首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly(lactate-co-3-hydroxybutyrate) (P(LA-co-3HB)) was previously produced from xylose in engineered Escherichia coli. The aim of this study was to increase the polymer productivity and LA fraction in P(LA-co-3HB) using two metabolic engineering approaches: (1) deletions of competing pathways to lactate production and (2) overexpression of a galactitol transporter (GatC), which contributes to the ATP-independent xylose uptake. Engineered E. coli mutants (ΔpflA, Δpta, ΔackA, ΔpoxB, Δdld, and a dual mutant; ΔpflA?+?Δdld) and their parent strain, BW25113, were grown on 20 g l?1 xylose for P(LA-co-3HB) production. The single deletions of ΔpflA, Δpta, and Δdld increased the LA fraction (58–66 mol%) compared to BW25113 (56 mol%). In particular, the ΔpflA?+?Δdld strain produced P(LA-co-3HB) containing 73 mol% LA. Furthermore, GatC overexpression increased both polymer yields and LA fractions in ΔpflA, Δpta, and Δdld mutants, and BW25113. The ΔpflA?+?gatC strain achieved a productivity of 8.3 g l?1, which was 72 % of the theoretical maximum yield. Thus, to eliminate limitation of the carbon source, higher concentration of xylose was fed. As a result, BW25113 harboring gatC grown on 40 g l?1 xylose reached the highest P(LA-co-3HB) productivity of 14.4 g l?1. On the other hand, the ΔpflA?+?Δdld strain grown on 30 g l?1 xylose synthesized 6.4 g l?1 P(LA-co-3HB) while maintaining the highest LA fraction (73 mol%). The results indicated the usefulness of GatC for enhanced production of P(LA-co-3HB) from xylose, and the gene deletions to upregulate the LA fraction in P(LA-co-3HB). The polymers obtained had weight-averaged molecular weights in the range of 34,000–114,000.  相似文献   

2.
Methyl ketones are a group of highly reduced platform chemicals with widespread applications in the fragrance, flavor and pharmacological industries. Current methods for the industrial production of methyl ketones include oxidation of hydrocarbons, but recent advances in the characterization of methyl ketone synthases from wild tomato have sparked interest towards the development of microbial platforms for the industrial production of methyl ketones. A functional methyl ketone biosynthetic pathway was constructed in Escherichia coli by over-expressing two genes from Solanum habrochaites: shmks2, encoding a 3-ketoacyl-ACP thioesterase, and shmks1, encoding a beta-decarboxylase. These enzymes enabled methyl ketone synthesis from 3-ketoacyl-ACP, an intermediate in the fatty acid biosynthetic cycle. The production of 2-nonanone, 2-undecanone, and 2-tridecanone by MG1655 pTH-shmks2-shmks1 was initially detected by nuclear magnetic resonance and gas chromatography–mass spectrometry analyses at levels close to 6?mg/L. The deletion of major fermentative pathways leading to ethanol (adhE), lactate (ldhA), and acetate (pta, poxB) production allowed for the carbon flux to be redirected towards methyl ketone production, doubling total methyl ketone concentration. Variations in methyl ketone production observed under different working volumes in flask experiments led to a more detailed analysis of the effects of oxygen availability on methyl ketone concentration in order to determine optimal levels of oxygen. The methyl ketone concentration achieved with MG1655 ?adhE ?ldhA ?poxB ?pta pTrcHis2A-shmks2-shmks1, the best performer strain in this study, was approximately 500?mg/L, the highest reported for an engineered microorganism. Through the establishment of optimal operating conditions and by executing rational metabolic engineering strategies, we were able to increase methyl ketone concentrations by almost 75-fold from the initial confirmatory levels.  相似文献   

