首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu F  Jiang C  Thompson WF  Xu Y  Yang Y  Stewart L 《PloS one》2012,7(2):e30374
Congenital amusia is a neuro-developmental disorder of pitch perception that causes severe problems with music processing but only subtle difficulties in speech processing. This study investigated speech processing in a group of Mandarin speakers with congenital amusia. Thirteen Mandarin amusics and thirteen matched controls participated in a set of tone and intonation perception tasks and two pitch threshold tasks. Compared with controls, amusics showed impaired performance on word discrimination in natural speech and their gliding tone analogs. They also performed worse than controls on discriminating gliding tone sequences derived from statements and questions, and showed elevated thresholds for pitch change detection and pitch direction discrimination. However, they performed as well as controls on word identification, and on statement-question identification and discrimination in natural speech. Overall, tasks that involved multiple acoustic cues to communicative meaning were not impacted by amusia. Only when the tasks relied mainly on pitch sensitivity did amusics show impaired performance compared to controls. These findings help explain why amusia only affects speech processing in subtle ways. Further studies on a larger sample of Mandarin amusics and on amusics of other language backgrounds are needed to consolidate these results.  相似文献   

2.
BACKGROUND: Subitizing involves recognition mechanisms that allow effortless enumeration of up to four visual objects, however despite ample resolution experimental data suggest that only one pitch can be reliably enumerated. This may be due to the grouping of tones according to harmonic relationships by recognition mechanisms prior to fine pitch processing. Poorer frequency resolution of auditory information available to recognition mechanisms may lead to unrelated tones being grouped, resulting in underestimation of pitch number. METHODS, RESULTS AND CONCLUSION: We tested whether pitch enumeration is better for chords of full harmonic complex tones, where grouping errors are less likely, than for complexes with fewer and less accurately tuned harmonics. Chords of low familiarity were used to mitigate the possibility that participants would recognize the chord itself and simply recall the number of pitches. We found that accuracy of pitch enumeration was less than the visual system overall, and underestimation of pitch number increased for stimuli containing fewer harmonics. We conclude that harmonically related tones are first grouped at the poorer frequency resolution of the auditory nerve, leading to poor enumeration of more than one pitch.  相似文献   

3.
音乐绝对音高(musical absolute pitch,AP)能力是一种敏锐的乐音音高知觉分类和记忆能力,表现为在没有任何其它音高参照的情况下,能够对所听到乐音音高进行准确命名或分类。本文从音乐绝对音高甄别方法、基因遗传、早期音乐训练、语言环境对音乐绝对音高能力形成的影响,以及绝对音高与音乐能力、音乐记忆和空间能力方面的研究进行了介绍,提出研究音乐绝对音高的重要性。最后展望了音乐绝对音高领域未来可能的四个研究方向。  相似文献   

4.
Pitch changes that occur in speech and melodies can be described in terms of contour patterns of rises and falls in pitch and the actual pitches at each point in time. This study investigates whether training can improve the perception of these different features. One group of ten adults trained on a pitch-contour discrimination task, a second group trained on an actual-pitch discrimination task, and a third group trained on a contour comparison task between pitch sequences and their visual analogs. A fourth group did not undergo training. It was found that training on pitch sequence comparison tasks gave rise to improvements in pitch-contour perception. This occurred irrespective of whether the training task required the discrimination of contour patterns or the actual pitch details. In contrast, none of the training tasks were found to improve the perception of the actual pitches in a sequence. The results support psychological models of pitch processing where contour processing is an initial step before actual pitch details are analyzed. Further studies are required to determine whether pitch-contour training is effective in improving speech and melody perception.  相似文献   

5.
Absolute pitch (AP) perception refers to the ability to identify, classify, and memorize pitches without use of an external reference pitch. In tests of AP, several species were trained to sort contiguous tones into three or eight frequency ranges, based on correlations between responding to tones in each frequency range and reinforcement. Two songbird species, zebra finches and white-throated sparrows, and a parrot species, budgerigars had highly accurate AP, they discriminated both three and eight ranges with precision. Relative to normally reared songbirds, isolate reared songbirds had impaired AP. Two mammalian species, humans and rats, had equivalent and weak AP, they discriminated three frequency ranges to a lackluster standard and they acquired only a crude discrimination of the lowest and highest of eight frequency ranges. In comparisons with mammals even isolate songbirds had more accurate AP than humans and rats.  相似文献   

6.

