首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In this work we investigated the between-colony spatial, behavioural and trophic segregation of two sub-populations of the elusive Macaronesian shearwaters Puffinus baroli breeding only ~340 km apart in Cima Islet (Porto Santo Island) and Selvagem Grande Island. Global location sensing (gls) loggers were used in combination with the trophic ecology of tracked individuals, inferred from the isotopic signatures of wing feathers. Results suggest that these two Macaronesian shearwater sub-populations do segregate during the non-breeding period in some ‘sub-population-specific’ regions, by responding to different oceanographic characteristics (habitat modelling). Within these disparate areas, both sub-populations behave differently (at-sea activity) and prey on disparate trophic niches (stable isotope analysis). One hypothesis would be that each sub-population have evolved and adapted to feed on particular and ‘sub-population-specific’ resources, and the segregation observed at the three different levels (spatial, behavioural and trophic) might be in fact a result of such adaptation, from the emergence of ‘cultural foraging patterns’. Finally, when comparing to the results of former studies reporting on the spatial, behavioural and trophic choices of Macaronesian shearwater populations breeding on Azores and Canary Islands, we realized the high ecological plasticity of this species inhabiting and foraging over the North-East Atlantic Ocean.  相似文献   

2.
The impact of predation on prey populations has long been a focus of ecologists, but a firm understanding of the factors influencing prey selection, a key predictor of that impact, remains elusive. High levels of variability observed in prey selection may reflect true differences in the ecology of different communities but might also reflect a failure to deal adequately with uncertainties in the underlying data. Indeed, our review showed that less than 10% of studies of European wolf predation accounted for sampling uncertainty. Here, we relate annual variability in wolf diet to prey availability and examine temporal patterns in prey selection; in particular, we identify how considering uncertainty alters conclusions regarding prey selection.Over nine years, we collected 1,974 wolf scats and conducted drive censuses of ungulates in Alpe di Catenaia, Italy. We bootstrapped scat and census data within years to construct confidence intervals around estimates of prey use, availability and selection. Wolf diet was dominated by boar (61.5±3.90 [SE] % of biomass eaten) and roe deer (33.7±3.61%). Temporal patterns of prey densities revealed that the proportion of roe deer in wolf diet peaked when boar densities were low, not when roe deer densities were highest. Considering only the two dominant prey types, Manly''s standardized selection index using all data across years indicated selection for boar (mean = 0.73±0.023). However, sampling error resulted in wide confidence intervals around estimates of prey selection. Thus, despite considerable variation in yearly estimates, confidence intervals for all years overlapped. Failing to consider such uncertainty could lead erroneously to the assumption of differences in prey selection among years. This study highlights the importance of considering temporal variation in relative prey availability and accounting for sampling uncertainty when interpreting the results of dietary studies.  相似文献   

3.
Moseby  K. E.  Crowther  M. S.  Letnic  M. 《Ecosystems》2019,22(2):283-295
Ecosystems - Recent studies suggest that apex predators play a pivotal role in maintaining healthy, balanced ecosystems. However, a criticism of studies investigating the ecological role of apex...  相似文献   

4.
In studies of habitat suitability at landscape scales, transferability of species-landscape associations among sites are likely to be critical because it is often impractical to collect datasets across various regions. However, limiting factors, such as prey availability, are not likely to be constant across scales because of the differences in species pools. This is particularly true for top predators that are often the target for conservation concern. Here we focus on gray-faced buzzards, apex predators of farmland-dominated landscapes in East Asia. We investigated context dependency of “buzzard-landscape relationship”, using nest location datasets from five sites, each differing in landscape composition. Based on the similarities of prey items and landscape compositions across the sites, we determined several alternative ways of grouping the sites, and then examined whether buzzard-landscape relationship change among groups, which was conducted separately for each way of grouping. As a result, the model of study-sites grouping based on similarities in prey items showed the smallest ΔAICc. Because the terms of interaction between group IDs and areas of broad-leaved forests and grasslands were selected, buzzard-landscape relationship showed a context dependency, i.e., these two landscape elements strengthen the relationship in southern region. The difference in prey fauna, which is associated with the difference in climate, might generate regional differences in the buzzard-landscape associations.  相似文献   

