首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the ultimate aim of containing the emergence of resistant bacteria, a Dutch policy was set in place in 2010 promoting a reduction of antimicrobial use (AMU) in food-producing animals. In this context, a study evaluated strategies to curb livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA). Fifty-one veal calf farms were assigned to one of 3 study arms: RAB farms reducing antimicrobials by protocol; RAB-CD farms reducing antimicrobials by protocol and applying a cleaning and disinfection program; and Control farms without interventions. MRSA carriage was tested in week 0 and week 12 of 2 consecutive production cycles in farmers, family members and veal calves. Interventions were validated and a cyclic rise in MRSA-prevalence in animals was shown with a more moderate increase in RAB farms. Prevalence in humans declined parallel over time in the study arms but RAB farms were at the lowest MRSA levels from the beginning of the study. In RAB-CD farms, human and animal prevalence did not differ from Control farms and MRSA air loads were significantly higher than in the other study arms. Mimicking the national trend, an overall AMU decrease (daily dosages per animal per cycle (DDDA/C)) was observed over 4 pre-study and the 2 study cycles; this trend did not have a significant effect on a set of evaluated farm technical parameters. AMU was positively associated with MRSA across study arms (ORs per 10 DDDA/C increase = 1.26 for both humans (p = 0.07) and animals (p = 0.12 in first cycle)). These results suggest that AMU reduction might be a good strategy for curbing MRSA in veal calf farming, however the specific cleaning and disinfecting program in RAB-CD farms was not effective. The drop in MRSA prevalence in people during the study could be attributed to the observed long-term AMU decreasing trend.  相似文献   

2.
The emergence of pathogens resistant to antimicrobials has prompted political initiatives targeting a reduction in the use of veterinary antimicrobials in Denmark, especially for pigs. This study elucidates the tendency of pig farms with a significantly higher antimicrobial use to remain in clusters in certain geographical regions of Denmark. Animal Daily Doses/100 pigs/day were calculated for all three age groups of pigs (weaners, finishers and sows) for each quarter during 2012–13 in 6,143 commercial indoor pig producing farms. The data were split into four time periods of six months. Repeated spatial cluster analyses were performed to identify persistent clusters, i.e. areas included in a significant cluster throughout all four time periods. Antimicrobials prescribed for weaners did not result in any persistent clusters. In contrast, antimicrobial use in finishers clustered persistently in two areas (157 farms), while those issued for sows clustered in one area (51 farms). A multivariate analysis including data on antimicrobial use for weaners, finishers and sows as three separate outcomes resulted in three persistent clusters (551 farms). Compared to farms outside the clusters during this period, weaners, finishers and sows on farms within these clusters had 19%, 104% and 4% higher use of antimicrobials, respectively. Production type, farm type and farm size seemed to have some bearing on the clustering effect. Adding these factors as categorical covariates one at a time in the multivariate analysis reduced the persistent clusters by 24.3%, 30.5% and 34.1%, respectively.  相似文献   

3.
Because antimicrobial resistance in food-producing animals is a major public health concern, many countries have implemented antimicrobial monitoring systems at a national level. When designing a sampling scheme for antimicrobial resistance monitoring, it is necessary to consider both cost effectiveness and statistical plausibility. In this study, we examined how sampling scheme precision and sensitivity can vary with the number of animals sampled from each farm, while keeping the overall sample size constant to avoid additional sampling costs. Five sampling strategies were investigated. These employed 1, 2, 3, 4 or 6 animal samples per farm, with a total of 12 animals sampled in each strategy. A total of 1,500 Escherichia coli isolates from 300 fattening pigs on 30 farms were tested for resistance against 12 antimicrobials. The performance of each sampling strategy was evaluated by bootstrap resampling from the observational data. In the bootstrapping procedure, farms, animals, and isolates were selected randomly with replacement, and a total of 10,000 replications were conducted. For each antimicrobial, we observed that the standard deviation and 2.5–97.5 percentile interval of resistance prevalence were smallest in the sampling strategy that employed 1 animal per farm. The proportion of bootstrap samples that included at least 1 isolate with resistance was also evaluated as an indicator of the sensitivity of the sampling strategy to previously unidentified antimicrobial resistance. The proportion was greatest with 1 sample per farm and decreased with larger samples per farm. We concluded that when the total number of samples is pre-specified, the most precise and sensitive sampling strategy involves collecting 1 sample per farm.  相似文献   

