首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background and Aim: Our previous study of Helicobacter pylori‐induced apoptosis showed the involvement of Bcl‐2 family proteins and cytochrome c release from mitochondria. Here, we examine the release of other factors from mitochondria, such as apoptosis‐inducing factor (AIF), and upstream events involving caspase‐8 and Bid. Methods: Human gastric adenocarcinoma (AGS) cells were incubated with a cagA‐positive H. pylori strain for 0, 3, 6, and 24 hours and either total protein or cytoplasmic, nuclear, and mitochondrial membrane fractions were collected. Results: Proteins were immunoblotted for AIF, Bid, polyadenosine ribose polymerase (PARP), caspase‐8, and β‐catenin. H. pylori activated caspase‐8, caused PARP cleavage, and attenuated mitochondrial membrane potential. A time‐dependent decrease in β‐catenin protein expression was detected in cytoplasmic and nuclear extracts, coupled with a decrease in β‐actin. An increase in the cytoplasmic pool of AIF was seen as early as 3 hours after H. pylori exposure, and a concomitant increase was seen in nuclear AIF levels up to 6 hours. A band corresponding to full‐length Bid was seen in both the cytoplasmic and the nuclear fractions of controls, but not after H. pylori exposure. Active AIF staining was markedly increased in gastric mucosa from infected persons, compared to uninfected controls. Conclusion: H. pylori might trigger apoptosis in AGS cells via interaction with death receptors in the plasma membrane, leading to the cleavage of procaspase‐8, release of cytochrome c and AIF from mitochondria, and activation of subsequent downstream apoptotic events, as reported previously for chlorophyllin. This is consistent with AIF activation that was found in the gastric mucosa of humans infected with H. pylori. Hence, the balance between apoptosis and proliferation in these cells may be altered in response to injury caused by H. pylori infection, leading to an increased risk of cancer.  相似文献   

2.
Eicosapentaenoic acid (EPA) induced apoptosis of rat basophilic leukemia cells (RBL2H3 cells), whereas 100 μM linoleic acid (LA) had no significant effect. Cytochrome c was released at 4 h. Apoptosis was detected at 6 h after exposure to EPA and docosahexaenoic acid (DHA), and preceded the activation of caspase-3. Liberation of apoptosis-inducing factor (AIF) from mitochondria and its translocation into the nucleus were observed at 4 h. A broad-specificity caspase inhibitor, z-VAD-fmk, failed to suppress the apoptosis, suggesting that EPA induced caspase-independent apoptosis. On other hand, a poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that blocks AIF translocation to the nucleus suppressed EPA-induced apoptosis. The level of hydroperoxide in the cells and mitochondria increased at the early phase of apoptosis within 2 h. On the contrary, elevation of hydroperoxide in mitochondria was not observed after treatment with LA. The EPA-induced apoptosis was abolished by prevention of the hydroperoxide elevation in mitochondria via overexpression of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx). Neither cytochrome c nor AIF were released from mitochondria in the mitochondrial PHGPx-overexpressing cells. EPA also induced apoptosis in HeLa cells, but not in L929 or RAW264.7 cells. Enhancement of the hydroperoxide level in mitochondria was found in the EPA-sensitive HeLa cells after treatment with EPA, whereas no such enhancement was observed in the apoptosis-resistant L929 and RAW264.7 cells. These results suggest that the generation of hydroperoxide in mitochondria induced by EPA is associated with AIF release from mitochondria and the induction of apoptosis.  相似文献   