5.
Monitoring the bioaccumulation of chemical elements within various organismal tissues has become a useful tool to survey current or chronic levels of heavy metal exposure within an environment. In this study, we compared the bioaccumulations of As, Cd, Cu, Fe, Pb, Se, and Zn between the American alligator, Alligator mississippiensis, and its parasites in order to establish their use as bioindicators of heavy metal pollution. Concomitant with these results, we were interested to determine if parasites were more sensitive bioindicators of heavy metals relative to alligators. We found parasites collectively accumulated higher levels of As, Cu, Se, and Zn in comparison to their alligator hosts, whereas Fe, Cd, and Pb concentrations were higher in alligators. Interestingly, Fe levels were significantly greater in intestinal trematodes than their alligator hosts when analyzed independently from other parasitic taxa. Further analyses showed alligator intestinal trematodes concentrated As, Cu, Fe, Se, and Zn at significantly higher levels than intestinal nematodes and parasites from other organs. However, pentastomids also employed the role as a good biomagnifier of As. Interestingly, parasitic abundance decreased as levels of As increased. Stomach and intestinal nematodes were the poorest bioaccumulators of metals, yet stomach nematodes showed their ability to concentrate Pb at orders of magnitude higher in comparison to other parasites. Conclusively, we suggest that parasites, particularly intestinal trematodes, are superior biomagnifiers of As, Cu, Se, and Zn, whereas alligators are likely good biological indicators of Fe, Cd, and Pb levels within the environment.  相似文献   

6.
Scavenging of anthrax carcasses has long been hypothesized to play a critical role in the production of the infectious spore stage of Bacillus anthracis after host death, though empirical studies assessing this are lacking. We compared B. anthracis spore production, distribution, and survival at naturally occurring anthrax herbivore carcasses that were either experimentally caged to exclude vertebrate scavengers or left unmanipulated. We found no significant effect of scavengers on soil spore density (P > 0.05). Soil stained with terminally hemorrhaged blood and with nonhemorrhagic fluids exhibited high levels of B. anthracis spore contamination (ranging from 103 to 108 spores/g), even in the absence of vertebrate scavengers. At most of the carcass sites, we also found that spore density in samples taken from hemorrhagic-fluid-stained soil continued to increase for >4 days after host death. We conclude that scavenging by vertebrates is not a critical factor in the life cycle of B. anthracis and that anthrax control measures relying on deterrence or exclusion of vertebrate scavengers to prevent sporulation are unlikely to be effective.  相似文献   

7.
Scavenging, a result of a temporary pulse of resources, occurs in virtually all ecosystems containing carnivores, and is an important energy transfer pathway that can impact ecosystem structure and function, and this ecological significance has largely been considered from a terrestrial standpoint; however, little is known about the role of scavenging in shaping the behavioral ecology of marine species, specifically apex predators. Here we present findings from multiple opportunistic observations of white sharks scavenging on whale carcasses in False Bay, South Africa. Observations of white sharks scavenging over successive days provided evidence of strategic and selective scavenging by this species. Moreover, extended daily observations permitted recordings of unique social, aggregative, and feeding behaviors. We further compare these data against observations of natural predation by sharks on seals in the study area. We discuss these data in relation to environmental conditions, shark social interactions, migration patterns, whale biology, and behaviorally-mediated trophic cascades. While the appearance of a whale carcass is largely a stochastic event, we propose that white shark scavenging on whales may represent an underestimated, yet significant component to the overall foraging ecology of this species, especially as individuals attain sexual maturity.  相似文献   

