首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Predation and hunter harvest constitute the main mortality factors affecting the size and dynamics of many exploited populations. The re-colonization by wolves (Canis lupus) of the Scandinavian Peninsula may therefore substantially reduce hunter harvest of moose (Alces alces), the main prey of wolves.

Methodology/Principal findings

We examined possible effects of wolf presence on hunter harvest in areas where we had data before and after wolf establishment (n = 25), and in additional areas that had been continuously exposed to wolf predation during at least ten years (n = 43). There was a general reduction in the total number of moose harvested (n = 31,827) during the ten year study period in all areas irrespective of presence of wolves or not. However, the reduction in hunter harvest was stronger within wolf territories compared to control areas without wolves. The reduction in harvest was larger in small (500-800 km2) compared to large (1,200-1,800 km2) wolf territories. In areas with newly established wolf territories moose management appeared to be adaptive with regard to both managers (hunting quotas) and to hunters (actual harvest). In these areas an instant reduction in moose harvest over-compensated the estimated number of moose killed annually by wolves and the composition of the hunted animals changed towards a lower proportion of adult females.

Conclusions/Significance

We show that the re-colonization of wolves may result in an almost instant functional response by another large predator—humans—that reduced the potential for a direct numerical effect on the density of wolves’ main prey, the moose. Because most of the worlds’ habitat that will be available for future colonization by large predators are likely to be strongly influenced by humans, human behavioural responses may constitute a key trait that govern the impact of large predators on their prey.  相似文献   

2.
1. Wolves Canis lupus L. recolonized the boreal forests in the southern part of the Scandinavian peninsula during the late 1990s, but so far there has been little attention to its effect on ecosystem functioning. Wolf predation increases the availability of carcasses of large prey, especially moose Alces alces L., which may lead in turn to a diet switch in facultative scavengers such as the wolverine Gulo gulo L. 2. Using 459 wolverine scats collected during winter-spring 2001-04 for DNA identity and dietary contents, we compared diet inside and outside wolf territories while controlling for potential confounding factors, such as prey density. We tested the hypothesis that wolverine diet shifted towards moose in the presence of wolves, while taking into account possible sexual segregation between the sexes. Occurrence of reindeer, moose and small prey was modelled against explanatory covariates using logistic mixed-effects models. Furthermore, we compared diet composition and breadth among habitats and sexes. 3. Occurrence of reindeer, moose and small prey in the diet varied with prey availability and habitat. As expected, diet contained more moose and less reindeer and small prey in the presence of wolves. Their diet in tundra consisted of 40% reindeer Rangifer tarandus L., 39% moose and 9% rodents. In forest with wolf, their diet shifted to 76% moose, 18% reindeer and 5% rodents; compared to 42% moose, 32% reindeer and 15% rodents in forest without wolf. This diet switch could not be explained by higher moose density in wolf territories. Female diet consisted of more small prey than for males, but there was a tendency for females to use the highly available moose carrion opportunistically and to hunt less on small prey within wolf territories. 4. Our study highlights how wolves increase scavenging opportunities for wolverines, and how sexual differences in diet may also apply to large scavengers. Due to their more restricted home range, female wolverines are forced to rely more on hunting small prey. The relatively high occurrence of wolf kills, however, forms an important food source to wolverines in this area. The recolonization of wolves may therefore have contributed to the consequent recolonization of wolverines into the same area.  相似文献   

3.
The Greater Yellowstone Ecosystem in the northern Rocky Mountains provides the context for a natural experiment to investigate the response of consumers to resources with differing spatial and temporal dispersion regimes. Grey wolves (Canis lupus) and human hunters both provide resource subsidies to scavengers by provisioning them with the remains of their kills. Carrion from hunter kills is highly aggregated in time and space whereas carrion from wolf kills is more dispersed in both time and space. We estimated the total amount of carrion consumed by each scavenger species at both wolf and hunter kills over 4 years. Species with large feeding radii [bald eagles (Haliaeetus leucocephalus) and ravens (Corvus corax)], defined as the area over which a consumer can efficiently locate and integrate resources, dominated consumption at the highly aggregated hunter kills whereas competitively dominant species [coyotes (Canis latrans)] dominated at the more dispersed wolf kills. In addition, species diversity and the evenness of carrion consumption between scavengers was greater at wolf kills than at hunter kills while the total number of scavengers at hunter kills exceeded those at wolf kills. From a community perspective, the top–down effect of predation is likely to be stronger in the vicinity of highly aggregated resource pulses as species with large feeding radii switch to feeding on alternative prey once the resource pulse subsides.  相似文献   