3.
It was shown recently that recombinant Escherichia coli, defective in the β-oxidation cycle and harboring a medium-chain-length (MCL) poly(3-hydroxyalkanoate) (PHA) polymerase-encoding gene of Pseudomonas, is able to produce MCL PHA from fatty acids but not from sugars or gluconate (S. Langenbach, B. H. A. Rehm, and A. Steinbüchel, FEMS Microbiol. Lett. 150:303–309, 1997; Q. Ren, Ph.D. thesis, ETH Zürich, Zürich, Switzerland, 1997). In this study, we report the formation of MCL PHA from gluconate by recombinant E. coli. By introduction of genes coding for an MCL PHA polymerase and the cytosolic thioesterase I (′thioesterase I) into E. coli JMU193, we were able to engineer a pathway for the synthesis of MCL PHA from gluconate. We used two expression systems, i.e., the bad promoter and alk promoter, for the ′thioesterase I- and PHA polymerase-encoding genes, respectively, which enabled us to modulate their expression independently over a range of inducer concentrations, which resulted in a maximum MCL PHA accumulation of 2.3% of cell dry weight from gluconate. We found that the amount of PHA and the ′thioesterase I activity are directly correlated. Moreover, the polymer accumulated in the recombinant E. coli consisted mainly of 3-hydroxyoctanoate monomers. On the basis of our data, we propose an MCL PHA biosynthesis pathway scheme for recombinant E. coli JMU193, harboring PHA polymerase and ′thioesterase I, when grown on gluconate, which involves both de novo fatty acid synthesis and β-oxidation.  相似文献   

4.
Coupling lactate fermentation with cell growth was investigated in shake-flask and bioreactor cultivation systems by increasing aeration to improve lactate productivity in Escherichia coli CICIM B0013-070 (ackA pta pps pflB dld poxB adhE frdA). In shake-flasks, cells reached 1 g dry wt/l then, cultivated at 100 rpm and 42°C, achieved a twofold higher productivity of lactic acid compared to aerobic and O2-limited two-phase fermentation. The cells in the bioreactor yielded an overall volumetric productivity of 5.5 g/l h and a yield of 86 g lactic acid/100 g glucose which were 66% higher and the same level compared to that of the aerobic and O2-limited two-phase fermentation, respectively, using scaled-up conditions optimized from shake-flask experiments. These results have revealed an approach for improving production of fermentative products in E. coli.  相似文献   

5.
Nine anaerobic promoters were cloned and constructed upstream of PHB synthesis genes phbCAB from Ralstonia eutropha for the micro- or anaerobic PHB production in recombinant Escherichia coli. Among the promoters, the one for alcohol dehydrogenase (P adhE ) was found most effective. Recombinant E. coli JM 109 (pWCY09) harboring P adhE and phbCAB achieved a 48% PHB accumulation in the cell dry weight after 48 h of static culture compared with only 30% PHB production under its native promoter. Sixty-seven percent PHB was produced in the dry weight (CDW) of an acetate pathway deleted (Δpta deletion) E. coli JW2294 harboring the vector pWCY09. In a batch process conducted in a 5.5-l NBS fermentor containing 3 l glucose LB medium, E. coli JW2294 (pWCY09) grew to 7.8 g/l CDW containing 64% PHB after 24 h of microaerobic incubation. In addition, molecular weight of PHB was observed to be much higher under microaerobic culture conditions. The high activity of P adhE appeared to be the reason for improved micro- or anaerobic cell growth and PHB production while high molecular weight contributed to the static culture condition.  相似文献   

6.
A linker-based approach for combinatorial assembly of promoter and gene cassettes into a biochemical pathway is developed. A synthetic library containing 144 combinations, with 3 promoters and 4 gene variants, was constructed for the ackA and pta genes of the acetate utilization pathway in E. coli. The in vitro isothermal assembled library was then introduced into E. coli mutant (acs-, pta-, ackA-) and selected for restoration of acetate utilization. 81% of the colonies screened contained the complete functional pathway. Thirty positive clones were analyzed and accounted for 10% of the 144 promoter?Cgene combinations.  相似文献   