8.
Biologists routinely use molecular markers to identify conservation units, to quantify genetic connectivity, to estimate population sizes, and to identify targets of selection. Many imperiled eagle populations require such efforts and would benefit from enhanced genomic resources. We sequenced, assembled, and annotated the first eagle genome using DNA from a male golden eagle (Aquila chrysaetos) captured in western North America. We constructed genomic libraries that were sequenced using Illumina technology and assembled the high-quality data to a depth of ∼40x coverage. The genome assembly includes 2,552 scaffolds >10 Kb and 415 scaffolds >1.2 Mb. We annotated 16,571 genes that are involved in myriad biological processes, including such disparate traits as beak formation and color vision. We also identified repetitive regions spanning 92 Mb (∼6% of the assembly), including LINES, SINES, LTR-RTs and DNA transposons. The mitochondrial genome encompasses 17,332 bp and is ∼91% identical to the Mountain Hawk-Eagle (Nisaetus nipalensis). Finally, the data reveal that several anonymous microsatellites commonly used for population studies are embedded within protein-coding genes and thus may not have evolved in a neutral fashion. Because the genome sequence includes ∼800,000 novel polymorphisms, markers can now be chosen based on their proximity to functional genes involved in migration, carnivory, and other biological processes.  相似文献   

9.
There has long been debate regarding the primacy of bottom-up and top-down effects as factors shaping ecosystems. The exploitation ecosystems hypothesis (EEH) predicts that predators indirectly benefit plants because their top-down effects limit herbivores’ consumption of plants, and that the strength of trophic cascade increases with increasing primary productivity. However, in arid environments, pulses of primary productivity produced by irregular rainfall events could decouple herbivore–plant and predator–prey dynamics if high conversion efficiency from seed biomass to consumers allows the rapid build-up of consumer populations. Here, we test predictions of the EEH in an arid environment. We measured activity/abundances of dingoes, red kangaroos and grasses, and diet of dingoes, in landscapes where dingoes were culled or not culled over 3 years. Dingo activity was correlated with rainfall, and their tracks were less frequent at culled sites. Kangaroo abundance was greater at sites where dingoes were culled and increased with rainfall in the previous 6 months. Grass cover was greater at sites where dingoes were not culled and increased with rainfall in the previous 3 months. During a period of average rainfall, dingoes primarily consumed rodents and increased their consumption of kangaroos during a period of drier conditions. Our results are consistent with the hypothesis that suppression of an apex predator triggers a trophic cascade, but are at odds with the EEH’s prediction that the magnitude of trophic cascades should increase with primary productivity. Our study demonstrates that temporal fluctuations in primary productivity can have effects on biomasses of plants and consumers which are in many ways analogous to those observed along spatial gradients of primary productivity.  相似文献   

10.
Golden hamsters (Mesocricetus auratus) use olfactory cues to assess traits of conspecifics such as kinship, individual identity, and reproductive status. The environment, however, is full of a wide variety of other olfactory information such as signals emitted by some of the hamster’s primary predators. Given this, we hypothesized that hamsters use odors from predators as an indirect sign of increased predation risk in the environment. In addition, based on data that show that wild hamsters are diurnal while laboratory hamsters are nocturnal, we hypothesized that if golden hamsters did respond to the predator odors, perceived predator risk might influence daily activity patterns in hamsters. We tested male and female hamsters over 5 d with scent gland secretion from domestic ferrets (Mustela putorius furo) and compared their behavior to that observed when they were exposed to a clean arena. In response to the predator odor, subjects significantly decreased the amount of time active outside of their burrow, returned to their burrow more quickly, and spent less time near the predator odor than the clean control stimulus. These results strongly support our hypothesis that hamsters, like other species of small mammals, avoid predator odors. The results did not, however, support our second hypothesis that exposure to predator odors during the dark phase of the light cycle would elicit a switch to a more diurnal pattern of activity. More work is needed to understand how environmental cues and internal mechanisms interact to shape activity patterns.  相似文献   

11.
To effectively balance investment in predator defenses versus other traits, organisms must accurately assess predation risk. Chemical cues caused by predation events are indicators of risk for prey in a wide variety of systems, but the relationship between how prey perceive risk in relation to the amount of prey consumed by predators is poorly understood. While per capita predation rate is often used as the metric of relative risk, studies aimed at quantifying predator-induced defenses commonly control biomass of prey consumed as the metric of risk. However, biomass consumed can change by altering either the number or size of prey consumed. In this study we determine whether phenotypic plasticity to predator chemical cues depends upon prey biomass consumed, prey number consumed, or both. We examine the growth response of red-eyed treefrog tadpoles (Agalychnis callidryas) to cues from a larval dragonfly (Anax amazili). Biomass consumed was manipulated by either increasing the number of prey while holding individual prey size constant, or by holding the number of prey constant and varying individual prey size. We address two questions. (i) Do prey reduce growth rate in response to chemical cues in a dose dependent manner? (ii) Does the magnitude of the response depend on whether prey consumption increases via number or size of prey? We find that the phenotypic response of prey is an asymptotic function of prey biomass consumed. However, the asymptotic response is higher when more prey are consumed. Our findings have important implications for evaluating past studies and how future experiments should be designed. A stronger response to predation cues generated by more individual prey deaths is consistent with models that predict prey sensitivity to per capita risk, providing a more direct link between empirical and theoretical studies which are often focused on changes in population sizes not individual biomass.  相似文献   