3.
Background and Aims. H. pylori infection results in an increased epithelial apoptosis in gastritis and duodenal ulcer patients. We investigated the role and type of activation of caspases in H. pylori‐induced apoptosis in gastric epithelial cells. Methods. Differentiated human gastric cancer cells (AGS) and human gastric mucous cell primary cultures were incubated with H. pylori for 0.5–24 hours in RPMI 1640 medium, and the effects on cell viability, epithelial apoptosis, and activity of caspases were monitored. Apoptosis was analyzed by detection of DNA‐fragments by Hoechst stain®, DNA‐laddering, and Histone‐ELISA. Activities of caspases were determined in fluorogenic assays and by Western blotting. Cleavage of BID and release of cytochrome c were analyzed by Western blot. Significance of caspase activation was investigated by preincubation of gastric epithelial cells with cell permeable specific caspase inhibitors. Results. Incubation of gastric epithelial cells with H. pylori caused a time and concentration dependent induction of DNA fragmentation (3‐fold increase), cleavage of BID, release of cytochrome c and a concomittant sequential activation of caspase‐9 (4‐fold), caspase‐8 (2‐fold), caspase‐6 (2‐fold), and caspase‐3 (6‐fold). No effects on caspase‐1 and ‐7 were observed. Activation of caspases preceded the induction of DNA fragmentation. Apoptosis could be inhibited by prior incubation with the inhibitors of caspase‐3, ‐8, and ‐9, but not with that of caspase‐1. Conclusions. Activation of certain caspases and activation of the mitochondrial apoptotic pathway are essential for H. pylori induced apoptosis in gastric epithelial cells.  相似文献   

4.
Pathogenic Leptospira species, the causative agents of leptospirosis, have been shown to induce macrophage apoptosis through caspase‐independent, mitochondrion‐related apoptosis inducing factor (AIF) and endonuclease G (EndoG), but the signalling pathway leading to AIF/EndoG‐based macrophage apoptosis remains unknown. Here we show that infection of Leptospira interrogans caused a rapid increase in reactive oxygen species (ROS), DNA damage, and intranuclear foci of 53BP1 and phosphorylation of H2AX (two DNAdamage indicators) in wild‐type p53‐containing mouse macrophages and p53‐deficient human macrophages. Most leptospire‐infected cells stayed at the G1 phase, whereas depletion or inhibition of p53 caused a decrease of the G1‐phase cells and the early apoptotic ratios. Infection with spirochaetes stimulated a persistent activation of p53 and an early activation of Akt through phosphorylation. The intranuclear translocation of p53, increased expression of p53‐dependent p21Cip1/WAF1 and pro‐apoptotic Bcl‐2 family proteins (Bax, Noxa and Puma), release of AIF and EndoG from mitochondria, and membrane translocation of Fas occurred during leptospire‐induced macrophage apoptosis. Thus, our study demonstrated that ROS production and DNA damage‐dependent p53‐Bax/Noxa/Puma‐AIF/EndoG signalling mediates the leptospire‐induced cell cycle arrest and caspase‐independent apoptosis of macrophages.  相似文献   

5.
Data on the geographic prevalence of Helicobacter pylori iceA and babA alleles in Eastern Europe are still relatively scant. The aim of this study was to evaluate the prevalence of iceA and babA genotypes in Bulgarian symptomatic patients. The iceA and babA genotypes were evaluated by PCR with pure cultures in strains from 196 and 181 patients, respectively. Mixed infections were found in 10.2% of all 196 patients. Prevalence of H. pylori genotypes in patients with single-strain infections was 69.3% for iceA1, 30.7% for iceA2, 82.4% for cagA +, 89.2% for vacA s1, 10.8% for vacA s2, 39.8% for vacA m1, 60.2% for vacA m2 and 48.8% for babA2. Within the iceA1 positive strains, 94.3% and 88.5% were also vacA s1a and cagA positive, respectively. Of the babA2 positive strains, 100.0%, 92.4% and 72.2% were also vacA s1a, cagA and iceA1 positive, respectively. Ulcer patients had more often strains with cagA positive status and vacA s1a allele. Although neither iceA1 nor babA2 were more common in ulcer patients, the combination of both alleles was more frequent (48.1%) in the ulcer patients than in the rest (28.7%). Clarithromycin susceptible strains had more often iceA1 allele (74.4%) than the resistant strains (55.3%). In conclusion, the results demonstrated a high prevalence of virulent H. pylori in Bulgaria. Both iceA1 and babA2 genotypes were associated with other virulence factors of H. pylori and, in addition, the iceA1 allele was associated with the strain susceptibility.  相似文献   