Background

Absolute pitch (AP) is the ability to identify or produce isolated musical tones. It is evident primarily among individuals who started music lessons in early childhood. Because AP requires memory for specific pitches as well as learned associations with verbal labels (i.e., note names), it represents a unique opportunity to study interactions in memory between linguistic and nonlinguistic information. One untested hypothesis is that the pitch of voices may be difficult for AP possessors to identify. A musician''s first instrument may also affect performance and extend the sensitive period for acquiring accurate AP.

Methods/Principal Findings

A large sample of AP possessors was recruited on-line. Participants were required to identity test tones presented in four different timbres: piano, pure tone, natural (sung) voice, and synthesized voice. Note-naming accuracy was better for non-vocal (piano and pure tones) than for vocal (natural and synthesized voices) test tones. This difference could not be attributed solely to vibrato (pitch variation), which was more pronounced in the natural voice than in the synthesized voice. Although starting music lessons by age 7 was associated with enhanced note-naming accuracy, equivalent abilities were evident among listeners who started music lessons on piano at a later age.

Conclusions/Significance

Because the human voice is inextricably linked to language and meaning, it may be processed automatically by voice-specific mechanisms that interfere with note naming among AP possessors. Lessons on piano or other fixed-pitch instruments appear to enhance AP abilities and to extend the sensitive period for exposure to music in order to develop accurate AP.  相似文献   

7.
Accurate pitch perception of harmonic complex tones is widely believed to rely on temporal fine structure information conveyed by the precise phase-locked responses of auditory-nerve fibers. However, accurate pitch perception remains possible even when spectrally resolved harmonics are presented at frequencies beyond the putative limits of neural phase locking, and it is unclear whether residual temporal information, or a coarser rate-place code, underlies this ability. We addressed this question by measuring human pitch discrimination at low and high frequencies for harmonic complex tones, presented either in isolation or in the presence of concurrent complex-tone maskers. We found that concurrent complex-tone maskers impaired performance at both low and high frequencies, although the impairment introduced by adding maskers at high frequencies relative to low frequencies differed between the tested masker types. We then combined simulated auditory-nerve responses to our stimuli with ideal-observer analysis to quantify the extent to which performance was limited by peripheral factors. We found that the worsening of both frequency discrimination and F0 discrimination at high frequencies could be well accounted for (in relative terms) by optimal decoding of all available information at the level of the auditory nerve. A Python package is provided to reproduce these results, and to simulate responses to acoustic stimuli from the three previously published models of the human auditory nerve used in our analyses.  相似文献   

8.
The simplest and likeliest assumption concerning the cognitive bases of absolute pitch (AP) is that at its origin there is a particularly skilled function which matches the height of the perceived pitch to the verbal label of the musical tone. Since there is no difference in sound frequency resolution between AP and non-AP (NAP) musicians, the hypothesis of the present study is that the failure of NAP musicians in pitch identification relies mainly in an inability to retrieve the correct verbal label to be assigned to the perceived musical note. The primary hypothesis is that, when asked to identify tones, NAP musicians confuse the verbal labels to be attached to the stimulus on the basis of their phonetic content. Data from two AP tests are reported, in which subjects had to respond in the presence or in the absence of visually presented verbal note labels (fixed Do solmization). Results show that NAP musicians confuse more frequently notes having a similar vowel in the note label. They tend to confuse e.g. a 261 Hz tone (Do) more often with Sol than, e.g., with La. As a second goal, we wondered whether this effect is lateralized, i.e. whether one hemisphere is more responsible than the other in the confusion of notes with similar labels. This question was addressed by observing pitch identification during dichotic listening. Results showed that there is a right hemispheric disadvantage, in NAP but not AP musicians, in the retrieval of the verbal label to be assigned to the perceived pitch. The present results indicate that absolute pitch has strong verbal bases, at least from a cognitive point of view.  相似文献   