4.
Antimicrobial resistance is a global threat to livestock, human and environmental health. Although resistant bacteria have been detected in wildlife, their role in the epidemiology of antimicrobial resistance is not clear. Our objective was to investigate demographic, temporal and climatic factors associated with carriage of antimicrobial resistant Escherichia coli in raccoons and the environment. We collected samples from raccoon paws and feces and from soil, manure pit and dumpsters on five swine farms and five conservation areas in Ontario, Canada once every five weeks from May to November, 2011–2013 and tested them for E. coli and susceptibility to 15 antimicrobials. Of samples testing positive for E. coli, resistance to ≥ 1 antimicrobials was detected in 7.4% (77/1044; 95% CI, 5.9–9.1) of raccoon fecal samples, 6.3% (23/365; 95% CI, 4.0–9.3) of paw samples, 9.6% (121/1260; 8.0–11.4) of soil samples, 57.4% (31/54; 95% CI, 43.2–70.8) of manure pit samples, and 13.8% (4/29; 95% CI, 3.9–31.7) of dumpster samples. Using univariable logistic regression, there was no significant difference in the occurrence of resistant E. coli in raccoon feces on conservation areas versus farms; however, E. coli isolates resistant to ≥ 1 antimicrobials were significantly less likely to be detected from raccoon paw samples on swine farms than conservation areas and significantly more likely to be detected in soil samples from swine farms than conservation areas. Resistant phenotypes and genotypes that were absent from the swine farm environment were detected in raccoons from conservation areas, suggesting that conservation areas and swine farms may have different exposures to resistant bacteria. However, the similar resistance patterns and genes in E. coli from raccoon fecal and environmental samples from the same location types suggest that resistant bacteria may be exchanged between raccoons and their environment.  相似文献   

5.

Introduction

Recently a specific MRSA sequence type, ST398, emerged in food production animals and farmers. Risk factors for carrying MRSA ST398 in both animals and humans have not been fully evaluated. In this cross-sectional study, we investigated factors associated with MRSA colonization in veal calves and humans working and living on these farms.

Methods

A sample of 102 veal calf farms were randomly selected and visited from March 2007–February 2008. Participating farmers were asked to fill in a questionnaire (n = 390) to identify potential risk factors. A nasal swab was taken from each participant. Furthermore, nasal swabs were taken from calves (n = 2151). Swabs were analysed for MRSA by selective enrichment and suspected colonies were confirmed as MRSA by using slide coagulase test and PCR for presence of the mecA-gene. Spa types were identified and a random selection of each spa type was tested with ST398 specific PCR. The Sequence Type of non ST398 strains was determined. Data were analyzed using logistic regression analysis.

Results

Human MRSA carriage was strongly associated with intensity of animal contact and with the number of MRSA positive animals on the farm. Calves were more often carrier when treated with antibiotics, while farm hygiene was associated with a lower prevalence of MRSA.

Conclusion

This is the first study showing direct associations between animal and human carriage of ST398. The direct associations between animal and human MRSA carriage and the association between MRSA and antimicrobial use in calves implicate prudent use of antibiotics in farm animals.  相似文献   

6.
To clarify the persistence of extended-spectrum β-lactamase (ESBL) producers, 13 plasmids from two broiler farms were analyzed. On the farm not using antimicrobials, one plasmid from Klebsiella pneumoniae isolated from a day-old chick was similar to that from Escherichia coli isolated a year later, with the deletion of two transposons. On the farm using antimicrobials, most circulating plasmids (eight out of nine) in a flock of 40-days-old chicks were identical, although one from K. pneumoniae had a deletion of a transposon carrying a class 1 integron containing aadA2 and dfrA12. Thus, ESBL plasmids persisted in the farms with or without antimicrobial agent use.  相似文献   