7.
8.
Temperature Control of Phospholipid Biosynthesis in Escherichia coli   总被引:22,自引:9,他引:13       下载免费PDF全文
The higher the growth temperature of Escherichia coli cultures the greater is the proportion of saturated fatty acids in the bacterial phospholipids. When fatty acids are exogenously supplied to E. coli, higher growth temperatures will likewise increase the relative incorporation of saturated fatty acids into phospholipids. One of the steps in the utilization of fatty acids for phospholipid biosynthesis is, therefore, temperature-controlled. The temperature effect observed in vivo with mixtures of 3H-oleate and 14C-palmitate is demonstrable in vitro by using mixtures of the coenzyme A derivative of these fatty acids for the acylation of α-glycerol phosphate to lysophosphatidic and phosphatidic acids. In E. coli extracts, the relative rates of transacylation of palmityl and oleyl coenzyme A vary as a function of incubation temperature in a manner which mimics the temperature control observed in vivo. The phosphatidic acid synthesized in vitro shows a striking enrichment of oleate at the β position analogous to the positional specificity observed in phospholipids synthesized in vivo.  相似文献   

9.
Kang Z  Du L  Kang J  Wang Y  Wang Q  Liang Q  Qi Q 《Bioresource technology》2011,102(11):6600-6604
The strategic design of this study aimed at producing succinate and polyhydroxyalkanoate (PHA) from substrate mixture of glycerol/glucose and fatty acid in Escherichia coli. To accomplish this, an E. coli KNSP1 strain derived from E. coli LR1110 was constructed by deletions of ptsG, sdhA and pta genes and overexpression of phaC1 from Pseudomonas aeruginosa. Cultivation of E. coli KNSP1 showed that this strain was able to produce 21.07 g/L succinate and 0.54 g/L PHA (5.62 wt.% of cell dry weight) from glycerol and fatty acid mixture. The generated PHA composed of 58.7 mol% 3-hydroxyoctanoate (3HO) and 41.3 mol% 3-hydroxydecanoate (3HD). This strain would be useful for complete utilization of byproducts glycerol and fatty acid of biodiesel production process.  相似文献   

10.
Formation of chloroplast pigments was inhibited, and free fatty acids accumulated in mustard (Brassica juncea [L.] Coss.) cotyledons and in barley (Hordeum vulgare L.) first leaves developed after treatment with 4-chloro-5- (dimethylamino)-2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone. The inhibitor reduced the amount of fatty acids found in polar lipids (galactolipids) of barley chloroplasts and increased the amount in nonpolar lipids while having little effect on total content of bound fatty acids. The inhibition of chlorophyll formation was circumvented by D-α-tocopherol acetate, phytol, farnesol, and squalene, and by unsaturated fatty acids and their methyl esters. The protective action can be explained partially by an interaction external to the plant whereby 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone partitioned out of the aqueous phase and into the lipid phase, thus limiting availability of the inhibitor to plants. However, the amount of inhibitor reaching the cotyledons of tocopherol-protected mustard seedlngs was still in excess of the amount necessary to cause white foliage, but it failed to produce the effect. Tocopherol treatment did not prevent the 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone-induced buildup of fatty acids in mustard cotyledons but did partially circumvent the effect in barley leaves. The amount of linolenic acid relative to linoleic acid was reduced in barley leaves and chloroplasts by 4-chloro-5- (dimethylamino) -2- (α, α, α-trifluoro-m-tolyl) -3 (2H) -pyridazinone action and this effect was circumvented by tocopherol.  相似文献   