9.
Pitch perception is important for understanding speech prosody, music perception, recognizing tones in tonal languages, and perceiving speech in noisy environments. The two principal pitch perception theories consider the place of maximum neural excitation along the auditory nerve and the temporal pattern of the auditory neurons’ action potentials (spikes) as pitch cues. This paper describes a biophysical mechanism by which fine-structure temporal information can be extracted from the spikes generated at the auditory periphery. Deriving meaningful pitch-related information from spike times requires neural structures specialized in capturing synchronous or correlated activity from amongst neural events. The emergence of such pitch-processing neural mechanisms is described through a computational model of auditory processing. Simulation results show that a correlation-based, unsupervised, spike-based form of Hebbian learning can explain the development of neural structures required for recognizing the pitch of simple and complex tones, with or without the fundamental frequency. The temporal code is robust to variations in the spectral shape of the signal and thus can explain the phenomenon of pitch constancy.  相似文献   

10.
Recent evidence indicates that pigeons can readily learn visual discriminations based on both absolute and relational stimulus factors. To examine how these two types of control function in their non-dominant auditory modality, we tested four pigeons in a go/no-go sequential auditory discrimination in which both absolute and relational cues were redundantly available. In this task, sequences of different sounds created from one set of pitches were reinforced, while different sequences created from another set of pitches and any same sequences made from either set of pitches were not. Across three experiments, we independently varied the relative discriminability of the absolute and relational components. The pigeons were consistently and primarily controlled by the absolute fundamental pitch of our notes in all of the experiments, although this was influenced by the range and arrangement of the pitches used in each set. A majority of the pigeons also demonstrated relational control when this component was made more salient. The more robust control exhibited by absolute factors is consistent with the comparative hypothesis that birds in general may have a well-developed aptitude for processing absolute pitch in many auditory settings. The relational control is consistent with our recent evidence of same/different auditory learning by pigeons.  相似文献   

11.
Congenital amusia is a neurogenetic disorder of music processing that is currently ascribed to a deficit in pitch processing. A recent study challenges this view and claims the disorder might arise as a consequence of a general spatial-processing deficit. Here, we assessed spatial processing abilities in two independent samples of individuals with congenital amusia by using line bisection tasks (Experiment 1) and a mental rotation task (Experiment 2). Both amusics and controls showed the classical spatial effects on bisection performance and on mental rotation performance, and amusics and controls did not differ from each other. These results indicate that the neurocognitive impairment of congenital amusia does not affect the processing of space.  相似文献   

12.
Acquired amusia is a common disorder after damage to the middle cerebral artery (MCA) territory. However, its neurocognitive mechanisms, especially the relative contribution of perceptual and cognitive factors, are still unclear. We studied cognitive and auditory processing in the amusic brain by performing neuropsychological testing as well as magnetoencephalography (MEG) measurements of frequency and duration discrimination using magnetic mismatch negativity (MMNm) recordings. Fifty-three patients with a left (n = 24) or right (n = 29) hemisphere MCA stroke (MRI verified) were investigated 1 week, 3 months, and 6 months after the stroke. Amusia was evaluated using the Montreal Battery of Evaluation of Amusia (MBEA). We found that amusia caused by right hemisphere damage (RHD), especially to temporal and frontal areas, was more severe than amusia caused by left hemisphere damage (LHD). Furthermore, the severity of amusia was found to correlate with weaker frequency MMNm responses only in amusic RHD patients. Additionally, within the RHD subgroup, the amusic patients who had damage to the auditory cortex (AC) showed worse recovery on the MBEA as well as weaker MMNm responses throughout the 6-month follow-up than the non-amusic patients or the amusic patients without AC damage. Furthermore, the amusic patients both with and without AC damage performed worse than the non-amusic patients on tests of working memory, attention, and cognitive flexibility. These findings suggest domain-general cognitive deficits to be the primary mechanism underlying amusia without AC damage whereas amusia with AC damage is associated with both auditory and cognitive deficits.  相似文献   

13.
A number of accounts of human auditory perception assume that listeners use prior stimulus context to generate predictions about future stimulation. Here, we tested an auditory pitch-motion hypothesis that was developed from this perspective. Listeners judged either the time change (i.e., duration) or pitch change of a comparison frequency glide relative to a standard (referent) glide. Under a constant-velocity assumption, listeners were hypothesized to use the pitch velocity (Δf/Δt) of the standard glide to generate predictions about the pitch velocity of the comparison glide, leading to perceptual distortions along the to-be-judged dimension when the velocities of the two glides differed. These predictions were borne out in the pattern of relative points of subjective equality by a significant three-way interaction between the velocities of the two glides and task. In general, listeners’ judgments along the task-relevant dimension (pitch or time) were affected by expectations generated by the constant-velocity standard, but in an opposite manner for the two stimulus dimensions. When the comparison glide velocity was faster than the standard, listeners overestimated time change, but underestimated pitch change, whereas when the comparison glide velocity was slower than the standard, listeners underestimated time change, but overestimated pitch change. Perceptual distortions were least evident when the velocities of the standard and comparison glides were matched. Fits of an imputed velocity model further revealed increasingly larger distortions at faster velocities. The present findings provide support for the auditory pitch-motion hypothesis and add to a larger body of work revealing a role for active prediction in human auditory perception.  相似文献   