7.
Effects of commercial probiotic (Bactocell®) on growth performance and blood parameters were evaluated. A total of 800 one day-old Ross broiler chicks were raised over 42 days. Chicks were wing-banded, weighed individually and randomly allocated into four equally major groups each having two replicates. Chicks of group 1 (control group) were fed the starter and finisher diets that did not supplemented with probiotic. The chicks of groups 2, 3, and 4 were fed the control starter and finisher diets supplemented with 1.6 g, 1 g and 0.8 g of probiotic per kg feed, respectively. Weekly body weight, feed consumption and feed conversion were measured. Blood parameters at 1, 4 and 6 weeks of age including packed cell volume (PCV), haemoglobin (Hb), total protein, albumin, total lipid and cholesterol were determined. All birds were kept under similar environmental, managerial and hygienic conditions. The results of the current study revealed that there was no significant change for Hb and PCV concentrations among different groups at all studied times. Also, total protein, lipids and albumin concentrations were not affected by probiotic supplementation. Chicken fed a diet containing various levels of probiotic showed a significant decrease (p ⩽ 0.05) in cholesterol concentration compared to control group. Probiotic supplementation significantly increased the body weight and daily weight gain of broiler chicks at late ages (3–6 weeks). Also, the birds fed on probiotic levels 1 and 0.8 g/kg diet exhibited higher body weight among chicken groups at 6 weeks of age. Improved feed conversion was noticed in birds fed a diet supplemented with probiotic. There was no significant difference in mortality rate among groups. We concluded that use of selected commercial probiotic resulted in improved performance parameters and reduced serum cholesterol in broiler chickens. Moreover, supplementation of the probiotic to broilers in the levels of 1 and 0.8 g/kg diet was found to be better than control and 1.6 g/kg level indicating that increasing dietary probiotic level does not has the best performance.  相似文献   

8.
To be able to analyze the relationship between the level of resistance and the use of antimicrobials, it is necessary to collect detailed data on antimicrobial usage. For this reason, data on antimicrobial use on 495 pig farms from entire Germany were collected and analyzed. In Germany, each application and dispensing of medicines to food-producing animals is documented in detail obligatorily by the veterinarian. This information was collected retrospectively for the year 2011. The analyses undertook separate examinations on the age groups sow, piglet, weaner and fattening pig; both the route of administration and indication per active ingredient, and active ingredient class, were evaluated. In total, 20,374 kg of antimicrobial substances were used in the study population. Tetracyclines were used in highest amounts, followed by beta-lactams, trimethoprim-sulfonamides and macrolides. Concerning the frequency of using an active substance per animal, polypeptides were most commonly administered. In all age groups, respiratory infections were the main indication for using antimicrobials, followed by intestinal diseases in piglets, weaners and fattening pigs and diseases of reproductive organs in sows. Over a period of 100 days, the median number of treatment days with one antimicrobial substance for piglets was 15 days, for weaners about 6 days, for fattening pigs about 4 days and for sows about 1 day. A multifactorial ANOVA was conducted to investigate which factors are associated with the treatment frequency. The factors “veterinarian” and “age group” were related to the treatment frequency, just as the interaction between “veterinarian” and “farm size” as well as the interaction between “veterinarian” and “age group”.  相似文献   

9.
10.
As the size of livestock farms in The Netherlands is on the increase for economic reasons, an important question is how disease introduction risks and risks of onward transmission scale with farm size (i.e. with the number of animals on the farm). Here we use the epidemic data of the 1997–1998 epidemic of Classical Swine Fever (CSF) Virus in The Netherlands to address this question for CSF risks. This dataset is one of the most powerful ones statistically as in this epidemic a total of 428 pig farms where infected, with the majority of farm sizes ranging between 27 and 1750 pigs, including piglets. We have extended the earlier models for the transmission risk as a function of between-farm distance, by adding two factors. These factors describe the effect of farm size on the susceptibility of a ‘receiving’ farm and on the infectivity of a ‘sending’ farm (or ‘source’ farm), respectively. Using the best-fitting model, we show that the size of a farm has a significant influence on both farm-level susceptibility and infectivity for CSF. Although larger farms are both more susceptible to CSF and, when infected, more infectious to other farms than smaller farms, the increase is less than linear. The higher the farm size, the smaller the effect of increments of farm size on the susceptibility and infectivity of a farm. Because of changes in the Dutch pig farming characteristics, a straightforward extrapolation of the observed farm size dependencies from 1997/1998 to present times would not be justified. However, based on our results one may expect that also for the current pig farming characteristics in The Netherlands, farm susceptibility and infectivity depend non-linearly on farm size, with some saturation effect for relatively large farm sizes.  相似文献   

