首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundA large number of studies about effects of air pollutants on cardiovascular mortality have been conducted; however, those investigating association between air pollutants and cardiovascular morbidity are limited, especially in developing countries.MethodsA time-series analysis on the short-term association between outdoor air pollutants including particulate matter (PM) with diameters of 10 µm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) and cardiovascular morbidity was conducted in Tianjin, China based on 4 years of daily data (2008–2011). The morbidity data were stratified by sex and age. The effects of air pollutants during the warm season and the cool season were also analyzed separately.ResultsEach increase in PM10, SO2, and NO2 by increments of 10 µg/m3 in a 2-day average concentration was associated with increases in the cardiovascular morbidity of 0.19% with 95 percent confidence interval (95% CI) of 0.08–0.31, 0.43% with 95% CI of 0.03–0.84, and 0.52% with 95% CI of −0.09–1.13, respectively. The effects of air pollutants were more evident in the cool season than those in the warm season, females and the elderly were more vulnerable to outdoor air pollution.ConclusionsAll estimated coefficients of PM10, SO2 and NO2 are positive but only the effect of SO2 implied statistical significance at the 5% level. Moreover, season, sex and age might modify health effects of outdoor air pollutants. This work may bring inspirations for formulating local air pollutant standards and social policy regarding cardiovascular health of residents.  相似文献   

2.

Background

Few studies have investigated the associations between outdoor air pollution and outpatient visits for respiratory diseases (RDs) in general population.

Methods

We collected daily outpatient data of primary RDs from five hospitals in Jinan during January 2012 and December 2016, as well as daily measurements of air pollutants from the Jinan Environmental Monitoring Center and daily meteorological variables from the China Meteorological Data Sharing Service System. A generalized additive model (GAM) with quasi-Poisson regression was constructed to estimate the associations between daily average concentrations of outdoor air pollutants (PM2.5,PM10, SO2, NO2, CO and O3) and daily outpatient visits of RDs after adjusting for long-time trends, seasonality, the “day of the week” effect, and weather conditions. Subgroup analysis stratified by gender, age group and the type of RDs was conducted.

Results

A total of 1,373,658 outpatient visits for RDs were identified. Increases of 10?μg/m3 in PM2.5, PM10, NO2, CO and O3 were associated with0.168% (95% CI, 0.072–0.265%), 0.149% (95% CI, 0.082–0.215%), 0.527% (95% CI, 0.211–0.843%), 0.013% (95% CI, 0.003–0.023%), and 0.189% (95% CI, 0.032–0.347%) increases in daily outpatient visits for RDs, respectively. PM2.5 and PM10 showed instant and continuous effects, while NO2, CO and O3 showed delayed effects on outpatient visits for RDs. In stratification analysis, PM2.5 and PM10 were associated with acute RDs only.

Conclusions

Exposure to outdoor air pollutants including PM2.5, PM10, NO2, CO and O3 associated with increased risk of outpatient visits for RDs.
  相似文献   

3.

Background

Taffic-related air pollution has been related to adverse respiratory outcomes; however, there is still uncertainty concerning the type of vehicle emission causing most deleterious effects.

Methods

A panel study was conducted among 147 asthmatic and 50 healthy children, who were followed up for an average of 22 weeks. Incidence density of coughing, wheezing and breathing difficulty was assessed by referring to daily records of symptoms and child''s medication. The association between exposure to pollutants and occurrence of symptoms was evaluated using mixed-effect models with binary response and poisson regression.

Results

Wheezing was found to relate significantly to air pollutants: an increase of 17.4 μg/m3 (IQR) of PM2.5 (24-h average) was associated with an 8.8% increase (95% CI: 2.4% to 15.5%); an increase of 34 ppb (IQR) of NO2 (1-h maximum) was associated with an 9.1% increase (95% CI: 2.3% to16.4%) and an increase of 48 ppb (IQR) in O3 levels (1 hr maximum) to an increase of 10% (95% CI: 3.2% to 17.3%). Diesel-fueled motor vehicles were significantly associated with wheezing and bronchodilator use (IRR = 1.29; 95% CI: 1.03 to 1.62, and IRR = 1.32; 95% CI: 0.99 to 1.77, respectively, for an increase of 130 vehicles hourly, above the 24-hour average).