6.
Helicobacter pylori, a Gram-negative bacterium, is associated with a wide range of gastric diseases such as gastritis, duodenal ulcer, and gastric cancer. The prevalence of H pylori and risk of disease vary in different parts of the world based on the prevailing bacterial lineage. Here, we present a contextual and comparative genomics analysis of 20 clinical isolates of H pylori from patients in Bangladesh. Despite a uniform host ethnicity (Bengali), isolates were classified as being part of the HpAsia2 (50%) or HpEurope (50%) population. Out of twenty isolates, eighteen isolates were cagA positive, with two HpEurope isolates being cagA negative, three EPIYA motif patterns (AB, AB-C, and ABC-C) were observed among the cagA-positive isolates. Three vacA genotypes were observed with the s1m1i1dic1 genotype observed in 75% of isolates; the s1m2i1d1c2 and s2m2i2d2c2 genotypes were found to be 15% and 10% of isolates, respectively. The non-virulent genotypes s2m2i2d2c2 was only observed in HpEurope population isolates. Genotypic analysis of oipA gene, present in all isolates, revealed five different patterns of the CT repeat; all HpAsia2 isolates were in “ON” while 20% of HpEurope isolates were genotypically “OFF.” The three blood group antigen binding adhesins encoded genes (bab genes) examined and we observed that the most common genotype was (babA/babB/-) found in eight isolates, notably six were HpAsia2 isolates. The babA gene was found in all HpAsia2 isolates but present in only half of the HpEurope isolates. In silico antibiotic susceptibility analysis revealed that 40% of the strains were multi-drug resistant. Mutations associated with resistance to metronidazole, fluoroquinolone, and clarithromycin were detected 90%, 45%, and 5%, respectively, in H pylori strain. In conclusion, it is evident that two populations of H pylori with similar antibiotic profiles are predominant in Bangladesh, and it appears that genotypically the HpAisa2 isolates are potentially more virulent than the HpEurope isolates.  相似文献   

7.
Background. Helicobacter pylori (H. pylori) infection is associated with chronic infiltration into the stomach by T cells and plasma cells producing IFN‐γ and antibodies of various specificities, respectively. It is unknown whether these lymphocyte‐products may play coordinated roles in the gastric pathology of this infection. Aims. To know how IFN‐γ may relate to anti‐H. pylori antibodies in their roles in pathogenesis, we determined the isotype subclass of those antibodies as well as their cross‐reactivity and cytotoxicity to gastric epithelium. Methods and Results. We infected BALB/c mice with H. pylori (SS1, Sydney Strain 1) and generated monoclonal antibodies, which were comprised of 240 independent clones secreting immunoglobulin and included 80 clones reactive to SS1. Ninety percent of the SS1‐reactive clones had IgG2a isotype. Two clones, 2B10 and 1A9, were cross reactive to cell surface antigens in H. pylori and to antigens of 28 KDa and 42 KDa, respectively, which were present on the cell surface of and shared by both mouse and human gastric epithelial cells. The antigens recognized by these monoclonal antibodies localized a distinctive area in the gastric glands. In the presence of complement, 2B10 showed cytotoxicity to gastric epithelial cells. The effect was dose dependant and augmented by IFN‐γ. Finally, administration of 2B10 to mice with SS1 infection aggravated gastritis by increasing cellular infiltration. Conclusion. IFN‐γ by gastric T cells may participate in pathogenesis of the H. pylori infected stomach by directing an isotype‐switch of anti‐H. pylori antibodies to complement‐binding subclass and by augmenting cytotoxic activity of a certain autoantibody. This may explain a host‐dependent diversity in gastric pathology of the patients with H. pylori infection.  相似文献   