11.
Given its availability and low price, glycerol has become an ideal feedstock for the production of fuels and chemicals. We recently reported the pathways mediating the metabolism of glycerol in Escherichia coli under anaerobic and microaerobic conditions. In this work, we engineer E. coli for the efficient conversion of glycerol to d-lactic acid (d-lactate), a negligible product of glycerol metabolism in wild-type strains. A homofermentative route for d-lactate production was engineered by overexpressing pathways involved in the conversion of glycerol to this product and blocking those leading to the synthesis of competing by-products. The former included the overexpression of the enzymes involved in the conversion of glycerol to glycolytic intermediates (GlpK-GlpD and GldA-DHAK pathways) and the synthesis of d-lactate from pyruvate (d-lactate dehydrogenase). On the other hand, the synthesis of succinate, acetate, and ethanol was minimized through two strategies: (i) inactivation of pyruvate-formate lyase (ΔpflB) and fumarate reductase (ΔfrdA) (strain LA01) and (ii) inactivation of fumarate reductase (ΔfrdA), phosphate acetyltransferase (Δpta), and alcohol/acetaldehyde dehydrogenase (ΔadhE) (strain LA02). A mutation that blocked the aerobic d-lactate dehydrogenase (Δdld) also was introduced in both LA01 and LA02 to prevent the utilization of d-lactate. The most efficient strain (LA02Δdld, with GlpK-GlpD overexpressed) produced 32 g/liter of d-lactate from 40 g/liter of glycerol at a yield of 85% of the theoretical maximum and with a chiral purity higher than 99.9%. This strain exhibited maximum volumetric and specific productivities for d-lactate production of 1.5 g/liter/h and 1.25 g/g cell mass/h, respectively. The engineered homolactic route generates 1 to 2 mol of ATP per mol of d-lactate and is redox balanced, thus representing a viable metabolic pathway.Lactic acid (lactate) and its derivatives have many applications in the food, pharmaceutical, and polymer industries (13, 30). An example is polylactic acid, a renewable, biodegradable, and environmentally friendly polymer produced from d- and l-lactate (19). In this context, biological processes have the advantage of being able to produce chirally pure lactate from inexpensive media containing only the carbon source and mineral salts (43). While lactic acid bacteria traditionally have been used in the production of d-lactate from carbohydrate-rich feedstocks, several laboratories recently have reported alternative biocatalysts (13, 30), many of which are engineered Escherichia coli strains that produce d- or l-lactate (4, 8, 50, 51, 52).Unlike the aforementioned reports, which have dealt with the use of carbohydrates, our work focuses on the use of glycerol as a carbon source for the production of d-lactate. Glycerol has become an inexpensive and abundant substrate due to its generation in large amounts as a by-product of biodiesel and bioethanol production (18, 32, 47). The conversion of glycerol to higher-value products has been proposed as a path to economic viability for the biofuels industry (47). One such product is lactate, whose production could be readily integrated into existing biodiesel and bioethanol facilities, thus establishing true biorefineries.Although many microorganisms are able to metabolize glycerol (25), the use of industrial microbes such as E. coli could greatly accelerate the development of platforms to produce fuels and chemicals from this carbon source. We recently reported on the ability of E. coli to metabolize glycerol under either anaerobic or microaerobic conditions and identified the environmental and metabolic determinants of these processes (9, 11, 28). In one of the studies, the pathways involved in the microaerobic utilization of glycerol were elucidated, and they are shown in Fig. Fig.11 (9). A common characteristic of glycerol metabolism under either anaerobic or microaerobic conditions is the generation of ethanol as the primary product and the negligible production of lactate (6, 9, 11, 28). In the work reported here, the knowledge base created by the aforementioned studies was used to engineer E. coli for the efficient conversion of glycerol to d-lactate in minimal medium. The engineered strains hold great promise as potential biocatalysts for the conversion of low-value glycerol streams to a higher-value product like d-lactate.Open in a separate windowFIG. 1.Pathways involved in the microaerobic utilization of glycerol in E. coli (9). Genetic modifications supporting the metabolic engineering strategies employed in this work are illustrated by thicker lines (overexpression of gldA-dhaKLM, glpK-glpD, and ldhA) or cross bars (disruption of pflB, pta, adhE, frdA, and dld). Broken lines illustrate multiple steps. Relevant reactions are represented by the names of the gene(s) coding for the enzymes: aceEF-lpdA, pyruvate dehydrogenase complex; adhE, acetaldehyde/alcohol dehydrogenase; ackA, acetate kinase; dhaKLM, dihydroxyacetone kinase; dld, respiratory d-lactate dehydrogenase; fdhF, formate dehydrogenase, part of the formate hydrogenlyase complex; frdABCD, fumarate reductase; gldA, glycerol dehydrogenase; glpD, aerobic glycerol-3-phosphate dehydrogenase; glpK, glycerol kinase; hycB-I, hydrogenase 3, part of the formate hydrogenlyase complex; ldhA, fermentative d-lactate dehydrogenase; pflB, pyruvate formate-lyase; pta, phosphate acetyltransferase; pykF, pyruvate kinase. Abbreviations: DHA, dihydroxyacetone; DHAP, DHA phosphate; G-3-P, glycerol-3-phosphate; PEP, phosphoenolpyruvate; PYR, pyruvate; P/O, amount of ATP produced in the oxidative phosphorylation per pair of electrons transferred through the electron transport system; QH2, reduced quinones.  相似文献   