12.
Abundant, localized foods can concentrate predators and their foraging efforts, thus altering both the spatial distribution of predation risk and predator preferences for prey that are encountered incidentally. However, few investigations have quantified the spatial scale over which localized foods affect predator foraging behavior and consumption of incidental prey. In spring 2010, we experimentally tested how point-source foods altered how generalist predators (white-footed mice, Peromyscus leucopus) utilized space and depredated two incidental prey items: almonds (Prunus dulcis; highly profitable) and maple seeds (Acer saccharum; less profitable). We estimated mouse population densities with trapping webs, quantified mouse consumption rates of these incidental prey items, and measured local mouse activity with track plates. We predicted that 1) mouse activity would be elevated near full feeders, but depressed at intermediate distances from the feeder, 2) consumption of both incidental prey would be high near feeders providing less-preferred food and, 3) consumption of incidental prey would be contingent on predator preference for prey relative to feeders providing more-preferred food. Mouse densities increased significantly from pre- to post-experiment. Mean mouse activity was unexpectedly greatest in control treatments, particularly <15 m from the control (empty) feeder. Feeders with highly preferred food (sunflower seeds) created localized refuges for incidental prey at intermediate distances (15 to 25m) from the feeder. Feeders with less-preferred food (corn) generated localized high risk for highly preferred almonds <10 m of the feeder. Our findings highlight the contingent but predictable effects of locally abundant food on risk experienced by incidental prey, which can be positive or negative depending on both spatial proximity and relative preference.  相似文献   

13.
The polymorphonuclear leukocyte secretes both O2-and H2O2 when stimulated by various soluble or particulate stimuli. Since a rcaction involving iron, O2-, and H2O2 could generate the hydroxyl radical (HO.) there has been speculation that the HO-may participate in the bactericidal activity of the neutroph-il. A variety of water-soluble HO. scavengers have been used to test for the participation of HO. and the results imply that HO. might participate. However, other workers have not been able to detect the formation of significant amounts of HO-by the activated neutrophil. We have examined the effect of several commonly used HO. radical scavengers on the ability of the neutrophil to secrete O2-and H2O2. Several of these compounds actively inhibit secretion without affecting the viability of the neutrophil. After considering the various complications inherent in using water soluble radical scavengers, we suggest that they only be used with well defined experimental systems.  相似文献   

14.
ABSTRACT Reduced to small isolated groups by anthropogenic habitat losses or habitat modifications, populations of many endangered species are sensitive to additive sources of mortality, such as predation. Predator control is often one of the first measures considered when predators threaten survival of a population. Unfortunately, predator ecology is often overlooked because relevant data are difficult to obtain. For example, the endangered Gaspésie caribou (Rangifer tarandus caribou) has benefited from 2 periods of predator control that targeted black bears (Ursus americanus) and coyotes (Canis latrans) in an attempt to reduce predation on caribou calves. Despite a high trapping effort, the number of predators removed has remained stable over time. To assess impact of predator movements on efficacy of a control program, we studied space use of 24 black bears and 16 coyotes over 3 years in and around the Gaspésie Conservation Park, Quebec, Canada, using Global Positioning System radiocollars. Annual home ranges of black bears averaged 260 km2 and 10 individuals frequented area used by caribou. Annual home ranges of resident coyotes averaged 121 km2, whereas dispersing coyotes covered >2,600 km2. Coyotes were generally located at lower altitudes than caribou. However, because coyotes undertook long-distance excursions, they overlapped areas used by caribou. Simulations based on observed patterns showed that 314 bears and 102 coyotes potentially shared part of their home range with areas used by female caribou during the calving period. Despite low densities of both predator species, extensive movement and use of nonexclusive territories seem to allow predators to rapidly occupy removal areas, demonstrating the need for recurrent predator removals. Our results underscore the necessity of considering complementary and alternative solutions to predator control to assure long-term protection of endangered species.  相似文献   