8.
Mitochondria, central to basic life functions due to their generation of cellular energy, also serve as the venue for cellular decisions leading to apoptosis. A key protein in mitochondria-mediated apoptosis is the voltage-dependent anion channel (VDAC), which also mediates the exchange of metabolites and energy between the cytosol and the mitochondria. In this study, the functions played by the N-terminal region of VDAC1 and by VDAC1 oligomerization in the release of cytochrome c, Smac/Diablo and apoptosis-inducing factor (AIF) and subsequent apoptosis were addressed. We demonstrate that cells undergoing apoptosis induced by STS or cisplatin and expressing N-terminally truncated VDAC1 do not release cytochrome c, Smac/Diablo or AIF. Ruthenium red (RuR), AzRu, DIDS and hexokinase-I (HK-I), all known to interact with VDAC, inhibited the release of cytochrome c, Smac/Diablo and AIF, while RuR-mediated inhibition was not observed in cells expressing RuR-insensitive E72Q-VDAC1. These findings suggest that VDAC1 is involved in the release of not only cytochrome c but also of Smac/Diablo and AIF. We also demonstrate that apoptosis induction is associated with VDAC oligomerization, as revealed by chemical cross-linking and monitoring in living cells using Bioluminescence Resonance Energy Transfer. Apoptosis induction by STS, H2O2 or selenite augmented the formation of VDAC oligomers several fold. The results show VDAC1 to be a component of the apoptosis machinery and offer new insight into the functions of VDAC1 oligomerization in apoptosis and of the VDAC1 N-terminal domain in the release of apoptogenic proteins as well as into regulation of VDAC by anti-apoptotic proteins, such as HK and Bcl2.  相似文献   

9.
10.
A CagA-positive Helicobacter pylori (H. pylori) infection can cause malignant transformation of human gastric mucosal epithelial cells, and N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) is a chemical carcinogen that induces gastric carcinogenesis. Whether this environmental chemocarcinogen may synergistically enhance the risk of H. pylori-infected gastric cancer remains unclear. In this study, we adopted a chronic CagA-positive H. pylori infection with or without MNNG coinduction to establish a cellular model in GES-1 cells and an animal model in C57BL/6J mice. The proliferation, cell phenotype, apoptosis, epithelial-mesenchymal transition (EMT), stemness and tumorigenicity of gastric mucosal epithelial cells were analyzed in vitro and in vivo. The results showed that chronic H. pylori-infected GES-1 cells displayed inhibited apoptosis, abnormal proliferation, enhanced invasion, and migration, increased EMT/mesenchymal phenotype, colony formation and stem cell-like properties, and enhanced tumorsphere-formatting efficiency as well as CD44 expression, a known gastric cancer stem cell (CSC) marker. MNNG synergistically promoted the above actions of chronic H. pylori infection. Further studies in chronic H. pylori-infected C57BL/6J mice models showed that an increased incidence of premalignant lesions in the gastric mucosa tissue of the H. pylori-infected mice had occurred, the mouse gastric mucosa cells exhibited similar mesenchymal and CSC-like properties in the above GES-1 cells, and precancerous lesions and EMT/CSC-like phenotypes were reinforced by the synergistic action of MNNG stimulation. H. pylori infection and/or MNNG induction were capable of causing enhanced expression and activation of Wnt2 and β-catenin, indicating that the Wnt/β-catenin pathway is involved in the actions of H. pylori and MNNG. Taken together, these findings suggest that chronic CagA-positive H. pylori infection with MNNG stimulation synergistically induces mesenchymal and CSC-like properties of gastric mucosal epithelial cells.  相似文献   