Conclusion

Respiratory symptoms in asthmatic children were significantly associated with exposure to traffic exhaust, especially from natural gas and diesel-fueled vehicles.  相似文献   

4.
The adverse effects of traffic-related air pollution on children’s respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8–9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00–1.02), NO2 (1.03, 1.00–1.06), PM10 (1.16, 1.04–1.28) and PM2.5 (1.38, 1.08–1.78), all per μg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions.  相似文献   

5.
BackgroundHeavy fine particulate matter (PM2.5) air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV) for total and cause-specific respiratory diseases in urban areas in Beijing.MethodsDaily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender.ResultsA total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%), 0.19% for upper respiratory tract infection (URTI) (95%CI: 0.04%-0.35%), 0.34% for lower respiratory tract infection (LRTI) (95%CI: 0.14%-0.53%) and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) (95%CI: 0.13%-2.79%). The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%). The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure.ConclusionPM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age.  相似文献   

6.
The aim of this study was to determine the correlation between PM2.5 and NO2 pollutants and oxidative stress marker (8-isoprostane) and lung function tests (FVC and FEV1) in healthy children who were living and studying in three different areas of Ahvaz city including A1: Naderi site with high traffic, A2: Alavi Alley site with average traffic, and A3: Ein 2 site with low traffic (a rural area on the suburb of Ahvaz). 30 students in the 12–13 year-old range were selected from each studied zone (1, 2 and 3 sites) during three months of year. Of each student, one sample was taken every two weeks to measure 8-isoprostane of exhaled breath condensate (EBC). Air pollution data were collected from three air quality monitoring stations. Also, the relationship between air pollution and 8-isoprostane as well as lung function tests were determined using generalized estimating equations (GEE). The mean concentration of PM2.5 and NO2 in A1, A2 and A3 areas were 116, 92 and 45 (μg/m3) also 77, 53 and 14 (ppb) respectively. Among all studied students, there was a significant correlation between the increase of mean concentration of PM2.5 and NO2 in 1–4 before sampling day, increased 8-isoprostane concentration and decreased FEV1, while there was no significant correlation between them and decreased FVC. In A1 site, an increase in IQR (13 μg/m3) PM2.5 and IQR (6.5 ppb) NO2 on 1–4 days before sampling was associated with 0.38 unit (95% CI: 0.11, 0.65) and 1.1 unit (95% CI: 0.85, 1.35) increase in 8-isoprostane concentration, also decreased 121 ml and 190 ml FEV1, respectively. Results showed that the short-term exposure to traffic-related air pollution can decrease the values of lung function indices and increase the oxidative stress. It may adversely affect children’s lungs.  相似文献   

7.
Zhang P  Dong G  Sun B  Zhang L  Chen X  Ma N  Yu F  Guo H  Huang H  Lee YL  Tang N  Chen J 《PloS one》2011,6(6):e20827

Background

The relationship between ambient air pollution exposure and mortality of cardiovascular and cerebrovascular diseases in human is controversial, and there is little information about how exposures to ambient air pollution contribution to the mortality of cardiovascular and cerebrovascular diseases among Chinese. The aim of the present study was to examine whether exposure to ambient-air pollution increases the risk for cardiovascular and cerebrovascular disease.

Methodology/Principal Findings

We conducted a retrospective cohort study among humans to examine the association between compound-air pollutants [particulate matter <10 µm in aerodynamic diameter (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2)] and mortality in Shenyang, China, using 12 years of data (1998–2009). Also, stratified analysis by sex, age, education, and income was conducted for cardiovascular and cerebrovascular mortality. The results showed that an increase of 10 µg/m3 in a year average concentration of PM10 corresponds to 55% increase in the risk of a death cardiovascular disease (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.51 to 1.60) and 49% increase in cerebrovascular disease (HR, 1.49; 95% CI, 1.45 to 1.53), respectively. The corresponding figures of adjusted HR (95%CI) for a 10 µg/m3 increase in NO2 was 2.46 (2.31 to 2.63) for cardiovascular mortality and 2.44 (2.27 to 2.62) for cerebrovascular mortality, respectively. The effects of air pollution were more evident in female that in male, and nonsmokers and residents with BMI<18.5 were more vulnerable to outdoor air pollution.