12.
Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4−/− mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4−/− mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4−/− mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4−/− BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4−/− brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state.  相似文献   

13.
Saccharomyces cerevisiae, as well as other eukaryotes, preserves fatty acids and sterols in a biologically inert form, as triacylglycerols and steryl esters. The major triacylglycerol lipases of the yeast S. cerevisiae identified so far are Tgl3p, Tgl4p, and Tgl5p (Athenstaedt, K., and Daum, G. (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J. Biol. Chem. 278, 23317–23323; Athenstaedt, K., and Daum, G. (2005) Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae, are localized to lipid particles. J. Biol. Chem. 280, 37301–37309). We observed that upon cultivation on oleic acid, triacylglycerol mobilization did not come to a halt in a yeast strain deficient in all currently known triacylglycerol lipases, indicating the presence of additional not yet characterized lipases/esterases. Functional proteome analysis using lipase and esterase inhibitors revealed a subset of candidate genes for yet unknown hydrolytic enzymes on peroxisomes and lipid droplets. Based on the conserved GXSXG lipase motif, putative functions, and subcellular localizations, a selected number of candidates were characterized by enzyme assays in vitro, gene expression analysis, non-polar lipid analysis, and in vivo triacylglycerol mobilization assays. These investigations led to the identification of Ayr1p as a novel triacylglycerol lipase of yeast lipid droplets and confirmed the hydrolytic potential of the peroxisomal Lpx1p in vivo. Based on these results, we discuss a possible link between lipid storage, lipid mobilization, and peroxisomal utilization of fatty acids as a carbon source.  相似文献   