11.
Helicobacter pylori infection is common in Iran as in other developing countries. Certain genotypes of H. pylori have been associated with increased occurrence of chronic gastritis, peptic ulcers, and gastric adenocarcinoma. The aim of this study was to investigate the clinical relevance of cagL gene and other virulence genotypes of H. pylori isolates with clinical outcomes in Iranian patients. Totally, 126 symptomatic patients who underwent gastroduodenal endoscopy were enrolled in the study. Sixty-one H. pylori strains were isolated from the patients studied. The presence of the cagL, cagA, vacA, iceA, babA2 and sabA genes in the corresponding H. pylori isolates were determined by polymerase chain reaction and the results were compared with clinical outcomes and histopathology. The cagL, cagA, vacA s1, vacA s2, vacA m1, vacA m2, iceA1, iceA2, babA 2 , and sabA genotypes were detected in 96.7, 85.2, 75.4, 24.6, 29.5, 70.5, 42.6, 23, 96.7, and 83.6 % of the isolates, respectively. The three genotypic combinations, cagL/cagA/vacAs1m1/iceA1/babA2/sabA, cagL/cagA/vacAs1m2/iceA1/babA2/sabA, and cagL/cagA/vacAs1m2/iceA2/babA2/sabA were determined as the most prevalent combined genotypes. There was a significant correlation between the presence of cagL gene and cagA positivity (P = 0.02). No significant correlation was found between the various genotypes and clinical outcomes (P > 0.05). The present study showed a very high prevalence of cagL genotype among the H. pylori isolates from Iranian patients. Our results demonstrated that neither single genotype nor combination genotypes of virulence-associated genes was significantly helpful markers for predicting the severity of gastroduodenal disease associated with H. pylori infection in Iranian patients.  相似文献   

12.
The human gastric pathogen, Helicobacter pylori, has co-evolved with its host and established itself in the human stomach possibly millions of years ago. Therefore, the diversity of this bacterium is important in its clinical manifestations. Our aim has been to evaluate the genetic diversity of 40 H. pylori clinical isolates from four different parts of China. The methods of multi-locus sequence typing and vacA allele genotyping were used to assess their genetic diversity. To discriminate MLST, the vacA genotype method was used to identify strains. Patients from the northern, eastern, southern, and southwestern parts of China were recruited randomly from the cities of Beijing, Shanghai, Guangzhou, and Chongqing, respectively. Most of the sequence types are new and have never been reported in the database of the H. pylori multi-locus sequence typing system. The most prevalent vacA genotype in patients was s1a/m2 (80.0%), followed by s1b/m2 (17.5%). In contrast, the s1a/m1 genotype was scarcely represented (2.5%). The vacA genotype varied for each ST. These results showed that the MLST method offers high resolution of the H. pylori isolates in China when compared to vacA genotyping. The vacA allelic s1a has been correlated with the peptic ulcer. Because of the paucity of data on human isolates due to the absence of systematic investigations of H. pylori in China, the data provide useful information for understanding the epidemiology of H. pylori in China from the viewpoint of nucleotide sequence databases.  相似文献   

13.
Background: Helicobacter pylori infection is a major cause of gastritis and gastric carcinoma. Aspirin has anti‐inflammatory and antineoplastic activity. The aim of the present study was to determine the effects of aspirin on H. pylori‐induced gastritis and the development of heterotopic proliferative glands. Methods: H. pylori strain SS1 was inoculated into the stomachs of Mongolian gerbils. Two weeks after inoculation, the animals were fed with the powder diets containing 0 p.p.m. (n = 10), 150 p.p.m. (n = 10), or 500 p.p.m. (n = 10) aspirin. Mongolian gerbils were killed after 36 weeks of infection. Uninfected Mongolian gerbils (n = 10) were used as controls. Histologic changes, epithelial cell proliferation and apoptosis, and prostaglandin E2 (PGE2) levels of gastric tissue were determined. Results: H. pylori infection induced gastric inflammation. Administration of aspirin did not change H. pylori‐induced gastritis, but alleviated H. pylori‐induced hyperplasia and the development of heterotopic proliferative glands. Administration of aspirin accelerated H. pylori‐associated apoptosis but decreased H. pylori‐associated cell proliferation. In addition, the increased gastric PGE2 levels due to H. pylori infection were suppressed by treatment with aspirin, especially at the dose of 500 p.p.m. Conclusions: Aspirin alleviates H. pylori‐induced hyperplasia and the development of heterotopic proliferative glands. Moreover, aspirin increases H. pylori‐induced apoptosis. We demonstrated the antineoplastic activities of aspirin in H. pylori‐related gastric carcinogenesis.  相似文献   