Conclusion/Significance

Long-term exposure to ambient air pollution is associated with the death of cardiovascular and cerebrovascular diseases among Chinese populations.  相似文献   

8.

Background and Objectives

Many studies have shown the adverse effects of air pollution on respiratory health, but few have examined the effects of air pollution on service utilisation in the primary care setting. The aim of this study was to examine the association between air pollution and the daily number of consultations due to upper respiratory tract infections (URTIs) in general outpatient clinics (GOPCs) in Hong Kong.

Methods

Daily data on the numbers of consultations due to URTIs in GOPCs, the concentrations of major air pollutants, and the mean values of metrological variables were retrospectively collected over a 3-year period (2008–2010, inclusive). Generalised additive models were constructed to examine the association between air pollution and the daily number of consultations, and to derive the relative risks and 95% confidence intervals (95% CI) of GOPC consultations for a unit increase in the concentrations of air pollutants.

Results

The mean daily consultations due to URTIs in GOPCs ranged from 68.4 to 253.0 over the study period. The summary relative risks (and 95% CI) of daily consultations in all GOPCs for the air pollutants PM10, NO2, O3, and SO2 were 1.005 (1.002, 1.009), 1.010 (1.006, 1.013), 1.009 (1.006, 1.012), and 1.004 (1.000, 1.008) respectively, per 10 µg/m3 increase in the concentration of each pollutant.

Conclusion

Significant associations were found between the daily number of consultations due to URTIs in GOPCs and the concentrations of air pollutants, implying that air pollution incurs a substantial morbidity and increases the burden of primary health care services.  相似文献   

9.

Background

The air pollution caused by vehicular emissions is associated with cognitive decline. However, the associations between the levels of nitrogen dioxide (NO2) and carbon monoxide (CO) exposure and dementia remain poorly defined and have been addressed in only a few previous studies.

Materials and Methods

In this study, we obtained data on 29547 people from the National Health Insurance Research Database (NHIRD) of Taiwan, including data on 1720 patients diagnosed with dementia between 2000 and 2010, and we evaluated the risk of dementia among four levels of air pollutant. Detailed data on daily air pollution were available from January 1, 1998 to December 31, 2010. Yearly average concentrations of pollutants were calculated from the baseline to the date of dementia occurrence, withdrawal of patients, or the end of the study, and these data were categorized into quartiles, with Q1 being the lowest level and Q4 being the highest.

Results

In the case of NO2, the adjusted hazard ratios (HRs) of dementia for all participants in Q2, Q3, and Q4 compared to Q1 were 1.10 (95% confidence interval (CI), 0.96–1.26), 1.01 (95% CI, 0.87–1.17), and 1.54 (95% CI, 1.34–1.77), and in the case of CO, the adjusted HRs were 1.07 (95% CI, 0.92–1.25), 1.37 (95% CI, 1.19–1.58), and 1.61 (95% CI, 1.39–1.85).

Conclusion

The results of this large retrospective, population-based study indicate that exposure to NO2 and CO is associated with an increased risk of dementia in the Taiwanese population.  相似文献   