11.
On many Australian commercial pig farms, groups of growing pigs are mass-medicated through their drinking water with selected antimicrobials for short periods to manage herd health. However, delivery of medication in drinking water cannot be assumed to deliver an equal dose to all animals in a group. There is substantial between-animal variability in systemic exposure to an antimicrobial (i.e. the antimicrobial concentration in plasma), resulting in under-dosing or over-dosing of many pigs. Three sources of this between-animal variability during a water medication dosing event are differences in: (1) concentration of the active constituent of the antimicrobial product in water available to pigs at drinking appliances in each pen over time, (2) medicated water consumption patterns of pigs in each pen over time, and (3) pharmacokinetics (i.e. oral bioavailability, volume of distribution and clearance between pigs and within pigs over time). It is essential that factors operating on each farm that influence the range of systemic exposures of pigs to an antimicrobial are factored into antimicrobial administration regimens to reduce under-dosing and over-dosing.  相似文献   

12.
In Mekong Delta farms (Vietnam), antimicrobials are extensively used, but limited data are available on levels of antimicrobial resistance (AMR) among Escherichia coli isolates. We performed a structured survey of AMR in E. coli isolates (n = 434) from 90 pig, chicken, and duck farms. The results were compared with AMR among E. coli isolates (n = 234) from 66 small wild animals (rats and shrews) trapped on farms and in forests and rice fields. The isolates were susceptibility tested against eight antimicrobials. E. coli isolates from farmed animals were resistant to a median of 4 (interquartile range [IQR], 3 to 6) antimicrobials versus 1 (IQR, 1 to 2) among wild mammal isolates (P < 0.001). The prevalences of AMR among farmed species isolates (versus wild animals) were as follows: tetracycline, 84.7% (versus 25.6%); ampicillin, 78.9% (versus 85.9%); trimethoprim-sulfamethoxazole, 52.1% (versus 18.8%); chloramphenicol, 39.9% (versus 22.5%); amoxicillin-clavulanic acid, 36.6% (versus 34.5%); and ciprofloxacin, 24.9% (versus 7.3%). The prevalence of multidrug resistance (MDR) (resistance against three or more antimicrobial classes) among pig isolates was 86.7% compared to 66.9 to 72.7% among poultry isolates. After adjusting for host species, MDR was ∼8 times greater among isolates from wild mammals trapped on farms than among those trapped in forests/rice fields (P < 0.001). Isolates were assigned to unique profiles representing their combinations of susceptibility results. Multivariable analysis of variance indicated that AMR profiles from wild mammals trapped on farms and those from domestic animals were more alike (R2 range, 0.14 to 0.30) than E. coli isolates from domestic animals and mammals trapped in the wild (R2 range, 0.25 to 0.45). The results strongly suggest that AMR on farms is a key driver of environmental AMR in the Mekong Delta.  相似文献   

13.
Intestinal tracts of broilers and turkeys from 10 conventional broiler farms and 10 conventional turkey farms, where antimicrobials were routinely used, and from 5 organic broiler farms and 5 organic turkey farms, where antimicrobials had never been used, were collected and cultured for Campylobacter species. A total of 694 Campylobacter isolates from the conventional and organic poultry operations were tested for antimicrobial resistance to nine antimicrobial agents by the agar dilution method. Although Campylobacter species were highly prevalent in both the conventional and organic poultry operations, the antimicrobial resistance rates were significantly different between the organic operations and the conventional operations. Less than 2% of Campylobacter strains isolated from organically raised poultry were resistant to fluoroquinolones, while 46% and 67% of Campylobacter isolates from conventionally raised broilers and conventionally raised turkeys, respectively, were resistant to these antimicrobials. In addition, a high frequency of resistance to erythromycin (80%), clindamycin (64%), kanamycin (76%), and ampicillin (31%) was observed among Campylobacter isolates from conventionally raised turkeys. None of the Campylobacter isolates obtained in this study was resistant to gentamicin, while a large number of the isolates from both conventional and organic poultry operations were resistant to tetracycline. Multidrug resistance was observed mainly among Campylobacter strains isolated from the conventional turkey operation (81%). Findings from this study clearly indicate the influence of conventional and organic poultry production practices on antimicrobial resistance of Campylobacter on poultry farms.  相似文献   