14.
Musical imagery is a relatively unexplored area, partly because of deficiencies in existing experimental paradigms, which are often difficult, unreliable, or do not provide objective measures of performance. Here we describe a novel protocol, the Pitch Imagery Arrow Task (PIAT), which induces and trains pitch imagery in both musicians and non-musicians. Given a tonal context and an initial pitch sequence, arrows are displayed to elicit a scale-step sequence of imagined pitches, and participants indicate whether the final imagined tone matches an audible probe. It is a staircase design that accommodates individual differences in musical experience and imagery ability. This new protocol was used to investigate the roles that musical expertise, self-reported auditory vividness and mental control play in imagery performance. Performance on the task was significantly better for participants who employed a musical imagery strategy compared to participants who used an alternative cognitive strategy and positively correlated with scores on the Control subscale from the Bucknell Auditory Imagery Scale (BAIS). Multiple regression analysis revealed that Imagery performance accuracy was best predicted by a combination of strategy use and scores on the Vividness subscale of BAIS. These results confirm that competent performance on the PIAT requires active musical imagery and is very difficult to achieve using alternative cognitive strategies. Auditory vividness and mental control were more important than musical experience in the ability to perform manipulation of pitch imagery.  相似文献   

15.
Denham S 《Bio Systems》2005,79(1-3):199-206
Iterated ripple noise (IRN) is a broadband noise with temporal regularities, which can give rise to a perceptible pitch. Since the perceptual pitch to noise ratio of these stimuli can be altered without substantially altering their spectral content, they have been useful in exploring the role of temporal processing in pitch perception [Yost, W.A., 1996. Pitch strength of iterated rippled noise, J. Acoust. Soc. Am. 100 (5), 3329-3335; Patterson, R.D., Handel, S.,Yost, W.A., Datta, A.J., 1996. The relative strength of the tone and noise components in iterated rippled noise, J. Acoust. Soc. Am. 100 (5), 3286-3294]. A generalised IRN algorithm is presented, in which multiple time varying temporal correlations can be defined. The resulting time varying pitches are perceptually very salient. It is also possible to segregate and track multiple simultaneous time varying pitches in these stimuli. Temporal auditory models have previously been shown to account for the perception of IRNs with static delays [Patterson, R.D., Handel, S.,Yost, W.A., Datta, A.J., 1996. The relative strength of the tone and noise components in iterated rippled noise, J. Acoust. Soc. Am. 100 (5), 3286-3294]. Here we show that some simple modifications to one such model [Meddis R., Hewitt, M.J., 1991. Virtual pitch and phase sensitivity of a computer model of the auditory periphery I. Pitch identification, J. Acoust. Soc. Am. 89, 2866-2882] allow it to track moving correlations, and also improve its performance in response to static correlations.  相似文献   

16.
Fast noninertial shifts of attention   总被引:3,自引:0,他引:3  
D Sagi  B Julesz 《Spatial Vision》1985,1(2):141-149
It was suggested that some discrimination tasks (e.g. discrimination between the letters T and L) require serial search by scrutinizing each letter (target) with a small aperture of focal attention. Here we examine the effect of intertarget distance on discrimination performance, using two targets. We find reduction in performance at short distances, in agreement with masking studies, but constant performance independent of distance outside this masking region. This constant performance is still lower than expected from masking effects and might reflect attentive process. Sequential presentation of the targets with delays up to 30-40 ms, while reducing available processing time, does not cause reduction in performance, thus supporting the suggestion that discrimination of the two targets is a serial process. The independence of performance on distance suggests fast noninertial shifts of attention.  相似文献   