10.
Exposure to ambient air pollutants increases risk for adverse cardiovascular health outcomes in adults. We aimed to evaluate the contribution of prenatal air pollutant exposure to cardiovascular health, which has not been thoroughly evaluated. The Testing Responses on Youth (TROY) study consists of 768 college students recruited from the University of Southern California in 2007–2009. Participants attended one study visit during which blood pressure, heart rate and carotid artery arterial stiffness (CAS) and carotid artery intima-media thickness (CIMT) were assessed. Prenatal residential addresses were geocoded and used to assign prenatal and postnatal air pollutant exposure estimates using the U.S. Environmental Protection Agency’s Air Quality System (AQS) database. The associations between CAS, CIMT and air pollutants were assessed using linear regression analysis. Prenatal PM10 and PM2.5 exposures were associated with increased CAS. For example, a 2 SD increase in prenatal PM2.5 was associated with CAS indices, including a 5% increase (β = 1.05, 95% CI 1.00–1.10) in carotid stiffness index beta, a 5% increase (β = 1.05, 95% CI 1.01–1.10) in Young’s elastic modulus and a 5% decrease (β = 0.95, 95% CI 0.91–0.99) in distensibility. Mutually adjusted models of pre- and postnatal PM2.5 further suggested the prenatal exposure was most relevant exposure period for CAS. No associations were observed for CIMT. In conclusion, prenatal exposure to elevated air pollutants may increase carotid arterial stiffness in a young adult population of college students. Efforts aimed at limiting prenatal exposures are important public health goals.  相似文献   

11.
Dong GH  Chen T  Liu MM  Wang D  Ma YN  Ren WH  Lee YL  Zhao YD  He QC 《PloS one》2011,6(7):e22470

Background

Males and females exhibit different health responses to air pollution, but little is known about how exposure to air pollution affects juvenile respiratory health after analysis stratified by allergic predisposition. The aim of the present study was to assess the relationship between air pollutants and asthmatic symptoms in Chinese children selected from multiple sites in a heavily industrialized province of China, and investigate whether allergic predisposition modifies this relationship.

Methodology/Principal Findings

30139 Chinese children aged 3-to-12 years were selected from 25 districts of seven cities in northeast China in 2009. Information on respiratory health was obtained using a standard questionnaire from the American Thoracic Society. Routine air-pollution monitoring data was used for particles with an aerodynamic diameter ≤10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxides (NO2), ozone (O3) and carbon monoxide (CO). A two-stage regression approach was applied in data analyses. The effect estimates were presented as odds ratios (ORs) per interquartile changes for PM10, SO2, NO2, O3, and CO. The results showed that children with allergic predisposition were more susceptible to air pollutants than children without allergic predisposition. Amongst children without an allergic predisposition, air pollution effects on asthma were stronger in males compared to females; Current asthma prevalence was related to PM10 (ORs = 1.36 per 31 µg/m3; 95% CI, 1.08–1.72), SO2 (ORs = 1.38 per 21 µg/m3; 95%CI, 1.12–1.69) only among males. However, among children with allergic predisposition, more positively associations between air pollutants and respiratory symptoms and diseases were detected in females; An increased prevalence of doctor-diagnosed asthma was significantly associated with SO2 (ORs = 1.48 per 21 µg/m3; 95%CI, 1.21–1.80), NO2 (ORs = 1.26 per 10 µg/m3; 95%CI, 1.01–1.56), and current asthma with O3 (ORs = 1.55 per 23 µg/m3; 95%CI, 1.18–2.04) only among females.

Conclusion/Significance

Ambient air pollutions were more evident in males without an allergic predisposition and more associations were detected in females with allergic predisposition.  相似文献   