14.
The application of whole cells containing cytochrome P-450BM-3 monooxygenase [EC 1.14.14.1] for the bioconversion of long-chain saturated fatty acids to ω-1, ω-2, and ω-3 hydroxy fatty acids was investigated. We utilized pentadecanoic acid and studied its conversion to a mixture of 12-, 13-, and 14-hydroxypentadecanoic acids by this monooxygenase. For this purpose, Escherichia coli recombinants containing plasmid pCYP102 producing the fatty acid monooxygenase cytochrome P-450BM-3 were used. To overcome inefficient uptake of pentadecanoic acid by intact E. coli cells, we made use of a cloned fatty acid uptake system from Pseudomonas oleovorans which, in contrast to the common FadL fatty acid uptake system of E. coli, does not require coupling by FadD (acyl-coenzyme A synthetase) of the imported fatty acid to coenzyme A. This system from P. oleovorans is encoded by a gene carried by plasmid pGEc47, which has been shown to effect facilitated uptake of oleic acid in E. coli W3110 (M. Nieboer, Ph.D. thesis, University of Groningen, Groningen, The Netherlands, 1996). By using a double recombinant of E. coli K27, which is a fadD mutant and therefore unable to consume substrates or products via the β-oxidation cycle, a twofold increase in productivity was achieved. Applying cytochrome P-450BM-3 monooxygenase as a biocatalyst in whole cells does not require the exogenous addition of the costly cofactor NADPH. In combination with the coenzyme A-independent fatty acid uptake system from P. oleovorans, cytochrome P-450BM-3 recombinants appear to be useful alternatives to the enzymatic approach for the bioconversion of long-chain fatty acids to subterminal hydroxylated fatty acids.Cytochrome P-450BM-3 monooxygenase (CytP450BM-3) is a soluble NADPH-dependent monooxygenase from Bacillus megaterium ATCC 14581 (13). It is a class II P-450 enzyme that contains flavin adenine dinucleotide, flavin mononucleotide, and a heme moiety (17). Unlike most CytP450 monooxygenases, which consist of a distinct monooxygenase and a reductase, CytP450BM-3 contains these functionalities in a single polypeptide (3, 15, 18).The enzyme hydroxylates a variety of long-chain aliphatic substrates, such as fatty acids, alkanols, and alkylamides at the ω-1, ω-2, and ω-3 positions (4, 17), and oxidizes unsaturated fatty acids to epoxides in vitro (17, 23) with high enantioselectivity. Oxidation of eicosapentenoic acid (C20:5) and arachidonic acid (C20:4) yielded 17(S),18(R)-epoxyeicosatetraenoic acid (94% enantiomeric excess [e.e.]) for the former and a mixture of 18-(R)-hydroxyarachidonic acid (92% e.e.) and 14(S),15(R)-epoxyeicosatrienoic acid at 98% e.e. for the latter substrate (8). Recently, it has been demonstrated that the enzyme also produces α,ω diacids from ω-oxo fatty acids by oxidation of the terminal aldehyde functionality (9). The catalytic constant (kcat) of CytP450BM-3 is among the highest found for P-450 monooxygenases, ranging from 15 s−1 for laureate to 75 s−1 for pentadecanoic acid (11). For comparison, a typical microsomal P-450 monooxygenase from human liver (CYP2J2) had a kcat of 10−3 s−1 for arachidonic acid (32), compared to a kcat of 55 s−1 for CytP450BM-3 for the same substrate (8).This high catalytic efficiency prompted us to investigate the applicability of CytP450BM-3 as a biocatalyst for the subterminal hydroxylation of long-chain fatty acids (LCFAs). Since these subterminal hydroxy LCFAs are chiral molecules, their application in the production of enantiopure synthetic building blocks, especially for pharmaceutical agents, could be envisioned. Further, long-chain hydroxy acids find applications as precursors for polymers or cyclic lactones, which are used as components of fragrances and as antibiotics. Although chemical syntheses have been developed for ω-1 hydroxy fatty acids (from C12 to C18) (26, 28, 29) and for ω-2 and ω-3 hydroxyoctadecanoic acids (2), they require expensive functionalized substrates and are in general complicated, multistep processes (26, 28, 29) which cannot be carried out with unmodified fatty acids as inexpensive starting material. In principle, such inexpensive substrates can be oxidized to hydroxy fatty acids by biocatalysts, either in vitro or in vivo. The latter is preferred, since whole cells actively regenerate the NADPH required for fatty acid oxidation with monooxygenases such as CytP450BM-3. In designing a suitable whole-cell biocatalyst, several additional points had to be considered.First, uptake must be efficient. Second, degradation of substrate or product must be avoided. In fact, biotransformations of fatty acids with whole cells are usually inefficient due to limited uptake of these compounds at neutral pH, and when taken up, they are degraded via β-oxidation. The transport of LCFAs in Escherichia coli is mediated via the fadL and fadD gene products. FadL is the transporter that carries LCFAs across the outer membrane and is absolutely required for LCFA transport (20). FadD, the acyl coenzyme A (CoA) synthetase, is located at the inner side of the cytoplasmic membrane and is required for formation of the acyl coenzyme A thioester, after which the activated fatty acids are channeled into the β-oxidation cycle for fatty acid degradation (21, 22). Thus, we used a FadD mutant, E. coli K27, as a suitable host for the production of subterminal hydroxyalkanoic acids (20). E. coli K27 cannot couple free fatty acids to coenzyme A, thus preventing substrate or product degradation by the host. Such fadD mutants are, however, also impaired in efficient uptake of fatty acids (20). We circumvented this by introducing a fatty acid uptake system from Pseudomonas oleovorans encoded on pGEc47. Finally, we introduced the P-450BM-3 monooxygenase on pCYP102 into the fadD mutant E. coli. The resulting recombinant, E. coli K27(pCYP102, pGEc47), is a promising tailored biocatalyst for the oxidation of saturated LCFAs to ω-1, ω-2, and ω-3 hydroxy fatty acids.  相似文献   

