首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
原子力显微技术在细胞生物学中的应用   总被引:2,自引:0,他引:2  
对近年来原子力显微技术(AFM)在细胞生物学中的应用大致归纳为几个方面进行了简单介绍,还指出了细胞表面结构难于识别、细胞内部结构难以原位观察等AFM应用于细胞生物学中的难题,并提出了“形状探针”的概念以及超薄切片的思路以解决这些难题。AFM在细胞生物学中的应用研究还远远不足,需要更多的科学工作者加入其中。  相似文献   

2.
利用原子力显微镜( AFM )观察超薄切片的表面,探索表面形貌与切片厚度、朝向等因素的关系以及对图像反差的影响 . 选择三种不同类型的细胞,培养后按电镜超薄切片法固定、包埋并切片后,将不同厚度的切片区分上下表面转移到云母上, AFM 在空气中以接触模式进行观察 . 结果发现,切片表面细胞相对包埋介质的凸起与凹陷与切片本身的厚度密切相关,并随切片厚度的不同呈现有规律的变化 . 实验统计结果显示这种现象可能具有普遍性 .  相似文献   

3.
The atomic force microscope (AFM) is broadly used to study the morphology of cells. The morphological characteristics and differences of the cell membrane between normal human astrocytes and glial tumor cells are not well explored. Following treatment with cold atmospheric plasma, evaluation of the selective effect of plasma on cell viability of tumor cells is poorly understood and requires further evaluation. Using AFM we imaged morphology of glial cells before and after cold atmospheric plasma treatment. To look more closely at the effect of plasma on cell membrane, high resolution imaging was used. We report the differences between normal human astrocytes and human glioblastoma cells by considering the membrane surface details. Our data, obtained for the first time on these cells using atomic force microscopy, argue for an architectural feature on the cell membrane, i.e. brush layers, different in normal human astrocytes as compared to glioblastoma cells. The brush layer disappears from the cell membrane surface of normal E6/E7 cells and is maintained in the glioblastoma U87 cells after plasma treatment.  相似文献   

4.
Paired helical filaments (PHF) is an aberrant structure present in the brain of Alzheimer's disease patients which has been correlated with their degree of dementia. In order to determine the structure of PHF, several studies have been performed using atomic force microscopy (AFM). However, those studies have the limitation that they have not been done in solution and the sample could be far from the real physiological conditions. In this work we present an AFM analysis of PHF in liquid environment and we compare that analysis with that performed in dry conditions. PHF imaging in liquid was only possible by using jumping mode AFM as the imaging technique. Jumping mode AFM images of PHF in solution show first, a notable increase in the absolute values of the height of the filament, and second, a smaller ratio between the height measured at the upper and at the lower part of the PHF. Direct comparison of the experimental data with structural models has been performed. From this we conclude that the PHF structure is compatible with two coupled ribbons with an overall height of 20 nm and a width of 10 nm.  相似文献   

5.
The structural integrity of striated muscle is determined by extra-sarcomere cytoskeleton that includes structures that connect the Z-disks and M-bands of a sarcomere to sarcomeres of neighbor myofibrils or to sarcolemma. Mechanical properties of these structures are not well characterized. The surface structure and transversal stiffness of single fibers from soleus muscle of the rat were studied with atomic force microscopy in liquid. We identified surface regions that correspond to projections of the Z-disks, M-bands, and structures between them. Transversal stiffness of the fibers was measured in each of these three regions. The stiffness was higher in the Z-disk regions, minimal between the Z-disks and the M-bands, and intermediate in the M-band regions. The stiffness increased twofold when relaxed fibers were maximally activated with calcium and threefold when they were transferred to rigor (ATP-free) solution. Transversal stiffness of fibers heavily treated with Triton X-100 was about twice higher than that of the permeabilized ones, however, its regional difference and the dependence on physiological state of the fiber remained the same. The data may be useful for understanding mechanics of muscle fibers when it is subjected to both axial and transversal strain and stress.  相似文献   