14.
Retinal pigment epithelial (RPE) cells are constantly exposed to oxidative injury while clearing byproducts of photoreceptor turnover, a circumstance thought to be responsible for degenerative retinal diseases. The mechanisms of hydrogen peroxide (H2O2)-induced apoptosis in RPE cells are not fully understood. We studied signal transduction mechanisms of H2O2-induced apoptosis in the human RPE cell line ARPE-19. Activation of two stress kinases (JNK and p38) occurs during H2O2 stimulation, and H2O2-mediated cell death was significantly reduced by their specific inhibition. Exposure to a lethal dose of H2O2 elicited Bax translocation to the mitochondria and release of apoptosis-inducing factor (AIF) from the mitochondria, both of which were abolished by either JNK- or p38-specific inhibitors. Both H2O2-induced cell death and JNK/p38 phosphorylation were partially inhibited by C. difficile toxin B, inhibitor of Rho, Rac, and cdc42. Use of pull-down assays revealed that the small GTPase activated by H2O2 is Rac1. This study is the first to demonstrate that H2O2 induces a Rac1/JNK1/p38 signaling cascade, and that JNK and p38 activation is important for H2O2-induced apoptosis as well as AIF/Bax translocation of RPE cells. Y.-C. Yang and T.-C. Ho contributed equally to the work described herein.  相似文献   

15.
Background and Aims: Helicobacter pylori is a highly diverse pathogen, which encounters epithelial cells as the initial defense barrier during its lifelong infection. The structure of epithelial cells can be disrupted through cleavage of microfilaments. Cytokeratin 18 (CK18) is an intermediate filament, the cleavage of which is considered an early event during apoptosis following activation of effector caspases. Methods: Helicobacter pylori strains were isolated from 76 dyspeptic patients. cagA 3’ variable region and CagA protein status were analyzed by PCR and western blotting, respectively. Eight hours post‐co‐culture of AGS cells with different H. pylori strains, flow cytometric analysis was performed using M30 monoclonal antibody specific to CK18 cleavage‐induced neo‐epitope. Results: Higher rates of CK18 cleavage were detected during co‐culture of AGS cells with H. pylori strains bearing greater numbers of cagA EPIYA‐C and multimerization (CM) motifs. On the other hand, H. pylori strains with greater numbers of EPIYA‐B relative to EPIYA‐C demonstrated a decrease in CK18 cleavage rate. Thus, H. pylori‐mediated cleavage of CK18 appeared proportional to the number of CagA EPIYA‐C and CM motifs, which seemed to be downplayed in the presence of EPIYA‐B motifs. Conclusions: Our observation associating the heterogeneity of cagA variants with the potential of H. pylori strains in the induction of CK18 cleavage as an early indication of apoptosis in gastric epithelial cells supports the fact that apoptosis may be a type‐specific trait. However, additional cagA‐targeted experiments are required to clearly identify the role of EPIYA and CM motifs in apoptosis and/or the responsible effector molecules.  相似文献   