15.
Deuterated styrene ([2H8]styrene) was used as a tracer in combination with phospholipid fatty acid (PLFA) analysis for characterization of styrene-degrading microbial populations of biofilters used for treatment of waste gases. Deuterated fatty acids were detected and quantified by gas chromatography-mass spectrometry. The method was evaluated with pure cultures of styrene-degrading bacteria and defined mixed cultures of styrene degraders and non-styrene-degrading organisms. Incubation of styrene degraders for 3 days with [2H8]styrene led to fatty acids consisting of up to 90% deuterated molecules. Mixed-culture experiments showed that specific labeling of styrene-degrading strains and only weak labeling of fatty acids of non-styrene-degrading organisms occurred after incubation with [2H8]styrene for up to 7 days. Analysis of actively degrading filter material from an experimental biofilter and a full-scale biofilter by this method showed that there were differences in the patterns of labeled fatty acids. For the experimental biofilter the fatty acids with largest amounts of labeled molecules were palmitic acid (16:0), 9,10-methylenehexadecanoic acid (17:0 cyclo9-10), and vaccenic acid (18:1 cis11). These lipid markers indicated that styrene was degraded by organisms with a Pseudomonas-like fatty acid profile. In contrast, the most intensively labeled fatty acids of the full-scale biofilter sample were palmitic acid and cis-11-hexadecenoic acid (16:1 cis11), indicating that an unknown styrene-degrading taxon was present. Iso-, anteiso-, and 10-methyl-branched fatty acids showed no or weak labeling. Therefore, we found no indication that styrene was degraded by organisms with methyl-branched fatty fatty acids, such as Xanthomonas, Bacillus, Streptomyces, or Gordonia spp.  相似文献   

16.
To prepare medium-chain-length poly-3-hydroxyalkanoates (PHAs) with altered physical properties, we generated recombinant Escherichia coli strains that synthesized PHAs with altered monomer compositions. Experiments with different substrates (fatty acids with different chain lengths) or different E. coli hosts failed to produce PHAs with altered physical properties. Therefore, we engineered a new potential PHA synthetic pathway, in which ketoacyl-coenzyme A (CoA) intermediates derived from the β-oxidation cycle are accumulated and led to the PHA polymerase precursor R-3-hydroxyalkanoates in E. coli hosts. By introducing the poly-3-hydroxybutyrate acetoacetyl-CoA reductase (PhbB) from Ralstonia eutropha and blocking the ketoacyl-CoA degradation step of the β-oxidation, the ketoacyl-CoA intermediate was accumulated and reduced to the PHA precursor. Introduction of the phbB gene not only caused significant changes in the monomer composition but also caused changes of the physical properties of the PHA, such as increase of polymer size and loss of the melting point. The present study demonstrates that pathway engineering can be a useful approach for producing PHAs with engineered physical properties.  相似文献   

