329位添加Lys,以及用Y病毒的HA(Q322L,K329-)替换S病毒HA,获救的重组病毒对麻鸭亦完全无致病力;但以Y病毒为骨架,将Y病毒HA基因322位Gln替换为Leu和(或)在329位缺失Lys后,Y重组病毒对麻鸭的毒力上升.结果提示,S和Y病毒HA基因裂解位点区322和329氨基酸残基突变或缺失均影响病毒对麻鸭的致病力,且HA基因与其它基因的匹配性显著影响病毒对麻鸭的致病力.  相似文献   

6.
Since the 1997 H5N1 influenza virus outbreak in humans and poultry in Hong Kong, the emergence of closely related viruses in poultry has raised concerns that additional zoonotic transmissions of influenza viruses from poultry to humans may occur. In May 2001, an avian H5N1 influenza A virus was isolated from duck meat that had been imported to South Korea from China. Phylogenetic analysis of the hemagglutinin (HA) gene of A/Duck/Anyang/AVL-1/01 showed that the virus clustered with the H5 Goose/Guandong/1/96 lineage and 1997 Hong Kong human isolates and possessed an HA cleavage site sequence identical to these isolates. Following intravenous or intranasal inoculation, this virus was highly pathogenic and replicated to high titers in chickens. The pathogenesis of DK/Anyang/AVL-1/01 virus in Pekin ducks was further characterized and compared with a recent H5N1 isolate, A/Chicken/Hong Kong/317.5/01, and an H5N1 1997 chicken isolate, A/Chicken/Hong Kong/220/97. Although no clinical signs of disease were observed in H5N1 virus-inoculated ducks, infectious virus could be detected in lung tissue, cloacal, and oropharyngeal swabs. The DK/Anyang/AVL-1/01 virus was unique among the H5N1 isolates in that infectious virus and viral antigen could also be detected in muscle and brain tissue of ducks. The pathogenesis of DK/Anyang/AVL-1/01 virus was characterized in BALB/c mice and compared with the other H5N1 isolates. All viruses replicated in mice, but in contrast to the highly lethal CK/HK/220/97 virus, DK/Anyang/AVL-1/01 and CK/HK/317.5/01 viruses remained localized to the respiratory tract. DK/Anyang/AVL-1/01 virus caused weight loss and resulted in 22 to 33% mortality, whereas CK/HK/317.5/01-infected mice exhibited no morbidity or mortality. The isolation of a highly pathogenic H5N1 influenza virus from poultry indicates that such viruses are still circulating in China and may present a risk for transmission of the virus to humans.  相似文献   

7.
A novel H1N1 influenza virus emerged in 2009 (pH1N1) to become the first influenza pandemic of the 21st century. This virus is now cocirculating with highly pathogenic H5N1 avian influenza viruses in many parts of the world, raising concerns that a reassortment event may lead to highly pathogenic influenza strains with the capacity to infect humans more readily and cause severe disease. To investigate the virulence of pH1N1-H5N1 reassortant viruses, we created pH1N1 (A/California/04/2009) viruses expressing individual genes from an avian H5N1 influenza strain (A/Hong Kong/483/1997). Using several in vitro models of virus replication, we observed increased replication for a reassortant CA/09 virus expressing the hemagglutinin (HA) gene of HK/483 (CA/09-483HA) relative to that of either parental CA/09 virus or reassortant CA/09 expressing other HK/483 genes. This increased replication correlated with enhanced pathogenicity in infected mice similar to that of the parental HK/483 strain. The serial passage of the CA/09 parental virus and the CA/09-483HA virus through primary human lung epithelial cells resulted in increased pathogenicity, suggesting that these viruses easily adapt to humans and become more virulent. In contrast, serial passage attenuated the parental HK/483 virus in vitro and resulted in slightly reduced morbidity in vivo, suggesting that sustained replication in humans attenuates H5N1 avian influenza viruses. Taken together, these data suggest that reassortment between cocirculating human pH1N1 and avian H5N1 influenza strains will result in a virus with the potential for increased pathogenicity in mammals.  相似文献   