4.
So far the vast majority of studies on large carnivore predation, including kill rates and consumption, have been based on winter studies. Because large carnivores relying on ungulates as prey often show a preference for juveniles, kill rates may be both higher and more variable during the summer season than during the rest of the year leading to serious underestimates of the total annual predation rate. This study is the first to present detailed empirical data on kill rates and prey selection in a wolf–moose system during summer (June–September) as obtained by applying modern Global Positioning System-collar techniques on individual wolves (Canis lupus) in Scandinavia. Moose (Alces alces) was the dominant prey species both by number (74.4%) and biomass (95.6%); 89.9% of all moose killed were juveniles, representing 76.0% of the biomass consumed by wolves. Kill rate in terms of the kilogram biomass/kilogram wolf per day averaged 0.20 (range: 0.07–0.32) among wolf territories and was above, or well above, the daily minimum food requirements in most territories. The average number of days between moose kills across wolf territories and study periods was 1.71 days, but increased with time and size of growing moose calves during summer. Over the entire summer (June–September, 122 days), a group (from two to nine) of wolves killed a total of 66 (confidence interval 95%; 56–81) moose. Incorporation of body growth functions of moose calves and yearlings and wolf pups over the summer period showed that wolves adjusted their kill rate on moose, so the amount of biomass/kilogram wolf was relatively constant or increased. The kill rate was much higher (94–116%) than estimated from the winter period. As a consequence, projecting winter kill rates to obtain annual estimates of predation in similar predator–prey systems may result in a significant underestimation of the total number of prey killed. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

The influence of policy on the incidence of human-wildlife conflict can be complex and not entirely anticipated. Policies for managing bear hunter success and depredation on hunting dogs by wolves represent an important case because with increasing wolves, depredations are expected to increase. This case is challenging because compensation for wolf depredation on hunting dogs as compared to livestock is less common and more likely to be opposed. Therefore, actions that minimize the likelihood of such conflicts are a conservation need.

Methodology/Principal Findings

We used data from two US states with similar wolf populations but markedly different wolf/hunting dog depredation patterns to examine the influence of bear hunting regulations, bear hunter to wolf ratios, hunter method, and hunter effort on wolf depredation trends. Results indicated that the ratio of bear hunting permits sold per wolf, and hunter method are important factors affecting wolf depredation trends in the Upper Great Lakes region, but strong differences exist between Michigan and Wisconsin related in part to the timing and duration of bear-baiting (i.e., free feeding). The probability that a wolf depredated a bear-hunting dog increases with the duration of bear-baiting, resulting in a relative risk of depredation 2.12–7.22× greater in Wisconsin than Michigan. The net effect of compensation for hunting dog depredation in Wisconsin may also contribute to the difference between states.

Conclusions/Significance

These results identified a potential tradeoff between bear hunting success and wolf/bear-hunting dog conflict. These results indicate that management options to minimize conflict exist, such as adjusting baiting regulations. If reducing depredations is an important goal, this analysis indicates that actions aside from (or in addition to) reducing wolf abundance might achieve that goal. This study also stresses the need to better understand the relationship among baiting practices, the effect of compensation on hunter behavior, and depredation occurrence.  相似文献   

6.

Background

In many areas, livestock are grazed within wolf (Canis lupus) range. Predation and harassment of livestock by wolves creates conflict and is a significant challenge for wolf conservation. Wild prey, such as elk (Cervus elaphus), perform anti-predator behaviors. Artificial selection of cattle (Bos taurus) might have resulted in attenuation or absence of anti-predator responses, or in erratic and inconsistent responses. Regardless, such responses might have implications on stress and fitness.