17.
Absolute pitch (AP) is the rare ability to instantaneously recognize and label tones with their musical note names without using a reference pitch for comparison. The etiology of AP is complex. Prior studies have implicated both genetic and environmental factors in its genesis, yet the molecular basis for AP remains unknown. To locate regions of the human genome that may harbor AP-predisposing genetic variants, we performed a genome-wide linkage study on 73 multiplex AP families by genotyping them with 6090 SNP markers. Nonparametric multipoint linkage analyses were conducted, and the strongest evidence for linkage was observed on chromosome 8q24.21 in the subset of 45 families with European ancestry (exponential LOD score = 3.464, empirical genome-wide p = 0.03). Other regions with suggestive LOD scores included chromosomes 7q22.3, 8q21.11, and 9p21.3. Of these four regions, only the 7q22.3 linkage peak was also evident when 19 families with East Asian ancestry were analyzed separately. Though only one of these regions has yet reached statistical significance individually, we detected a larger number of independent linkage peaks than expected by chance overall, indicating that AP is genetically heterogeneous.  相似文献   

18.
S Sally  R Gurnsey 《Spatial Vision》2001,14(2):217-234
Humans are extremely sensitive to symmetry when it is foveated but sensitivity drops as a symmetrical region of a fixed size is moved into the periphery. A psychophysical study was undertaken to determine if eccentricity dependent sensitivity loss could be overcome by magnifying stimuli at each eccentricity (E) by a factor F = 1 + E/E2, where E2 indicates the eccentricity at which the size of a stimulus must be doubled, relative to a foveal standard, to achieve equivalent performance. The psychophysical task required subjects to decide on each trial in which of two intervals a symmetrical stimulus had been presented. Stimuli were presented at a range of sizes and eccentricities (0 to 8 degrees) and the probability of a correct discrimination was computed for each condition. In Experiment 1, thresholds were measured with stimuli set to maximum available contrast and, in Experiment 2, stimuli were presented at a constant multiple of contrast detection threshold. In both experiments, a single scaling function removed most of the eccentricity dependent variation from the data. However, the E2 value recovered for one subject tested in both experiments was larger by about 65% when stimuli were not equated for visibility. We conclude that symmetry detection can be equated across a range of eccentricities by scaling stimuli with an E2 in the range of 0.88 to 1.38 degrees. Failure to equate for visibility across all viewing conditions may result in an inflated estimate of E2.  相似文献   

19.
The spectral frequency ranges of song notes are important for recognition in avian species tested in the field. Frequency-range discriminations in both the field and laboratory require absolute pitch (AP). AP is the ability to perceive pitches without an external referent. The authors provided a network model designed to account for differences in AP among avian species and evaluated it against discriminative performance in eight-frequency-range laboratory tests of AP for five species of songbirds and two species of nonsongbirds. The model's sensory component describes the neural substrate of avian auditory perception, and its associative component handles learning of the discrimination. Using only two free parameters to describe the selectivity and the sensitivity of each species’ auditory sensory filters, the model provided highly accurate predictions of frequency-range discrimination in songbirds and in a parrot species, but performance and its prediction were less accurate in pigeons: the only species tested that does not learn its vocalizations. Here for the first time, the authors present a model that predicted individual species’ performance in frequency-range discriminations and predicted differences in discrimination among avian species with high accuracy.  相似文献   

20.
The study was conducted on 64 CF strain albino rats, which were equally distributed into 8 evenly matched groups following a 2 x 2 x 2 factorial design, by varying three independent factors at two levels: nutrition--normal and undernutrition; environment--enrichment and impoverishment, and drug treatment--vehicle and pyritinol (100 mg/kg, ip). Prenatal undernutrition was induced by restricting the mother's food intake. The environmental enrichment/impoverishment and the vehicle/pyritinol treatments were given during the postweaning period of the pups. The rats were subjected to original and subsequent reversal brightness discrimination learning tests in a single unit T-maze at 8-9 weeks of age. Thereafter, the animals were tested for the passive avoidance learning. The results indicate that undernutrition caused significant original discrimination learning deficits whereas environmental deprivation attenuated both the original and reversal learning performance. Environmental impoverishment attenuated the retention of passive avoidance behaviour but undernutrition had no effect on this paradigm. Pyritinol treatment improved the learning and retention performance of normally reared rats and also attenuated the original and reversal learning deficits induced by parental undernutrition and postweaning environmental impoverishment. The results indicate that pyritinol may be useful in learning and memory deficits induced by malnutrition and environmental deprivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号