17.
In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate (AcP), which can be converted to acetate by acetate kinase (Ack), with the concomitant generation of ATP. A ΔackA mutant displayed enhanced accumulation of AcP under aerobic conditions, whereas little or no AcP was observed in the Δpta or Δpta ΔackA mutant. The Δpta and Δpta ΔackA mutants also had diminished ATP pools compared to the size of the ATP pool for the parental or ΔackA strain. Surprisingly, when exposed to oxidative stress, the Δpta ΔackA strain appeared to regain the capacity to produce AcP, with a concurrent increase in the size of the ATP pool compared to that for the parental strain. The ΔackA and Δpta ΔackA mutants exhibited enhanced (p)ppGpp accumulation, whereas the strain lacking Pta produced less (p)ppGpp than the wild-type strain. The ΔackA and Δpta ΔackA mutants displayed global changes in gene expression, as assessed by microarrays. All strains lacking Pta, which had defects in AcP production under aerobic conditions, were impaired in their abilities to form biofilms when glucose was the growth carbohydrate. Collectively, these data demonstrate the complex regulation of the Pta-Ack pathway and critical roles for these enzymes in processes that appear to be essential for the persistence and pathogenesis of S. mutans.  相似文献   

18.
Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar ‘Luhua 14’ using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli Rosetta (DE3). Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b) were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a–GST, or AhDGAT2b–GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a–GST and AhDGAT2b–GST proteins increased the sizes of the host cells by 2.4–2.5 times that of the controls (post-IPTG induction). The total fatty acid (FA) levels of the AhDGAT2a–GST and AhDGAT2a–GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for efficient FA production in E. coli.  相似文献   

19.
The increased synthesis of building blocks of IPP (isopentenyl diphosphate) and DMAPP (dimethylallyl diphosphate) through metabolic engineering is a way to enhance the production of carotenoids. Using E. coli as a host, IPP and DMAPP supply can be increased significantly through the introduction of foreign MVA (mevalonate) pathway into it. The MVA pathway is split into two parts with the top and bottom portions supplying mevalonate from acetyl-CoA, and IPP and DMAPP from mevalonate, respectively. The bottom portions of MVA pathway from Streptococcus pneumonia, Enterococcus faecalis, Staphylococcus aureus, Streptococcus pyogenes and Saccharomyces cerevisiae were compared with exogenous mevalonate supplementation for β-carotene production in recombinant Escherichia coli harboring β-carotene synthesis genes. The E. coli harboring the bottom MVA pathway of S. pneumoniae produced the highest amount of β-carotene. The top portions of MVA pathway were also compared and the top MVA pathway of E. faecalis was found out to be the most efficient for mevalonate production in E. coli. The whole MVA pathway was constructed by combining the bottom and top portions of MVA pathway of S. pneumoniae and E. faecalis, respectively. The recombinant E. coli harboring the whole MVA pathway and β-carotene synthesis genes produced high amount of β-carotene even without exogenous mevalonate supplementation. When comparing various E. coli strains – MG1655, DH5α, S17-1, XL1-Blue and BL21 – the DH5α was found to be the best β-carotene producer. Using glycerol as the carbon source for β-carotene production was found to be superior to glucose, galactose, xylose and maltose. The recombinant E. coli DH5α harboring the whole MVA pathway and β-carotene synthesis genes produced β-carotene of 465 mg/L at glycerol concentration of 2% (w/v).  相似文献   

20.
Escherichia coli W, a sucrose-positive strain, was engineered for the homofermentative production of d-lactic acid through chromosomal deletion of the competing fermentative pathway genes (adhE, frdABCD, pta, pflB, aldA) and the repressor gene (cscR) of the sucrose operon, and metabolic evolution for improved anaerobic cell growth. The resulting strain, HBUT-D, efficiently fermented 100?g?sucrose?l?1 into 85?g?d-lactic acid?l?1 in 72–84?h in mineral salts medium with a volumetric productivity of ~1?g?l?1?h?1, a product yield of 85?% and d-lactic acid optical purity of 98.3?%, and with a minor by-product of 4?g?acetate?l?1. HBUT-D thus has great potential for production of d-lactic acid using an inexpensive substrate, such as sugar cane and/or beet molasses, which are primarily composed of sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号