Methodology/Principal Findings

We compared elk and cattle anti-predator responses to wolves in southwest Alberta, Canada within home ranges and livestock pastures, respectively. We deployed satellite- and GPS-telemetry collars on wolves, elk, and cattle (n = 16, 10 and 78, respectively) and measured seven prey response variables during periods of wolf presence and absence (speed, path sinuosity, time spent head-up, distance to neighboring animals, terrain ruggedness, slope and distance to forest). During independent periods of wolf presence (n = 72), individual elk increased path sinuosity (Z = −2.720, P = 0.007) and used more rugged terrain (Z = −2.856, P = 0.004) and steeper slopes (Z = −3.065, P = 0.002). For cattle, individual as well as group behavioral analyses were feasible and these indicated increased path sinuosity (Z = −2.720, P = 0.007) and decreased distance to neighbors (Z = −2.551, P = 0.011). In addition, cattle groups showed a number of behavioral changes concomitant to wolf visits, with variable direction in changes.

Conclusions/Significance

Our results suggest both elk and cattle modify their behavior in relation to wolf presence, with potential energetic costs. Our study does not allow evaluating the efficacy of anti-predator behaviors, but indicates that artificial selection did not result in their absence in cattle. The costs of wolf predation on livestock are often compensated considering just the market value of the animal killed. However, society might consider refunding some additional costs (e.g., weight loss and reduced reproduction) that might be associated with the changes in cattle behaviors that we documented.  相似文献   

7.
Considered as absent throughout Scandinavia for >100 years, wolves (Canis lupus) have recently naturally recolonized south-central Sweden. This recolonization has provided an opportunity to study behavioral responses of moose (Alces alces) to wolves. We used satellite telemetry locations from collared moose and wolves to determine whether moose habitat use was affected by predation risk based on wolf use distributions. Moose habitat use was influenced by reproductive status and time of day and showed a different selection pattern between winter and summer, but there was weak evidence that moose habitat use depended on predation risk. The seemingly weak response may have several underlying explanations that are not mutually exclusive from the long term absence of non-human predation pressure: intensive harvest by humans during the last century is more important than wolf predation as an influence on moose behavior; moose have not adapted to recolonizing wolves; and responses may include other behavioral adaptations or occur at finer temporal and spatial levels than investigated.  相似文献   

8.
Hailer F  Leonard JA 《PloS one》2008,3(10):e3333

Background

Population densities of many species throughout the world are changing due to direct persecution as well as anthropogenic habitat modification. These changes may induce or increase the frequency of hybridization among taxa. If extensive, hybridization can threaten the genetic integrity or survival of endangered species. Three native species of the genus Canis, coyote (C. latrans), Mexican wolf (C. lupus baileyi) and red wolf (C. rufus), were historically sympatric in Texas, United States. Human impacts caused the latter two to go extinct in the wild, although they survived in captive breeding programs. Morphological data demonstrate historic reproductive isolation between all three taxa. While the red wolf population was impacted by introgressive hybridization with coyotes as it went extinct in the wild, the impact of hybridization on the Texas populations of the other species is not clear.

Methodology/ Principal Findings

We surveyed variation at maternally and paternally inherited genetic markers (mitochondrial control region sequence and Y chromosome microsatellites) in coyotes from Texas, Mexican wolves and red wolves from the captive breeding programs, and a reference population of coyotes from outside the historic red wolf range. Levels of variation and phylogenetic analyses suggest that hybridization has occasionally taken place between all three species, but that the impact on the coyote population is very small.

Conclusion/Significance

Our results demonstrate that the factors driving introgressive hybridization in sympatric Texan Canis are multiple and complex. Hybridization is not solely determined by body size or sex, and density-dependent effects do not fully explain the observed pattern either. No evidence of hybridization was identified in the Mexican wolf captive breeding program, but introgression appears to have had a greater impact on the captive red wolves.  相似文献   

9.

Background

Understanding how kill rates vary among seasons is required to understand predation by vertebrate species living in temperate climates. Unfortunately, kill rates are only rarely estimated during summer.

Methodology/Principal Findings

For several wolf packs in Yellowstone National Park, we used pairs of collared wolves living in the same pack and the double-count method to estimate the probability of attendance (PA) for an individual wolf at a carcass. PA quantifies an important aspect of social foraging behavior (i.e., the cohesiveness of foraging). We used PA to estimate summer kill rates for packs containing GPS-collared wolves between 2004 and 2009. Estimated rates of daily prey acquisition (edible biomass per wolf) decreased from 8.4±0.9 kg (mean ± SE) in May to 4.1±0.4 kg in July. Failure to account for PA would have resulted in underestimating kill rate by 32%. PA was 0.72±0.05 for large ungulate prey and 0.46±0.04 for small ungulate prey. To assess seasonal differences in social foraging behavior, we also evaluated PA during winter for VHF-collared wolves between 1997 and 2009. During winter, PA was 0.95±0.01. PA was not influenced by prey size but was influenced by wolf age and pack size.