8.
Nam JH  Kim EH  Song D  Choi YK  Kim JK  Poo H 《Journal of virology》2011,85(24):13271-13277
The migratory waterfowl of the world are considered to be the natural reservoir of influenza A viruses. Of the 16 hemagglutinin subtypes of avian influenza viruses, the H6 subtype is commonly perpetuated in its natural hosts and is of concern due to its potential to be a precursor of highly pathogenic influenza viruses by reassortment. During routine influenza surveillance, we isolated an unconventional H6N5 subtype of avian influenza virus. Experimental infection of mice revealed that this isolate replicated efficiently in the lungs, subsequently spread systemically, and caused lethality. The isolate also productively infected ferrets, with direct evidence of contact transmission, but no disease or transmission was seen in pigs. Although the isolate possessed the conserved receptor-binding site sequences of avian influenza viruses, it exhibited relatively low replication efficiencies in ducks and chickens. Our genetic and molecular analyses of the isolate revealed that its PB1 sequence showed the highest evolutionary relationship to those of highly pathogenic H5N1 avian influenza viruses and that its PA protein had an isoleucine residue at position 97 (a representative virulence marker). Further studies will be required to examine why our isolate has the virologic characteristics of mammalian influenza viruses but the archetypal receptor binding profiles of avian influenza viruses, as well as to determine whether its potential virulence markers (PB1 analogous to those of H5N1 viruses or isoleucine residue at position 97 within PA) could render it highly pathogenic in mice.  相似文献   

9.
Gene mutations and reassortment are key mechanisms by which influenza A virus acquires virulence factors. To evaluate the role of the viral polymerase replication machinery in producing virulent pandemic (H1N1) 2009 influenza viruses, we generated various polymerase point mutants (PB2, 627K/701N; PB1, expression of PB1-F2 protein; and PA, 97I) and reassortant viruses with various sources of influenza viruses by reverse genetics. Although the point mutations produced no significant change in pathogenicity, reassortment between the pandemic A/California/04/09 (CA04, H1N1) and current human and animal influenza viruses produced variants possessing a broad spectrum of pathogenicity in the mouse model. Although most polymerase reassortants had attenuated pathogenicity (including those containing seasonal human H3N2 and high-pathogenicity H5N1 virus segments) compared to that of the parental CA04 (H1N1) virus, some recombinants had significantly enhanced virulence. Unexpectedly, one of the five highly virulent reassortants contained a A/Swine/Korea/JNS06/04(H3N2)-like PB2 gene with no known virulence factors; the other four had mammalian-passaged avian-like genes encoding PB2 featuring 627K, PA featuring 97I, or both. Overall, the reassorted polymerase complexes were only moderately compatible for virus rescue, probably because of disrupted molecular interactions involving viral or host proteins. Although we observed close cooperation between PB2 and PB1 from similar virus origins, we found that PA appears to be crucial in maintaining viral gene functions in the context of the CA04 (H1N1) virus. These observations provide helpful insights into the pathogenic potential of reassortant influenza viruses composed of the pandemic (H1N1) 2009 influenza virus and prevailing human or animal influenza viruses that could emerge in the future.  相似文献   

10.
[目的]为了探讨高致病性禽流感病毒对水禽致病性差异的分子致病机理.[方法]我们对从野鸭分离到的H5N1亚型禽流感病毒的生物学特性进行鉴定,其中A/mallard/Huadong/Y/2003(Y)是对麻鸭无致病性病毒,而 A/mallard/Huadong/S/2005(S)是对麻鸭高致病性病毒.利用反向遗传技术构建一系列单个和多个基因组合替换基因重排病毒,并验证重排病毒在麻鸭上的致病力.[结果]研究表明,PB2, PB1, PA(3P), HA单基因以及3P基因组合替换的使S病毒对麻鸭的毒力完全致弱,但相应的基因替换后仅使Y病毒对麻鸭的毒力略有上升.两病毒的其它基因对毒力影响较小.[结论]H5N1亚型禽流感病毒对麻鸭的致病力受多基因调控,且这种调控作用在不同病毒骨架上的影响不一致,强毒受影响程度远比弱毒的大.  相似文献   

11.
The virulence determinants for highly pathogenic avian influenza viruses (AIVs) are considered multigenic, although the best characterized virulence factor is the hemagglutinin (HA) cleavage site. The capability of influenza viruses to reassort gene segments is one potential way for new viruses to emerge with different virulence characteristics. To evaluate the role of other gene segments in virulence, we used reverse genetics to generate two H5N1 recombinant viruses with differing pathogenicity in chickens. Single-gene reassortants were used to determine which viral genes contribute to the altered virulence. Exchange of the PB1, PB2, and NP genes impacted replication of the reassortant viruses while also affecting the expression of specific host genes. Disruption of the parental virus' functional polymerase complexes by exchanging PB1 or PB2 genes decreased viral replication in tissues and consequently the pathogenicity of the viruses. In contrast, exchanging the NP gene greatly increased viral replication and expanded tissue tropism, thus resulting in decreased mean death times. Infection with the NP reassortant virus also resulted in the upregulation of gamma interferon and inducible nitric oxide synthase gene expression. In addition to the impact of PB1, PB2, and NP on viral replication, the HA, NS, and M genes also contributed to the pathogenesis of the reassortant viruses. While the pathogenesis of AIVs in chickens is clearly dependent on the interaction of multiple gene products, we have shown that single-gene reassortment events are sufficient to alter the virulence of AIVs in chickens.  相似文献   