15.
We conducted a field experiment to determine the extent to which interference among generalist predators limits their effectiveness as biocontrol agents. We manipulated immigration of a guild of actively hunting generalist ground predators, carabid beetles and lycosid spiders, by intercepting them as they attempted to enter fenced 50-m2 vegetable gardens. Immigration was blocked, allowed at the mean rate measured at our field site, or doubled. Altered immigration rates were maintained through a spring garden of cabbage, bean, eggplant, and cucumber, followed by a summer garden of squash. We monitored densities of carabids and lycosids to discover if altering their immigration rate changed their densities in the plots. We also measured densities of other predators on the ground and in plant foliage, pest numbers, and vegetable yields. Doubling the immigration rate of carabids and lycosids approximately doubled the densities of carabids inside the plots, but did not increase lycosid densities. Increasing the rate of immigration of carabids and lycosids depressed densities of nonlycosid ground spiders. In the spring gardens, manipulation of carabid and lycosid immigration did not influence numbers of predators or herbivores in the foliage and did not affect vegetable productivity. In contrast, in the summer gardens, foliage-dwelling predators were lower, pest densities were marginally lower, and squash productivity was higher in the carabid and lycosid immigration plots compared to the no-immigration treatment. Doubling carabid and lycosid immigration rate never increased the magnitude of their effects on other predators, pests, or plant productivity. Predator interference limited lycosid establishment, reduced densities of other predator taxa, and apparently prevented a doubling of carabid densities from having an increased impact on pest numbers. Nevertheless, despite widespread effects of predator interference, allowing immigration of lycosids and carabids increased squash productivity.  相似文献   

16.
Large-bodied, top- and apex predators (e.g., crocodilians, sharks, wolves, killer whales) can exert strong top-down effects within ecological communities through their interactions with prey. Due to inherent difficulties while studying the behavior of these often dangerous predatory species, relatively little is known regarding their feeding behaviors and activity patterns, information that is essential to understanding their role in regulating food web dynamics and ecological processes. Here we use animal-borne imaging systems (Crittercam) to study the foraging behavior and activity patterns of a cryptic, large-bodied predator, the American alligator (Alligator mississippiensis) in two estuaries of coastal Florida, USA. Using retrieved video data we examine the variation in foraging behaviors and activity patterns due to abiotic factors. We found the frequency of prey-attacks (mean = 0.49 prey attacks/hour) as well as the probability of prey-capture success (mean = 0.52 per attack) were significantly affected by time of day. Alligators attempted to capture prey most frequently during the night. Probability of prey-capture success per attack was highest during morning hours and sequentially lower during day, night, and sunset, respectively. Position in the water column also significantly affected prey-capture success, as individuals’ experienced two-fold greater success when attacking prey while submerged. These estimates are the first for wild adult American alligators and one of the few examples for any crocodilian species worldwide. More broadly, these results reveal that our understandings of crocodilian foraging behaviors are biased due to previous studies containing limited observations of cryptic and nocturnal foraging interactions. Our results can be used to inform greater understanding regarding the top-down effects of American alligators in estuarine food webs. Additionally, our results highlight the importance and power of using animal-borne imaging when studying the behavior of elusive large-bodied, apex predators, as it provides critical insights into their trophic and behavioral interactions.  相似文献   

17.
Animals can attempt to reduce uncertainty about their environment by gathering information personally or by observing others' interactions with the environment. There are several sensory modalities that can be used to transmit social information from chemical to visual to audible cues. When predation risk is variable, visual cues of conspecific behavior might be especially telling about the presence of a potential threat; however, most studies couple visual and chemical cues together. Here, we tested whether visual behavioral cues from frightened conspecifics were sufficient to indirectly transfer information about the presence of an unseen predator in three‐spined sticklebacks. Our results demonstrate that visual behavioral cues from conspecifics about the presence of a predator are sufficient to induce an antipredator response. This suggests that information transfer can occur rapidly in the absence of chemical cues and that some individuals weigh social information more heavily than others.  相似文献   