14.
Intestinal tracts of broilers and turkeys from 10 conventional broiler farms and 10 conventional turkey farms, where antimicrobials were routinely used, and from 5 organic broiler farms and 5 organic turkey farms, where antimicrobials had never been used, were collected and cultured for Campylobacter species. A total of 694 Campylobacter isolates from the conventional and organic poultry operations were tested for antimicrobial resistance to nine antimicrobial agents by the agar dilution method. Although Campylobacter species were highly prevalent in both the conventional and organic poultry operations, the antimicrobial resistance rates were significantly different between the organic operations and the conventional operations. Less than 2% of Campylobacter strains isolated from organically raised poultry were resistant to fluoroquinolones, while 46% and 67% of Campylobacter isolates from conventionally raised broilers and conventionally raised turkeys, respectively, were resistant to these antimicrobials. In addition, a high frequency of resistance to erythromycin (80%), clindamycin (64%), kanamycin (76%), and ampicillin (31%) was observed among Campylobacter isolates from conventionally raised turkeys. None of the Campylobacter isolates obtained in this study was resistant to gentamicin, while a large number of the isolates from both conventional and organic poultry operations were resistant to tetracycline. Multidrug resistance was observed mainly among Campylobacter strains isolated from the conventional turkey operation (81%). Findings from this study clearly indicate the influence of conventional and organic poultry production practices on antimicrobial resistance of Campylobacter on poultry farms.  相似文献   

15.
In recent years, extended-spectrum β-lactamases (ESBL) producing bacteria have been found in livestock, mainly as asymptomatic colonizers. The zoonotic risk for people working in close contact to animal husbandry has still not been completely assessed. Therefore, we investigated the prevalence of ESBL-producing Escherichia spp. in livestock animals and workers to determine the potential risk for an animal-human cross-transmission.In Mecklenburg-Western Pomerania, northeast Germany, inguinal swabs of 73 individuals with livestock contact from 23 different farms were tested for ESBL-producing Escherichia spp. Two pooled fecal samples per farm of animal origin from 34 different farms (17 pig farms, 11 cattle farms, 6 poultry farms) as well as cloacal swabs of 10 randomly selected broilers or turkeys were taken at each poultry farm. For identification, selective chromogenic agar was used after an enrichment step. Phenotypically ESBL-producing isolates (n = 99) were tested for CTX-M, OXA, SHV and TEM using PCR, and isolates were further characterized using multilocus sequence typing (MLST). In total, 61 diverse isolates from different sources and/or different MLST/PCR results were acquired. Five farm workers (three from cattle farms and two from pig farms) harbored ESBL-producing E. coli. All human isolates harbored the CTX-M β-lactamase; TEM and OXA β-lactamases were additionally detected in two, resp. one, isolates. ESBL-producing Escherichia spp. were found in fecal samples at pig (15/17), cattle (6/11) and poultry farms (3/6). In total, 70.6% (24/36) of the tested farms were ESBL positive. Furthermore, 9 out of 60 cloacal swabs turned out to be ESBL positive. All isolated ESBL-producing bacteria from animal sources were E. coli, except for one E. hermanii isolate. CTX-M was the most prevalent β-lactamase at cattle and pig farms, while SHV predominated in poultry. One human isolate shared an identical MLST sequence type (ST) 3891 and CTX-M allele to the isolate found in the cattle fecal sample from the same farm, indicating a zoonotic transfer. Two other pairs of human-pig and human-cattle E. coli isolates encoded the same ESBL genes but did not share the same MLST ST, which may indicate horizontal resistance gene transfer. In summary, the study shows the high prevalence of ESBL-producing E.coli in livestock in Mecklenburg- Western Pomerania and provides the risk of transfer between livestock and farm workers.  相似文献   