12.
The change in the phenotypic properties resulting from amino acid substitutions in the hemagglutinin (HA) molecule is an important link in the evolutionary process of influenza viruses. It is believed to be one of the mechanisms of the emergence of highly pathogenic strains of influenza A viruses, including subtype H5N1. Using the site-directed mutagenesis, we introduced mutations in the HA gene of the H5N1 subtype of influenza A virus. The obtained virus variants were analyzed and compared using the following parameters: optimal pH of conformational transition (according to the results of the hemolysis test), specificity of receptor binding (using a set of synthetic analogues of cell surface sialooligosaccharides), thermoresistance (heat-dependent reduction of hemagglutinin activity), virulence in mice, and the kinetics of replication in chicken embryos, and reproductive activity at different temperatures (RCT-based). N186I and N186T mutations in the HA protein increased the virulence of the original virus in mice. These mutations accelerated virus replication in the early stages of infection in chicken embryos and increased the level of replication at late stages. In addition, compared to the original virus, the mutant variants replicated more efficiently at lower temperatures. The obtained data clearly prove the effect of amino acid substitutions at the 186 position of HA on phenotypic properties of the H5N1 subtype of influenza A.  相似文献   

13.
We have succeeded in engineering changes into the genome of influenza B virus. First, model RNAs containing the chloramphenicol acetyltransferase gene flanked by the noncoding sequences of the HA or NS genes of influenza B virus were transfected into cells which were previously infected with an influenza B helper virus. Like those of the influenza A viruses, the termini of influenza B virus genes contain cis-acting signals which are sufficient to direct replication, expression, and packaging of the RNA. Next, a full-length copy of the HA gene from influenza B/Maryland/59 virus was cloned. Following transfection of this RNA, we rescued transfectant influenza B viruses which contain a point mutation introduced into the original cDNA. A series of mutants which bear deletions or changes in the 5' noncoding region of the influenza B/Maryland/59 virus HA gene were constructed. We were able to rescue viruses which contained deletions of 10 or 33 nucleotides at the 5' noncoding region of the HA gene. The viability of these viruses implies that this region of the genome is flexible in sequence and length.  相似文献   

14.
Highly pathogenic H5N1 avian influenza viruses have caused major disease outbreaks in domestic and free-living birds with transmission to humans resulting in 59% mortality amongst 564 cases. The mutation of the amino acid at position 627 of the viral polymerase basic-2 protein (PB2) from glutamic acid (E) in avian isolates to lysine (K) in human isolates is frequently found, but it is not known if this change affects the fitness and pathogenicity of the virus in birds. We show here that horizontal transmission of A/Vietnam/1203/2004 H5N1 (VN/1203) virus in chickens and ducks was not affected by the change of K to E at PB2-627. All chickens died between 21 to 48 hours post infection (pi), while 70% of the ducks survived infection. Virus replication was detected in chickens within 12 hours pi and reached peak titers in spleen, lung and brain between 18 to 24 hours for both viruses. Viral antigen in chickens was predominantly in the endothelium, while in ducks it was present in multiple cell types, including neurons, myocardium, skeletal muscle and connective tissues. Virus replicated to a high titer in chicken thrombocytes and caused upregulation of TLR3 and several cell adhesion molecules, which may explain the rapid virus dissemination and location of viral antigen in endothelium. Virus replication in ducks reached peak values between 2 and 4 days pi in spleen, lung and brain tissues and in contrast to infection in chickens, thrombocytes were not involved. In addition, infection of chickens with low pathogenic VN/1203 caused neuropathology, with E at position PB2-627 causing significantly higher infection rates than K, indicating that it enhances virulence in chickens.  相似文献   

15.
Liu J  Chen P  Jiang Y  Wu L  Zeng X  Tian G  Ge J  Kawaoka Y  Bu Z  Chen H 《Journal of virology》2011,85(21):10989-10998
Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 10(6) PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks.  相似文献   

16.
Influenza A viruses can be isolated from a variety of animals, but their range of hosts is restricted. For example, human influenza viruses do not replicate in duck intestine, the major replication site of avian viruses in ducks. Although amino acids at positions 226 and 228 of hemagglutinin (HA) of the H3 subtype are known to be important for this host range restriction, the contributions of specific amino acids at these positions to restriction were not known. Here, we address this issue by generating HAs with site-specific mutations of a human virus that contain different amino acid residues at these positions. We also let ducks select replication-competent viruses from a replication-incompetent virus containing a human virus HA by inoculating animals with 1010.5 50% egg infectious dose of the latter virus and identified a mutation in the HA. Our results showed that the Ser-to-Gly mutation at position 228, in addition to the Leu-to-Gln mutation at position 226 of the HA of the H3 subtype, is critical for human virus HA to support virus replication in duck intestine.  相似文献   