18.
We tested the hypothesis that the carcasses of anadromous Pacific salmon (Oncorhynchus spp.) constitute a significant source of nutrients in the nutrient-poor freshwaters where these fish migrate, spawn, senesce, and die. In a 110 m-long stream reach in Southeast Alaska, we retained nearly 3000 salmon carcasses and compared streamwater nitrogen (N), phosphorus (P), and the biomass of benthic biofilm in this reach with an upstream reference reach. The study spanned 5 months, bracketed the entire salmon run, and encompassed significant seasonal variation in abiotic stream conditions. Concentrations of dissolved and particulate N and P followed distinctly unimodal patterns through time, which tracked the abundance of live salmon, and we observed strong predictive relationships between live-salmon abundance and streamwater-nutrient concentrations. In contrast, we did not observe clear relationships between salmon carcasses and streamwater nutrients. Biofilm biomass within our study reaches seemed to more closely track the abundance of live salmon than the abundance of carcasses. The experimental retention of carcasses had a minor or undetectable influence on nutrient concentrations and biofilm within the study reach as compared to the reference reach. We conclude that physical factors such as temperature, discharge, nutrient limitation, and irradiance vary seasonally in ways that maximize the influence of nutrients provisioned by live salmon and minimize the influence of carcass-derived nutrients on the aspects of stream ecosystems that we examined. Overall, our results promote a new perspective on the ecological role of salmon in freshwaters, and contribute to a more mechanistic understanding of how migratory fishes can influence aquatic ecosystems.  相似文献   

19.
A soluble auxin-binding protein was purified from the shootapices of peach trees by chromatography on columns of CM-Toyopearl,Sephacryl S-200, 2,4-D-linked-Sepharose 4B and ConA-Sepharose.The molecular mass of the purified protein was estimated tobe about 100 kDa. After electrophoresis on a denaturing gel,the protein gave a single band with a molecular mass of 20 kDa.From Scatchard analyses, the dissociation constant for 2,4-Dwas calculated to be 4.1 10–5 M and the specific bindingof 2,4-D at saturating concentration was 42 nmol (mg protein)–1.The binding of [14C]-2,4-D to the protein was reversible andwas inhibited by IAA, 1-naphthylacetic acid and p-chlorophenoxyisobutyricacid. (Received June 25, 1992; Accepted October 20, 1992)  相似文献   

20.
Several characteristics of habitats of herbivores and their food-plant communities, such as plant-species composition and plant quality, influence population genetics of both herbivores and their host plants. We investigated how different ecological and geographic factors affect genetic variation in and differentiation of 23 populations of the oligophagous seed predator Lygaeus equestris (Heteroptera) in southwestern Finland and in eastern Sweden. We tested whether genetic differentiation of the L. equestris populations was related to the similarity of vegetation, and whether there was more within-population genetic variation in habitats with a high number of plant species or in those with a large population of the primary food plant, Vincetoxicum hirundinaria. We also tested whether genetic differentiation of the populations was related to the geographic distance, and whether location of the populations on islands or on mainland, island size, or population size affected within-population genetic variation. Pairwise FST ranged from 0 to 0.1 indicating low to moderate genetic differentiation of populations. Differentiation increased with geographic distance between the populations, but was not related to the similarity of vegetation between the habitats. Genetic variation within the L. equestris populations did not increase with the population size of the primary food plant. However, the more diverse the plant community the higher was the level of genetic variation within the L. equestris population. Furthermore, the level of genetic variation did not vary significantly between island and mainland populations. The effect of the population size on within-population genetic variation was related to island size. Usually small populations are susceptible to loss of genetic variation, but small L. equestris populations on large islands seemed to maintain a relatively high level of within-population genetic variation. Our findings suggest that, in addition to geographic and species-specific ecological factors, the plant community affects population genetic structure of oligophagous herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号