6.
Previous studies have described both surface morphology and adhesive properties of fungal spores, but little information is currently available on their mechanical properties. In this study, atomic force microscopy (AFM) was used to investigate both surface topography and micromechanical properties of Aspergillus nidulans spores. To assess the influence of proteins covering the spore surface, wild-type spores were compared with spores from isogenic rodA+ and rodA strains. Tapping-mode AFM images of wild-type and rodA+ spores in air showed characteristic “rodlet” protein structures covering a granular spore surface. In comparison, rodA spores were rodlet free but showed a granular surface structure similar to that of the wild-type and rodA+ spores. Rodlets were removed from rodA+ spores by sonication, uncovering the underlying granular layer. Both rodlet-covered and rodlet-free spores were subjected to nanoindentation measurements, conducted in air, which showed the stiffnesses to be 110 ± 10, 120 ± 10, and 300 ± 20 N/m and the elastic moduli to be 6.6 ± 0.4, 7.0 ± 0.7, and 22 ± 2 GPa for wild-type, rodA+ and rodA spores, respectively. These results imply the rodlet layer is significantly softer than the underlying portion of the cell wall.  相似文献   

7.
Active cell migration and invasion is a peculiar feature of glioma that makes this tumor able to rapidly infiltrate into the surrounding brain tissue. In our recent work, we identified a novel class of glioma-associated-stem cells (defined as GASC for high-grade glioma -HG- and Gasc for low-grade glioma -LG-) that, although not tumorigenic, act supporting the biological aggressiveness of glioma-initiating stem cells (defined as GSC for HG and Gsc for LG) favoring also their motility. Migrating cancer cells undergo considerable molecular and cellular changes by remodeling their cytoskeleton and cell interactions with surrounding environment. To get a better understanding about the role of the glioma-associated-stem cells in tumor progression, cell deformability and interactions between glioma-initiating stem cells and glioma-associated-stem cells were investigated. Adhesion of HG/LG-cancer cells on HG/LG-glioma-associated stem cells was studied by time-lapse microscopy, while cell deformability and cell-cell adhesion strengths were quantified by indentation measurements by atomic force microscopy and single cell force spectroscopy. Our results demonstrate that for both HG and LG glioma, cancer-initiating-stem cells are softer than glioma-associated-stem cells, in agreement with their neoplastic features. The adhesion strength of GSC on GASC appears to be significantly lower than that observed for Gsc on Gasc. Whereas, GSC spread and firmly adhere on Gasc with an adhesion strength increased as compared to that obtained on GASC. These findings highlight that the grade of glioma-associated-stem cells plays an important role in modulating cancer cell adhesion, which could affect glioma cell migration, invasion and thus cancer aggressiveness. Moreover this work provides evidence about the importance of investigating cell adhesion and elasticity for new developments in disease diagnostics and therapeutics.  相似文献   

8.
为了探究几种骨组织细胞系的力学性能及其与细胞功能的关系,该文采用原子力显微镜压陷法分别检测了前成骨细胞系(2T3和MC3T3-E1)、前骨细胞系(MLO-A5)和骨样细胞系(MLO-Y4)的杨氏模量,利用激光共聚焦显微镜观察了这几种细胞微丝和微管的排布。结果显示,2T3、MC3T3-E1、MLO-A5和MLO-Y4细胞的杨氏模量分别为(7000±2015)Pa、(6600±2024)Pa、(4700±644)Pa和(4500±1622)Pa,与原代骨组织细胞的杨氏模量及变化趋势保持一致,但两种前成骨细胞的杨氏模量要显著高于前骨细胞和骨细胞。细胞荧光染色结果表日月'前成骨细胞细胞核周围的微丝和微管分布密度要高于前骨细胞和骨细胞,而前骨细胞MLO-A5,尤其是骨细胞MLO-Y4的骨架主要集中于细胞突触和边缘,这可能是导致几种细胞力学性能差异的原因。该研究从生物力学的角度为进一步深入理解骨组织细胞结构与功能的关系提供了实验依据。  相似文献   