Conclusions/Significance

Our results demonstrate that seasonal patterns in the foraging behavior of social carnivores have important implications for understanding their social behavior and estimating kill rates. Synthesizing our findings with previous insights suggests that there is important seasonal variation in how and why social carnivores live in groups. Our findings are also important for applications of GPS collars to estimate kill rates. Specifically, because the factors affecting the PA of social carnivores likely differ between seasons, kill rates estimated through GPS collars should account for seasonal differences in social foraging behavior.  相似文献   

10.
One foraging strategy that scavengers can employ to discover unpredictable food sources is to associate directly with predators who inadvertently provide food. The common raven, a well known feeding generalist, is also a prominent scavenger of wolves' kills and is found to be in close association with this predator. We tested the hypothesis that ravens preferentially associate with wolves in winter as a kleptoparasitic foraging strategy. The presence, absence and behaviour of ravens was documented during winter observations of wolves, coyotes, Canis latrans, and elk, Cervus elaphus, as well as the landscape in the absence of these three species. Ravens were found to be in close association with wolves when they were travelling, resting and hunting prey. In comparison, ravens showed no significant association with coyotes, elk or areas on the landscape in the absence of wolves. We also compared ravens' discovery success of wolf-killed and nonwolf-killed carcasses and their behavioural response upon discovery. Ravens found all wolf kills almost immediately and remained at the carcass to feed alongside wolves after the death of the prey. In contrast, ravens were less successful discovering experimentally placed carcasses in the same study region, and did not land or feed despite the availability of fresh, exposed meat. Our results show that ravens' association with wolves is not just an incidental and proximate by-product of the presence of fresh meat. Instead, we show that ravens preferentially associate with wolves in both the presence and absence of food, resulting in the discovery of carcasses and suppression of ravens' innate fear of novel food sources. Through this mode of social foraging, ravens may experience increased foraging efficiency in the use of an otherwise spatially and temporally unpredictable food source.Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved .  相似文献   

11.
In a predator–prey system, prey species may adapt to the presence of predators with behavioral changes such as increased vigilance, shifting habitats, or changes in their mobility. In North America, moose (Alces alces) have shown behavioral adaptations to presence of predators, but such antipredator behavioral responses have not yet been found in Scandinavian moose in response to the recolonization of wolves (Canis lupus). We studied travel speed and direction of movement of GPS‐collared female moose (n = 26) in relation to spatiotemporal differences in wolf predation risk, reproductive status, and time of year. Travel speed was highest during the calving (May–July) and postcalving (August–October) seasons and was lower for females with calves than females without calves. Similarly, time of year and reproductive status affected the direction of movement, as more concentrated movement was observed for females with calves at heel, during the calving season. We did not find support for that wolf predation risk was an important factor affecting moose travel speed or direction of movement. Likely causal factors for the weak effect of wolf predation risk on mobility of moose include high moose‐to‐wolf ratio and intensive hunter harvest of the moose population during the past century.  相似文献   

12.

Background

Many coastal species occupying the temperate rainforests of the Pacific Northwest in North America comprise endemic populations genetically and ecologically distinct from interior continental conspecifics. Morphological variation previously identified among wolf populations resulted in recognition of multiple subspecies of wolves in the Pacific Northwest. Recently, separate genetic studies have identified diverged populations of wolves in coastal British Columbia and coastal Southeast Alaska, providing support for hypotheses of distinct coastal subspecies. These two regions are geographically and ecologically contiguous, however, there is no comprehensive analysis across all wolf populations in this coastal rainforest.

Methodology/Principal Findings

By combining mitochondrial DNA datasets from throughout the Pacific Northwest, we examined the genetic relationship between coastal British Columbia and Southeast Alaska wolf populations and compared them with adjacent continental populations. Phylogenetic analysis indicates complete overlap in the genetic diversity of coastal British Columbia and Southeast Alaska wolves, but these populations are distinct from interior continental wolves. Analyses of molecular variation support the separation of all coastal wolves in a group divergent from continental populations, as predicted based on hypothesized subspecies designations. Two novel haplotypes also were uncovered in a newly assayed continental population of interior Alaska wolves.