16.
Contaminated poultry and poultry products are a major source of motile Salmonellae for human salmonellosis worldwide. Local circulation of any motile Salmonella serovar in poultry has a wider public health impact beyond its source of origin for being dispersed elsewhere through poultry trades or human travels. To investigate the status of motile Salmonella serovars in breeder farms in Bangladesh, multiple flocks of two breeder farms were observed for a period of six months. In addition, a cross-sectional survey was carried out to determine the prevalence and serovar distribution of motile Salmonella by randomly selecting 100 commercial broiler poultry farms. Five pooled faecal samples representing an entire housed flock of breeders or broilers were screened for presence of motile Salmonella following conventional bacteriological procedures. The Salmonella isolates obtained were subsequently serotyped, and characterized by plasmid profiling and pulsed-field gel electrophoresis (PFGE). The results revealed that both the breeder farms were positive with three Salmonella serovars: S. Virchow, S. Paratyphi B var Java (S. Java) and S. Enteritidis. Eleven of the 100 broiler farms investigated were positive for motile Salmonella, giving a farm-level prevalence of 11% (95% confidence interval 5–17%). S. Virchow and S. Kentucky were the two predominant serovars isolated from the broiler farms. The PFGE genotyping demonstrated that the isolates belonging to the same serovars were closely related due to variation in only 1–4 bands. All the S. Virchow and S. Java isolates, irrespective of breeder or broiler farm origin, were plasmid-free, except for one S. Virchow isolate from a broiler farm that harboured a 9.7 kb-sized plasmid. The S. Kentucky isolates belonged to three plasmid profiles having plasmids of four different sizes, ranging from 2.7 to 109 kb. This is the first report of any motile Salmonella serovars from breeder and commercial broiler poultry farms in Bangladesh.  相似文献   

17.
This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm) were collected. From each individual sample and one pooled faecal sample per farm, 90 selected Escherichia coli isolates were tested for their resistance against 25 mg/L amoxicillin, 25 mg/L tetracycline, 0.5 mg/L cefotaxime, 0.125 mg/L ciprofloxacin and 8/152 mg/L trimethoprim/sulfamethoxazole (tmp/s) by replica plating. From each faecal sample another 10 selected E. coli isolates were tested for their resistance by broth microdilution as a reference. Logistic regression analysis was performed to compare the odds of testing an isolate resistant between both test methods (replica plating vs. broth microdilution) and to evaluate the effect of pooling faecal samples. Bootstrap analysis was used to investigate the precision of the estimated prevalence of resistance to each antimicrobial obtained by several simulated sampling strategies. Replica plating showed similar odds of E. coli isolates tested resistant compared to broth microdilution, except for ciprofloxacin (OR 0.29, p≤0.05). Pooled samples showed in general lower odds of an isolate being resistant compared to individual samples, although these differences were not significant. Bootstrap analysis showed that within each antimicrobial the various compositions of a pooled sample provided consistent estimates for the mean proportion of resistant isolates. Sampling strategies should be based on the variation in resistance among isolates within faecal samples and between faecal samples, which may vary by antimicrobial. In our study, the optimal sampling strategy from the perspective of precision of the estimated levels of resistance and practicality consists of a pooled faecal sample from 20 individual animals, of which 90 isolates are tested for their susceptibility by replica plating.  相似文献   