12.
BackgroundLate-life exposure to ambient air pollution is a modifiable risk factor for dementia, but epidemiological studies have shown inconsistent evidence for cognitive decline. Air quality (AQ) improvement has been associated with improved cardiopulmonary health and decreased mortality, but to the best of our knowledge, no studies have examined the association with cognitive function. We examined whether AQ improvement was associated with slower rate of cognitive decline in older women aged 74 to 92 years.Methods and findingsWe studied a cohort of 2,232 women residing in the 48 contiguous US states that were recruited from more than 40 study sites located in 24 states and Washington, DC from the Women’s Health Initiative (WHI) Memory Study (WHIMS)-Epidemiology of Cognitive Health Outcomes (WHIMS-ECHO) study. They were predominantly non-Hispanic White women and were dementia free at baseline in 2008 to 2012. Measures of annual (2008 to 2018) cognitive function included the modified Telephone Interview for Cognitive Status (TICSm) and the telephone-based California Verbal Learning Test (CVLT). We used regionalized universal kriging models to estimate annual concentrations (1996 to 2012) of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) at residential locations. Estimates were aggregated to the 3-year average immediately preceding (recent exposure) and 10 years prior to (remote exposure) WHIMS-ECHO enrollment. Individual-level improved AQ was calculated as the reduction from remote to recent exposures. Linear mixed effect models were used to examine the associations between improved AQ and the rates of cognitive declines in TICSm and CVLT trajectories, adjusting for sociodemographic (age; geographic region; race/ethnicity; education; income; and employment), lifestyle (physical activity; smoking; and alcohol), and clinical characteristics (prior hormone use; hormone therapy assignment; depression; cardiovascular disease (CVD); hypercholesterolemia; hypertension; diabetes; and body mass index [BMI]). For both PM2.5 and NO2, AQ improved significantly over the 10 years before WHIMS-ECHO enrollment. During a median of 6.2 (interquartile range [IQR] = 5.0) years of follow-up, declines in both general cognitive status (β = −0.42/year, 95% CI: −0.44, −0.40) and episodic memory (β = −0.59/year, 95% CI: −0.64, −0.54) were observed. Greater AQ improvement was associated with slower decline in TICSm (βPM2.5improvement = 0.026 per year for improved PM2.5 by each IQR = 1.79 μg/m3 reduction, 95% CI: 0.001, 0.05; βNO2improvement = 0.034 per year for improved NO2 by each IQR = 3.92 parts per billion [ppb] reduction, 95% CI: 0.01, 0.06) and CVLT (βPM2.5 improvement = 0.070 per year for improved PM2.5 by each IQR = 1.79 μg/m3 reduction, 95% CI: 0.02, 0.12; βNO2improvement = 0.060 per year for improved NO2 by each IQR = 3.97 ppb reduction, 95% CI: 0.005, 0.12) after adjusting for covariates. The respective associations with TICSm and CVLT were equivalent to the slower decline rate found with 0.9 to 1.2 and1.4 to 1.6 years of younger age and did not significantly differ by age, region, education, Apolipoprotein E (ApoE) e4 genotypes, or cardiovascular risk factors. The main limitations of this study include measurement error in exposure estimates, potential unmeasured confounding, and limited generalizability.ConclusionsIn this study, we found that greater improvement in long-term AQ in late life was associated with slower cognitive declines in older women. This novel observation strengthens the epidemiologic evidence of an association between air pollution and cognitive aging.

Diana Younan and colleagues investigate whether air quality improvement is associated with rate of cognitive decline in community-dwelling older women in the United States.  相似文献   

13.

Background

Air pollution constitutes a significant stimulus of asthma exacerbations; however, the impacts of exposure to major air pollutants on asthma-related hospital admissions and emergency room visits (ERVs) have not been fully determined.

Objective

We sought to quantify the associations between short-term exposure to air pollutants [ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter ≤10μm (PM10) and PM2.5] and the asthma-related emergency room visits (ERV) and hospitalizations.

Methods

Systematic computerized searches without language limitation were performed. Pooled relative risks (RRs) and 95% confidence intervals (95%CIs) were estimated using the random-effect models. Sensitivity analyses and subgroup analyses were also performed.

Results

After screening of 246 studies, 87 were included in our analyses. Air pollutants were associated with significantly increased risks of asthma ERVs and hospitalizations [O3: RR(95%CI), 1.009 (1.006, 1.011); I2 = 87.8%, population-attributable fraction (PAF) (95%CI): 0.8 (0.6, 1.1); CO: RR(95%CI), 1.045 (1.029, 1.061); I2 = 85.7%, PAF (95%CI): 4.3 (2.8, 5.7); NO2: RR(95%CI), 1.018 (1.014, 1.022); I2 = 87.6%, PAF (95%CI): 1.8 (1.4, 2.2); SO2: RR(95%CI), 1.011 (1.007, 1.015); I2 = 77.1%, PAF (95%CI): 1.1 (0.7, 1.5); PM10: RR(95%CI), 1.010 (1.008, 1.013); I2 = 69.1%, PAF (95%CI): 1.1 (0.8, 1.3); PM2.5: RR(95%CI), 1.023 (1.015, 1.031); I2 = 82.8%, PAF (95%CI): 2.3 (1.5, 3.1)]. Sensitivity analyses yielded compatible findings as compared with the overall analyses without publication bias. Stronger associations were found in hospitalized males, children and elderly patients in warm seasons with lag of 2 days or greater.