17.
2009年6月12日,江苏确诊首例甲型H1N1(2009)病例。通过细胞和鸡胚分离系统,我们分离到一株具有较高血凝活性的病毒,命名为A/Jiangsu/1/2009。为了跟踪病毒的变异情况,我们开展了病毒的全基因组测序工作,在此基础上对其血凝素基因(Haemagglutinin,HA)的遗传特性进行了详细研究。分离株HA蛋白不具有多碱基HA裂解位点,具有低致病性流感病毒特点。与参考株A/California/04/2009相比,分离株A/Jiangsu/1/2009HA蛋白的有4个氨基酸发生了突变,但都不在已知的抗原位点上。分离株有5个潜在糖基化位点,这与近年来古典猪H1N1和北美三源重配猪H1病毒完全一致,保留了古典猪H1的特点。与禽流感H1病毒相比,分离株HA蛋白受体结合位点上的E190D和G225D发生突变,这可能成为新甲型H1N1(2009)在人际间传播的一个重要分子基础。此外,其它受体结合位点上相关氨基酸同时具有人和猪流感病毒的特点。本研究首次对早期流行的甲型H1N1(2009)流感病毒的HA蛋白的分子遗传特征进行了详细研究,对进一步监测病原变异具有重要指导意义。  相似文献   

18.
Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtypes typically possess multiple basic amino acids around the cleavage site (MBS) of their hemagglutinin (HA) protein, a recognized virulence motif in poultry. To determine the importance of the H5 HA MBS as a virulence factor in mammals, recombinant wild-type HPAI A/Vietnam/1203/2004 (H5N1) viruses that possessed (H5N1) or lacked (ΔH5N1) the H5 HA MBS were generated and evaluated for their virulence in BALB/c mice, ferrets, and African green monkeys (AGMs) (Chlorocebus aethiops). The presence of the H5 HA MBS was associated with lethality, significantly higher virus titers in the respiratory tract, virus dissemination to extrapulmonary organs, lymphopenia, significantly elevated levels of proinflammatory cytokines and chemokines, and inflammation in the lungs of mice and ferrets. In AGMs, neither H5N1 nor ΔH5N1 virus was lethal and neither caused clinical symptoms. The H5 HA MBS was associated with mild enhancement of replication and delayed virus clearance. Thus, the contribution of H5 HA MBS to the virulence of the HPAI H5N1 virus varies among mammalian hosts and is most significant in mice and ferrets and less remarkable in nonhuman primates.  相似文献   

19.
A deletion of ~20 amino acids in the stalk of neuraminidase is frequently observed upon transmission of influenza A viruses from waterfowl to domestic poultry. A pair of recombinant H7N1 viruses bearing either a short- or long-stalk neuraminidase was genetically engineered. Inoculation of the long-stalk-neuraminidase virus resulted in a higher cloacal excretion in ducks and led conversely to lower-level oropharyngeal excretion in chickens, associated with a higher-level local immune response and better survival. Therefore, a short-stalk neuraminidase is a determinant of viral adaptation and virulence in chickens but is detrimental to virus replication and shedding in ducks.  相似文献   

20.
Highly pathogenic H5N1 influenza A viruses have spread across Asia, Europe, and Africa. More than 500 cases of H5N1 virus infection in humans, with a high lethality rate, have been reported. To understand the molecular basis for the high virulence of H5N1 viruses in mammals, we tested the virulence in ferrets of several H5N1 viruses isolated from humans and found A/Vietnam/UT3062/04 (UT3062) to be the most virulent and A/Vietnam/UT3028/03 (UT3028) to be avirulent in this animal model. We then generated a series of reassortant viruses between the two viruses and assessed their virulence in ferrets. All of the viruses that possessed both the UT3062 hemagglutinin (HA) and nonstructural protein (NS) genes were highly virulent. By contrast, all those possessing the UT3028 HA or NS genes were attenuated in ferrets. These results demonstrate that the HA and NS genes are responsible for the difference in virulence in ferrets between the two viruses. Amino acid differences were identified at position 134 of HA, at positions 200 and 205 of NS1, and at positions 47 and 51 of NS2. We found that the residue at position 134 of HA alters the receptor-binding property of the virus, as measured by viral elution from erythrocytes. Further, both of the residues at positions 200 and 205 of NS1 contributed to enhanced type I interferon (IFN) antagonistic activity. These findings further our understanding of the determinants of pathogenicity of H5N1 viruses in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号