18.
The prevalence of thermophilic Campylobacter spp. was investigated in cattle on Washington State farms. A total of 350 thermophilic Campylobacter isolates were isolated from 686 cattle sampled on 15 farms (eight dairies, two calf rearer farms, two feedlots, and three beef cow-calf ranches). Isolate species were identified with a combination of phenotypic tests, hipO colony blot hybridization, and multiplex lpxA PCR. Breakpoint resistance to four antimicrobials (ciprofloxacin, nalidixic acid, erythromycin, and doxycycline) was determined by agar dilution. Campylobacter jejuni was the most frequent species isolated (34.1%), followed by Campylobacter coli (7.7%) and other thermophilic campylobacters (1.5%). The most frequently detected resistance was to doxycycline (42.3% of 350 isolates). Isolates from calf rearer facilities were more frequently doxycycline resistant than isolates from other farm types. C. jejuni was most frequently susceptible to all four of the antimicrobial drugs studied (58.8% of 272 isolates). C. coli isolates were more frequently resistant than C. jejuni, including resistance to quinolone antimicrobials (89.3% of isolates obtained from calves on calf rearer farms) and to erythromycin (72.2% of isolates obtained from feedlot cattle). Multiple drug resistance was more frequent in C. coli (51.5%) than in C. jejuni (5.1%). The results of this study demonstrate that C. jejuni is widely distributed among Washington cattle farms, while C. coli is more narrowly distributed but significantly more resistant.  相似文献   

19.
Integrated livestock-fish aquaculture utilizes animal excreta, urine, and feed leftovers as pond fertilizers to enhance the growth of plankton and other microorganisms eaten by the fish. However, antimicrobial-resistant bacteria may be transferred and develop in the pond due to selective pressure from antimicrobials present in animal feed, urine, and feces. In an experimental pig-fish farm located in periurban Hanoi, Vietnam, nine piglets were provided feed containing 5 μg of tetracycline (TET)/kg pig weight/day and 0.45 μg of enrofloxacin (ENR)/kg pig weight/day during the second and fourth (last) months of the experiment. The aim of this study was to determine the association between the provision of pig feed with antimicrobials and the development of antimicrobial resistance, as measured in a total of 520 Escherichia coli and 634 Enterococcus strains isolated from pig manure and water-sediment pond samples. MIC values for nalidixic acid (NAL) and ENR showed that E. coli and Enterococcus spp. overall exhibited significant higher frequencies of resistance toward NAL and ENR during the 2 months when pigs were administered feed with antimicrobials, with frequencies reaching 60 to 80% in both water-sediment and manure samples. TET resistance for both indicators was high (>80%) throughout the study period, which indicates that TET-resistant E. coli and Enterococcus spp. were present in the piglets before the initiation of the experiment. PCR-based identification showed similar relative occurrences of Enterococcus faecium, Enterococcus faecalis, and other Enterococcus spp. in the water-sediment and manure samples, suggesting that Enterococcus spp. isolated in the ponds originated mainly from the pig manure. The development of antimicrobial resistance in integrated animal husbandry-fish farms and possible transfers and the impact of such resistance on food safety and human health should be further assessed.  相似文献   

20.
Antimicrobials are extensively used as growth promoters in animal feeds worldwide, but reliable estimates are lacking. We conducted an internet-based survey of commercial chicken and pig feed products officially approved for sale in Vietnam over the period March–June 2015. Information on the antimicrobial contents in feed products, alongside animal production data, was used to estimate in-feed antimicrobial consumption to produce one kilogram of live animal (chicken, pig), as well as to estimate country-wide antimicrobial consumption through animal feeds. A total of 1462 commercial feed formulations were examined. The survey-adjusted estimated antimicrobial contents were 25.7 and 62.3 mg/kg in chicken and pig feeds, respectively. Overall, it was estimated that 77.4 mg [95% CI 48.1–106.8] and 286.6 mg [95% CI 191.6–418.3] of in-feed antimicrobials were used to raise 1 kg of live chicken and pig, respectively. Bacitracin (15.5% feeds), chlortetracycline (11.4%), and enramycin (10.8%) were the most common antimicrobials present in chicken feed formulations, whereas bacitracin (24.8%), chlortetracycline (23.9%), and florfenicol (17.4%) were the most common in pig feed formulations. Overall, 57% of the total quantitative usage consisted of antimicrobials regarded by WHO of importance for human medicine, including amoxicillin, colistin, tetracyclines, neomycin, lincomycin, and bacitracin. These figures confirm a very high magnitude of in-feed consumption of antimicrobials, especially in pig production. Results from this study should encourage further monitoring of antimicrobials used in animal production, and foster discussion about existing policies on inclusion of antimicrobials in animal feed rations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号