9.
To understand the mechanism by which living cells sense mechanical forces, and how they respond and adapt to their environment, a new technology able to investigate cells behavior at sub-cellular level with high spatial and temporal resolution was developed. Thus, an atomic force microscope (AFM) was integrated with total internal reflection fluorescence (TIRF) microscopy and fast-spinning disk (FSD) confocal microscopy. The integrated system is broadly applicable across a wide range of molecular dynamic studies in any adherent live cells, allowing direct optical imaging of cell responses to mechanical stimulation in real-time. Significant rearrangement of the actin filaments and focal adhesions was shown due to local mechanical stimulation at the apical cell surface that induced changes into the cellular structure throughout the cell body. These innovative techniques will provide new information for understanding live cell restructuring and dynamics in response to mechanical force. A detailed protocol and a representative data set that show live cell response to mechanical stimulation are presented.Download video file.(57M, mov)  相似文献   

10.
11.
目的 细胞力学特性与细胞生理病理变化过程及机体健康状态密切相关,研究细胞力学特性对于揭示生命活动内在机制具有重要科学意义.原子力显微镜(AFM)的出现为单细胞研究提供了新的技术手段,它不仅可以在溶液环境下对单个活细胞的形貌结构进行高分辨率成像,还能够对细胞力学特性进行定量测量.基于AFM的单细胞力学特性研究在过去数十年...  相似文献   

12.
Cell-wall mechanical properties play a key role in the growth and the protection of plants. However, little is known about genuine wall mechanical properties and their growth-related dynamics at subcellular resolution and in living cells. Here, we used atomic force microscopy (AFM) stiffness tomography to explore stiffness distribution in the cell wall of suspension-cultured Arabidopsis thaliana as a model of primary, growing cell wall. For the first time that we know of, this new imaging technique was performed on living single cells of a higher plant, permitting monitoring of the stiffness distribution in cell-wall layers as a function of the depth and its evolution during the different growth phases. The mechanical measurements were correlated with changes in the composition of the cell wall, which were revealed by Fourier-transform infrared (FTIR) spectroscopy. In the beginning and end of cell growth, the average stiffness of the cell wall was low and the wall was mechanically homogenous, whereas in the exponential growth phase, the average wall stiffness increased, with increasing heterogeneity. In this phase, the difference between the superficial and deep wall stiffness was highest. FTIR spectra revealed a relative increase in the polysaccharide/lignin content.  相似文献   

13.
原子力显微镜(AFM)作为生物样品表面表征的有力工具,具有独特的优势.本文在介绍原子力显微镜基本原理的基础上,综述了原子力显微镜样品制备以及原子力显微镜形貌分析、力曲线以及动力学分析在生物领域中的应用.  相似文献   

14.
原子力显微镜(AFM)作为生物样品表面表征的有力工具, 具有独特的优势。本文在介绍原子力显微镜基本原理的基础上, 综述了原子力显微镜样品制备以及原子力显微镜形貌分析、力曲线以及动力学分析在生物领域中的应用。  相似文献   

15.
Airway hyperresponsiveness (AHR) is the cardinal character of asthma, which involves the biomechanical properties such as cell stiffness and traction force of airway smooth muscle cells (ASMCs). Therefore, these biomechanical properties comprise logical targets of therapy. β2-adrenergic agonist is currently the mainstream drug to target ASMCs in clinical practice for treating asthma. However, this drug is known for side effects such as desensitization and non-responsiveness in some patients. Therefore, it is desirable to search for new drug agents to be alternative of β2-adrenergic agonist. In this context, sanguinarine, a natural product derived from plants such as bloodroots, that has been reported to relax gut smooth muscle emerges as a potential candidate. So far, it is unknown whether sanguinarine can regulate the biomechanical properties of ASMCs and reactivity of ASMCs to irritants. Thus, we tested the hypothesis that sanguinarine reduce the contractile potentials of ASMCs in culture. To do so, the primary cultured rat ASMCs were first treated with different concentration of sanguinarine. Then, cell stiffness, traction force, fiber distribution, and calcium signaling of the ASMCs were evaluated by optical magnetic twisting cytometry, Fourier transform traction microscopy, atomic force microscopy, and Fluo-4/AM based fluorescence confocal scanning microscopy, respectively. The results indicated that sanguinarine (0.05 and 0.5 μmol/L) significantly decreased cell stiffness and traction force, inhibited reactivity of ASMCs to histamine, and disrupted the fiber structures in ASMCs in dose-dependent manner. These findings establish that sanguinarine can indeed change the biomechanical properties of ASMCs and may be used to treat AHR in asthma.  相似文献   