Conclusion

Short-term exposures to air pollutants account for increased risks of asthma-related ERVs and hospitalizations that constitute a considerable healthcare utilization and socioeconomic burden.  相似文献   

14.
Previous studies have investigated the associations between exposure to ambient air pollution and biomarkers of physiological pathways, yet little has been done on the comparison across biomarkers of different pathways to establish the temporal pattern of biological response. In the current study, we aim to compare the relative temporal patterns in responses of candidate pathways to different pollutants. Four biomarkers of pulmonary inflammation and oxidative stress, five biomarkers of systemic inflammation and oxidative stress, ten parameters of autonomic function, and three biomarkers of hemostasis were repeatedly measured in 125 young adults, along with daily concentrations of ambient CO, PM2.5, NO2, SO2, EC, OC, and sulfate, before, during, and after the Beijing Olympics. We used a two-stage modeling approach, including Stage I models to estimate the association between each biomarker and pollutant over each of 7 lags, and Stage II mixed-effect models to describe temporal patterns in the associations when grouping the biomarkers into the four physiological pathways. Our results show that candidate pathway groupings of biomarkers explained a significant amount of variation in the associations for each pollutant, and the temporal patterns of the biomarker-pollutant-lag associations varied across candidate pathways (p<0.0001) and were not linear (from lag 0 to lag 3: p = 0.0629, from lag 3 to lag 6: p = 0.0005). These findings suggest that, among this healthy young adult population, the pulmonary inflammation and oxidative stress pathway is the first to respond to ambient air pollution exposure (within 24 hours) and the hemostasis pathway responds gradually over a 2–3 day period. The initial pulmonary response may contribute to the more gradual systemic changes that likely ultimately involve the cardiovascular system.  相似文献   

15.

Background

A nationwide asthma survey on the effects of air pollution is lacking in Taiwan. The purpose of this study was to evaluate the time trend and the relationship between air pollution and health care services for asthma in Taiwan.

Methods

Health care services for asthma and ambient air pollution data were obtained from the National Health Insurance Research database and Environmental Protection Administration from 2000 through 2009, respectively. Health care services, including those related to the outpatient and inpatient visits were compared according to the concentration of air pollutants.

Results

The number of asthma-patient visits to health-care facilities continue to increase in Taiwan. Relative to the respective lowest quartile of air pollutants, the adjusted relative risks (RRs) of the outpatient visits in the highest quartile were 1.10 (P-trend  = 0.013) for carbon monoxide (CO), 1.10 (P-trend  = 0.015) for nitrogen dioxide (NO2), and 1.20 (P-trend <0.0001) for particulate matter with an aerodynamic diameter ≦10µm (PM10) in the child group (aged 0–18). For adults aged 19–44, the RRs of outpatient visits were 1.13 (P-trend = 0.078) for CO, 1.17 (P-trend = 0.002) for NO2, and 1.13 (P-trend <0.0001) for PM10. For adults aged 45–64, the RRs of outpatient visits were 1.15 (P-trend = 0.003) for CO, 1.19 (P-trend = 0.0002) for NO2, and 1.10 (P-trend = 0.001) for PM10. For the elderly (aged≥ 65), the RRs of outpatient visits in were 1.12 (P-trend  = 0.003) for NO2 and 1.10 (P-trend  = 0.006) for PM10. For inpatient visits, the RRs across quartiles of CO level were 1.00, 1.70, 1.92, and 1.86 (P-trend  = 0.0001) in the child group. There were no significant linear associations between inpatient visits and air pollutants in other groups.