Conclusions/Significance

We found evidence that coastal wolves endemic to these temperate rainforests are diverged from neighbouring, interior continental wolves; a finding that necessitates new international strategies associated with the management of this species.  相似文献   

13.

Background

Polar bears (Ursus maritimus) of the Beaufort Sea enter hyperphagia in spring and gain fat reserves to survive periods of low prey availability. We collected information on seals killed by polar bears (n = 650) and hunting attempts on ringed seal (Pusa hispida) lairs (n = 1396) observed from a helicopter during polar bear mark-recapture studies in the eastern Beaufort Sea in spring in 1985–2011. We investigated how temporal shifts in ringed seal reproduction affect kill composition and the intraspecific vulnerabilities of ringed seals to polar bear predation.

Principal Findings

Polar bears primarily preyed on ringed seals (90.2%) while bearded seals (Erignathus barbatus) only comprised 9.8% of the kills, but 33% of the biomass. Adults comprised 43.6% (150/344) of the ringed seals killed, while their pups comprised 38.4% (132/344). Juvenile ringed seals were killed at the lowest proportion, comprising 18.0% (62/344) of the ringed seal kills. The proportion of ringed seal pups was highest between 2007–2011, in association with high ringed seal productivity. Half of the adult ringed seal kills were ≥21 years (60/121), and kill rates of adults increased following the peak of parturition. Determination of sex from DNA revealed that polar bears killed adult male and adult female ringed seals equally (0.50, n = 78). The number of hunting attempts at ringed seal subnivean lair sites was positively correlated with the number of pup kills (r2 = 0.30, P = 0.04), but was not correlated with the number of adult kills (P = 0.37).

Conclusions/Significance

Results are consistent with decadal trends in ringed seal productivity, with low numbers of pups killed by polar bears in spring in years of low pup productivity, and conversely when pup productivity was high. Vulnerability of adult ringed seals to predation increased in relation to reproductive activities and age, but not gender.  相似文献   

14.
Where elevated harvest of ungulates is a priority, managers benefit by understanding how various sources of mortality affect the age and sex structure and trend of ungulate populations. Prior studies reported a long period (1997–2014) of moose (Alces alces gigas) nutritional stress from overabundance in our study area, an intentional 31% reduction in moose numbers using liberal harvests of females (2004–2012), and low bear (Ursus spp.) predation and high moose harvest densities relative to other largely roadless systems with moose, bears, and wolves (Canis lupus). In this paper, we detailed management findings after describing causes and rates of mortality from 226 female and 164 male moose radio-collared at 9 months of age (1997–2008) and followed through life (1997–2019) and throughout the population reduction. We listened for mortality signals on radio-collars 1–2 times/month when snow cover was complete and 2–4 times/month when snow cover was incomplete. Upon hearing a mortality signal, we investigated mortality sites usually within 24 hours via helicopter. Excluding hunter-caused mortality, we estimated 28% annual mortality for male yearlings versus 17% for female yearlings, then low annual mortality rates (0–4%) to 84 months of age for males and 96 months of age for females, and gradually increasing annual mortality rates thereafter. Most (83%) male moose ≥24 months of age died from hunters; minor causes included wolves (8%), malnutrition or disease (5%), grizzly bears (U. arctos; 2%), and accidents (2%). Most female moose ≥24 months of age died from wolves (37%) or hunters (33%); minor causes included malnutrition or disease (15%), grizzly bears (10%), and accidents (5%). The proportion of radio-collared females killed by hunters varied depending on numbers of permits issued to hunters; the kill rate of females ≥24 months of age was 58% during the initial 4 years of the 9-year reduction, moderated at 29% during the final 5 years of the reduction, and was only 7% for all other study years. We attributed 32% of hunter kills to illegal harvest and unrecovered hunter kills. Hunters played a key role in the intentional population reduction by harvesting prime-age and near prime-age male and female moose that rarely died from other sources of mortality compared with calf, yearling, and older moose. Restricting general season hunters to primarily harvesting prime-age and older male moose with antler spreads ≥127 cm did not appreciably reduce harvest of adult males. Male moose 2.0–5.3 years of age rarely died from non-hunter causes and were largely harvested at older, prime ages (5.3–8.3 yr of age). Yearling moose of both sexes died primarily from wolves, with wolves selecting more for males. By using liberal harvests of female moose to reduce the population, managers improved moose nutrition and reproduction, met mandates for elevated harvests, and may have avoided a reoccurrence of a previous precipitous decline in moose numbers that was initiated by overabundance and extreme snow depths. © 2019 The Wildlife Society.  相似文献   

15.