16.
在纳米量级上探测药物对人脐静脉内皮细胞(HUVEC)的抑制作用对于揭示药物的功效及肿瘤的有效治疗十分重要.通过高分辨率的原子力显微镜研究了不同浓度的高乌甲素培养的HUVEC的形貌特征,包括整个细胞的形貌和超微结构的表面膜的差异.从形貌学方面探讨了高乌甲素对HUVEC的抑制作用,可为临床应用高乌甲素提供依据.结果表明,我...  相似文献   

17.
A simple method for atomic force microscopy (AFM) of nematode cuticle was developed to visualize the external topography of Helicotylenchus lobus, Meloidogyne javanica, M. incognita, and Xiphinema diversicaudatum. Endospores of two isolates of the nematode parasite, Pasteuria penetrans, adhering to M. incognita and X. diversicaudatum were also visualized and measured by this technique. Scanning procedures were applied to specimens killed and dehydrated in air or dehydrated and stored in glycerol. Atomic force microscopy scanning of nematodes in constant height mode yielded replicated high-resolution images of the cuticle showing anatomical details such as annulations and lateral fields. Submicrometer scale images allowed the identification of planar regions for further higher resolution scans.  相似文献   

18.
原子力及原子力声显微镜应用于生物学领域的回顾与展望   总被引:1,自引:0,他引:1  
回顾了显微镜的发展史,着重介绍了原子力显微镜的工作原理,工作模式,成像特点及其在生物学领域的应用。对最新的原子力声显微镜的发展做了展望。  相似文献   

19.
High levels of intracellular reactive oxygen species (ROS) in cells is recognized as one of the major causes of cancer cell apoptosis and has been developed into a promising therapeutic strategy for cancer therapy. However, whether apoptosis associated biophysical properties of cancer cells are related to intracellular ROS functions is still unclear. Here, for the first time, we determined the changes of biophysical properties associated with the ROS-mediated oesophageal cancer KYSE-150 cell apoptosis using high resolution atomic force microscopy (AFM). Oridonin was proved to induce ROS-mediated KYSE-150 cell apoptosis in a dose dependent manner, which could be reversed by N-acetylcysteine (NAC) pretreatment. Based on AFM imaging, the morphological damage and ultrastructural changes of KYSE-150 cells were found to be closely associated with ROS-mediated oridonin-induced KYSE-150 cell apoptosis. The changes of cell stiffness determined by AFM force measurement also demonstrated ROS-dependent changes in oridonin induced KYSE-150 cell apoptosis. Our findings not only provided new insights into the anticancer effects of oridonin, but also highlighted the use of AFM as a qualitative and quantitative nanotool to detect ROS-mediated cancer cell apoptosis based on cell biophysical properties, providing novel information of the roles of ROS in cancer cell apoptosis at nanoscale.  相似文献   

20.
The nuclear lamina is part of the nuclear envelope (NE). Lamin filaments provide the nucleus with mechanical stability and are involved in many nuclear activities. The functional importance of these proteins is highlighted by mutations in lamin genes, which cause a variety of human diseases (laminopathies). Here we describe a method that allows one to quantify the contribution of lamin A protein to the mechanical properties of the NE. Lamin A is ectopically expressed in Xenopus oocytes, where it is incorporated into the NE of the oocyte nucleus, giving rise to a prominent lamina layer at the inner nuclear membrane. Nuclei are then isolated and probed by atomic force microscopy. From the resulting force curves, stiffness values are calculated and compared with those of control nuclei. Expression of lamin A significantly increases the stiffness of oocyte nuclei in a concentration-dependent manner. Since chromatin adds negligibly to nuclear mechanics in these giant nuclei, this method allows one to measure the contribution of individual NE components to nuclear mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号