Conclusions

There were positive associations between CO levels and childhood inpatient visits as well as NO2, CO and PM10 and outpatient visits.  相似文献   

16.
BackgroundAir pollution has been related to incidence of type 2 diabetes (T2D). We assessed the joint association of various air pollutants with the risk of T2D and examined potential modification by obesity status and genetic susceptibility on the relationship.Methods and findingsA total of 449,006 participants from UK Biobank free of T2D at baseline were included. Of all the study population, 90.9% were white and 45.7% were male. The participants had a mean age of 56.6 (SD 8.1) years old and a mean body mass index (BMI) of 27.4 (SD 4.8) kg/m2. Ambient air pollutants, including particulate matter (PM) with diameters ≤2.5 μm (PM2.5), between 2.5 μm and 10 μm (PM2.5–10), nitrogen dioxide (NO2), and nitric oxide (NO) were measured. An air pollution score was created to assess the joint exposure to the 4 air pollutants. During a median of 11 years follow-up, we documented 18,239 incident T2D cases. The air pollution score was significantly associated with a higher risk of T2D. Compared to the lowest quintile of air pollution score, the hazard ratio (HR) (95% confidence interval [CI]) for T2D was 1.05 (0.99 to 1.10, p = 0.11), 1.06 (1.00 to 1.11, p = 0.051), 1.09 (1.03 to 1.15, p = 0.002), and 1.12 (1.06 to 1.19, p < 0.001) for the second to fifth quintile, respectively, after adjustment for sociodemographic characteristics, lifestyle factors, genetic factors, and other covariates. In addition, we found a significant interaction between the air pollution score and obesity status on the risk of T2D (p-interaction < 0.001). The observed association was more pronounced among overweight and obese participants than in the normal-weight people. Genetic risk score (GRS) for T2D or obesity did not modify the relationship between air pollution and risk of T2D. Key study limitations include unavailable data on other potential T2D-related air pollutants and single-time measurement on air pollutants.ConclusionsWe found that various air pollutants PM2.5, PM2.5–10, NO2, and NO, individually or jointly, were associated with an increased risk of T2D in the population. The stratified analyses indicate that such associations were more strongly associated with T2D risk among those with higher adiposity.

Xiang Li and co-workers study the potential influence of obesity on associations between air pollutants and incidence of type 2 diabetes.  相似文献   

17.
金自恒  高锡章  李宝林  翟德超  许杰  李飞 《生态学报》2022,42(11):4379-4388
川渝地区尤其是四川盆地已成为我国空气污染最严重的地区之一,基于2018—2019年川渝地区128个城市站和71个县级站空气质量监测及自然与社会经济数据,采用全局和局部莫兰指数分析了川渝地区空气质量指数(AQI)和不同空气质量分指数(IAQI)的时空格局,并采用偏最小二乘回归(PLSR)从较为宏观的尺度综合分析了川渝地区空气污染的主要驱动因素。研究结果表明:(1)川渝地区空气质量整体为良,主要污染物为O3,其次为PM10和PM2.5。盆地区与高原区的主要污染物分别为PM2.5和O3;(2)AQI及PM2.5、PM10、NO2呈“U”型变化,春冬季最高,夏秋季最低;O3则在内部两区域都大致呈倒“U”型变化,但峰值分布时间与持续时长明显不同;SO2和CO年内无明显变化;(3)各污染物具有明显的空间聚集性特征,AQI及PM10、PM2.5  相似文献   

18.

Background

Environmental pollution is a known risk factor for multiple diseases and furthermore increases rate of hospitalisations. We investigated the correlation between emergency room admissions (ERAs) of the general population for respiratory diseases and the environmental pollutant levels in Milan, a metropolis in northern Italy.

Methods

We collected data from 45770 ERAs for respiratory diseases. A time-stratified case-crossover design was used to investigate the association between air pollution levels and ERAs for acute respiratory conditions. The effects of air pollutants were investigated at lag 0 to lag 5, lag 0–2 and lag 3–5 in both single and multi-pollutant models, adjusted for daily weather variables.