Background

Collision with electric power lines is a conservation problem for many bird species. Although the implementation of flight diverters is rapidly increasing, few well-designed studies supporting the effectiveness of this costly conservation measure have been published.

Methodology/Principal Findings

We provide information on the largest worldwide marking experiment to date, including carcass searches at 35 (15 experimental, 20 control) power lines totalling 72.5 km, at both transmission (220 kV) and distribution (15 kV–45 kV) lines. We found carcasses of 45 species, 19 of conservation concern. Numbers of carcasses found were corrected to account for carcass losses due to removal by scavengers or being overlooked by researchers, resulting in an estimated collision rate of 8.2 collisions per km per month. We observed a small (9.6%) but significant decrease in the number of casualties after line marking compared to before line marking in experimental lines. This was not observed in control lines. We found no influence of either marker size (large vs. small spirals, sample of distribution lines only) or power line type (transmission vs. distribution, sample of large spirals only) on the collision rate when we analyzed all species together. However, great bustard mortality was slightly lower when lines were marked with large spirals and in transmission lines after marking.

Conclusions

Our results confirm the overall effectiveness of wire marking as a way to reduce, but not eliminate, bird collisions with power lines. If raw field data are not corrected by carcass losses due to scavengers and missed observations, findings may be biased. The high cost of this conservation measure suggests a need for more studies to improve its application, including wire marking with non-visual devices. Our findings suggest that different species may respond differently to marking, implying that species-specific patterns should be explored, at least for species of conservation concern.  相似文献   

16.
In many temperate ecosystems animal carcasses resultant from wildlife harvest can provide a high-quality food source for myriad facultative scavengers. We investigated scavenger use of human-provisioned ungulate carrion from a fall moose (Alces alces) hunt during 2010 and 2011 on the Gustavus Forelands, Alaska, USA. Using data from remote cameras, we (1) identified the scavenger species that used these resources and (2) evaluated their spatial and temporal responses to this seasonal resource event by indexing their activity patterns and relative order of arrival at carrion sites. We also quantified the length of time carrion persisted and estimated the amount of moose biomass provisioned to vertebrate scavengers by human hunters. Our results indicated that 11 vertebrate species (five birds and six mammals) scavenged moose carrion. We found that the common raven was the only species documented at all carrion sites and the most abundant species at moose carrion sites. As a species group, corvids [black-billed magpie (Pica hudsonia), common raven (Corvus corax); 0.1 ± 2.3 days] were the first to arrive at human-provisioned moose carrion sites, whereas ursids [brown bear (Ursus arctos), black bear (U. americanus); 1.3 ± 1.0 days] arrived after corvids but sooner than expected and canids [gray wolf (Canis lupus), coyote (C. latrans); 3.9 ± 3.0] arrived later than expected compared to our null model. On average, carrion persisted >20 days and hunters provided scavengers with a minimum of 2720 kg (82.7 kg/km2) and 1815 kg (64.8 kg/km2) of moose carrion during 2010 and 2011, respectively. Understanding how scavengers, particularly large carnivores, interact with human-provisioned moose carrion at the rural–wildland interface is essential for mitigating potential human–wildlife conflicts associated with humans subsidizing predators with a high-quality food resource.  相似文献   