Results

An increase in ozone (O3) levels at lag 3–5 was associated with a 78% increase in the number of ERAs for asthma, especially during the warm season. Exposure to carbon monoxide (CO) proved to be a risk factor for pneumonia at lag 0–2 and in the warm season increased the risk of ERA by 66%. A significant association was found between ERAs for COPD exacerbation and levels of sulphur dioxide (SO2), CO, nitrate dioxide (NO2), and particulate matter (PM10 and PM2.5). The multipollutant model that includes all pollutants showed a significant association between CO (26%) and ERA for upper respiratory tract diseases at lag 0–2. For chronic obstructive pulmonary disease (COPD) exacerbations, only CO (OR 1.19) showed a significant association.

Conclusions

Exposure to environmental pollution, even at typical low levels, can increase the risk of ERA for acute respiratory diseases and exacerbation of obstructive lung diseases in the general population.  相似文献   

19.
Air pollution is one of the top environmental concerns and causes of deaths and various diseases worldwide. An important question for sustainable development is to what extent urban design can improve or degrade urban air quality. In this article, we explored the relationship between ground-based observations of air pollution and urban form in the Yangtze River Delta (YRD), the largest metropolitan region in China. We analyzed six criteria pollutants (SO2, NO2, PM10, PM2.5, CO, O3) and summarized metric (air quality index, AQI) from 129 ambient air quality monitoring stations during 2015. Urban form was characterized using six spatial metrics, including the size, shape, regularity, fragmentation and traffic coupling factor of urban patches, based on satellite-derived land cover data. The results indicated that: (1) PM2.5, PM10 and O3 were three primary pollutants in the YRD. The annual average AQI was 79, and the air quality was “moderate” for human health, with the highest and lowest AQI appeared in winter (107) and summer (60). Moreover, the air quality of the southern areas (Zhejiang province, AQI: 68) was generally better than the northern parts (Jiangsu province, AQI: 86). (2) Through the size and shape of urban patches, urban form had a significant effect on urban air quality in the YRD. PARA_MN (Mean Perimeter-area ratio), ENN_MN (Mean Euclidean Nearest Neighbor Distance), CA (Total Urban Area) and NP (Number of urban patches) had the most significant impacts on air quality. PM10 and PM2.5 were two important pollutants highly positively related to CA and NP, while negatively related to PARA_MN and ENN_MN. In addition, the polycentric urban form was associated with high air quality. (3) Land use configuration was an important indicator to describe the urban air quality. When buffer distance of spatial scale was 25 km, air quality showed the highest correlation with forest coverage. A high forest coverage rate contributed to the better air quality, increasing or preserving the forested areas would help mitigate the air pollution.  相似文献   

20.
The outbreak of COVID-19 has spread globally affecting human activities but with improvement in ambient air quality. The first case of the virus in the Kingdom of Saudi Arabia was on the 2nd of March 2020. The impact of COVID-19 lockdown on the ambient air quality of the Kingdom of Saudi Arabia for the first time using data from nine cities was determined in this study. Hourly air quality data, based on concentrations of carbon monoxide (CO), particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3), and meteorological conditions (atmospheric temperature, relative humidity, and wind speed) of the nine cities studied were obtained from Saudi Arabian General Authority of Meteorology and Environmental Protection (GAMEP), for the period between January 2019 to May 2020. Significant variation (p < 0.05) was recorded for the five atmospheric pollutants across the cities before and during the lockdown, with lower concentrations during the lockdown except for the concentration of O3 in Tabuk, Al Qasim, and Haql. This can be a result of NO and O3 reaction, causing the inability of effective O3 depletion. The percentage changes in concentrations of CO (33.60%) and SO2 (44.16%) were higher in Jeddah; PM10 (91.12%) in Riyadh, while NO2 (44.35%) and O3 (18.98%) were highest in Makkah. However, even though there was a decrease in pollutants concentrations during the lockdown, the concentrations for CO, PM10, SO2, NO2, and O3 were still above WHO 24 h and annual mean limit levels. The COVID-19 lockdown in the Kingdom of Saudi Arabia revealed the possibility of significant atmospheric pollutant reduction by controlling traffic, activities by industries, and environmentally friendly transportation programs such as green commuting programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号