17.
We examined chase distances of gray wolves Canis lupus Linnaeus, 1758 hunting moose Alces alces and roe deer Capreolus capreolus, and recorded details of encounters between wolves and prey on the Scandinavian Peninsula, 1997–2003. In total, 252 wolf attacks on moose and 64 attacks on roe deer were registered during 4200 km of snow tracking in 28 wolf territories. Average chase distances were 76 m for moose and 237 m for roe deer, a difference likely due to variation in body size and vigilance between prey species. A model including prey species, outcome of the attack, and snow depth explained 15–19% of the variation found in chase distances, with shorter chase distances associated with greater snow depth and with successful attacks on moose but not on roe deer. Wolf hunting success did not differ between prey species (moose 43%, roe deer 47%) but in 11% of the wolf attacks on moose at least one moose was injured but not killed, whereas no injured roe deer survived. Compared with most North American wolf studies chase distances were shorter, hunting success was greater, and fewer moose made a stand when attacked by wolves in our study. Differences in wolf encounters with moose and roe deer likely result from different anti-predator behaviour and predator-prey history between prey species.  相似文献   

18.

Background

Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose.

Methodology/Principal Findings

Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer.

Conclusions/Significance

This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance are likely contributory factors. Climate-related effects on animal behaviour, and subsequently fitness, are expected to intensify as global warming continues.  相似文献   

19.

Background

Although a variety of genetic changes have been implicated in causing phenotypic differences among dogs, the role of copy number variants (CNVs) and their impact on phenotypic variation is still poorly understood. Further, very limited knowledge exists on structural variation in the gray wolf, the ancestor of the dog, or other closely related wild canids. Documenting CNVs variation in wild canids is essential to identify ancestral states and variation that may have appeared after domestication.

Results

In this work, we genotyped 1,611 dog CNVs in 23 wolf-like canids (4 purebred dogs, one dingo, 15 gray wolves, one red wolf, one coyote and one golden jackal) to identify CNVs that may have arisen after domestication. We have found an increase in GC-rich regions close to the breakpoints and around 1 kb away from them suggesting that some common motifs might be associated with the formation of CNVs. Among the CNV regions that showed the largest differentiation between dogs and wild canids we found 12 genes, nine of which are related to two known functions associated with dog domestication; growth (PDE4D, CRTC3 and NEB) and neurological function (PDE4D, EML5, ZNF500, SLC6A11, ELAVL2, RGS7 and CTSB).

Conclusions

Our results provide insight into the evolution of structural variation in canines, where recombination is not regulated by PRDM9 due to the inactivation of this gene. We also identified genes within the most differentiated CNV regions between dogs and wolves, which could reflect selection during the domestication process.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-465) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

Gray wolves (Canis lupus) were reintroduced into Yellowstone National Park (YNP) after a >70 year absence, and as part of recovery efforts, the population has been closely monitored. In 1999 and 2005, pup survival was significantly reduced, suggestive of disease outbreaks.

Methodology/Principal Findings

We analyzed sympatric wolf, coyote (Canis latrans), and red fox (Vulpes vulpes) serologic data from YNP, spanning 1991–2007, to identify long-term patterns of pathogen exposure, identify associated risk factors, and examine evidence for disease-induced mortality among wolves for which there were survival data. We found high, constant exposure to canine parvovirus (wolf seroprevalence: 100%; coyote: 94%), canine adenovirus-1 (wolf pups [0.5–0.9 yr]: 91%, adults [≥1 yr]: 96%; coyote juveniles [0.5–1.5 yrs]: 18%, adults [≥1.6 yrs]: 83%), and canine herpesvirus (wolf: 87%; coyote juveniles: 23%, young adults [1.6–4.9 yrs]: 51%, old adults [≥5 yrs]: 87%) suggesting that these pathogens were enzootic within YNP wolves and coyotes. An average of 50% of wolves exhibited exposure to the protozoan parasite, Neospora caninum, although individuals’ odds of exposure tended to increase with age and was temporally variable. Wolf, coyote, and fox exposure to canine distemper virus (CDV) was temporally variable, with evidence for distinct multi-host outbreaks in 1999 and 2005, and perhaps a smaller, isolated outbreak among wolves in the interior of YNP in 2002. The years of high wolf-pup mortality in 1999 and 2005 in the northern region of the park were correlated with peaks in CDV seroprevalence, suggesting that CDV contributed to the observed mortality.

Conclusions/Significance

Of the pathogens we examined, none appear to jeopardize the long-term population of canids in YNP. However, CDV appears capable of causing short-term population declines. Additional information on how and where CDV is maintained and the frequency with which future epizootics might be expected might be useful for future management of the Northern Rocky Mountain wolf population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号