16.
Background: Infection by Helicobacter pylori is often acquired during childhood. Recent studies suggest that inflammatory cytokines may play a role in susceptibility to, and disease phenotype caused by, H. pylori infection, but the association of host genetic variability with risk of H. pylori infection has not been studied in children. Methods: We investigated the relationship between the risk of H. pylori antibody positivity and cytokine gene polymorphisms among 199 two‐year‐old Jamaicans. H. pylori seropositivity was determined by a validated research enzyme‐linked immunosorbent assay. Real‐time Taqman® polymerase chain reaction was used to determine variants at 17 loci in 11 cytokine genes (IL1A, IL1B, IL2, TNF, TLR4, IL4, IL6, IL10, IL10RA, IL12A and IL13). We estimated the odds ratio and the 95% confidence interval for the association of genetic polymorphisms with H. pylori seropositivity, using logistic regression. Results: Forty (20.1%) of 199 children were seropositive. Children's H. pylori seropositivity correlated highly with maternal H. pylori seropositivity (OR = 7.98, 95% CI = 1.05–60.60, p = .02). Children carrying IL1A?889T had a lower risk of H. pylori positivity, compared to those carrying ?889C, with each T allele associated with 43% risk reduction (OR = 0.57, 95% CI = 0.33–0.99, p‐trend = .05). No other loci we examined were associated with the risk of H. pylori seropositivity. Conclusions: The IL1A?889 T allele, known to express a higher level of cytokine IL‐1α, is associated with a lower risk of H. pylori infection among Jamaican children. Our finding supports the hypothesis that an upregulation of pro‐inflammatory cytokines may protect against persistent H. pylori colonization.  相似文献   

17.
Objective : Determine the biochemical pathways involved in induction of apoptosis by ajoene, an organosulfur compound from garlic. Research Methods and Procedures : Mature 3T3‐L1 adipocytes were incubated with ajoene at concentrations up to 200 μM. Viability and apoptosis were quantified using an MTS‐based cell viability assay and an enzyme‐linked immunosorbent assay for single‐stranded DNA (ssDNA), respectively. Intracellular reactive oxygen species (ROS) production was measured based on production of the fluorescent dye, dichlorofluorescein. Activation of the mitogen‐activated protein kinases extracellular signal‐regulating kinase 1/2 (ERK) and c‐Jun‐N‐terminal kinase (JNK) was shown by Western blot. Western blot was also used to show activation of caspase‐3, translocation of apoptosis‐inducing factor (AIF) from mitochondria to nucleus, and cleavage of 116‐kDa poly(ADP‐ribose) polymerase (PARP)‐1. Results : Ajoene induced apoptosis of 3T3‐L1 adipocytes in a dose‐ and time‐dependent manner. Ajoene treatment resulted in activation of JNK and ERK, translocation of AIF from mitochondria to nucleus, and cleavage of 116‐kDa PARP‐1 in a caspase‐independent manner. Ajoene treatment also induced an increase in intracellular ROS level. Furthermore, the antioxidant N‐acetyl‐l ‐cysteine effectively blocked ajoene‐mediated ROS generation, activation of JNK and ERK, translocation of AIF, and degradation of PARP‐1. Discussion : These results indicate that ajoene‐induced apoptosis in 3T3‐L1 adipocytes is initiated by the generation of hydrogen peroxide, which leads to activation of mitogen‐activated protein kinases, degradation of PARP‐1, translocation of AIF, and fragmentation of DNA. Ajoene can, thus, influence the regulation of fat cell number through the induction of apoptosis and may be a new therapeutic agent for the treatment of obesity.  相似文献   

18.
Background: In this study, H. pylori‐infected and noninfected children with gastritis were compared to a control group with respect to circulating CD4+ and CD8+ T lymphocytes expressing activation and differentiation markers. Additionally, the lymphocyte phenotypes of children with gastritis were correlated with the gastric inflammation scores. Materials and Methods: H. pylori infection status was assessed based on [13C]urea breath test, rapid urease test, and histology. Analysis of the lymphocyte surface molecule expression was carried out by triple‐color flow cytometry. Results: The group of H. pylori‐infected children showed an elevated proportion of peripheral B cells with CD19low, along with a twofold increase in the percentage of memory (CD45RO+) CD4+ and CD8+ T‐cell subsets (p < .05). Moreover, a positive correlation between the age and the percentage of these subsets was seen (r = .38, p = .04 and r = .56, p < .01, respectively). Children with gastritis but without infection had a slightly increased percentage of CD8+ T cells and CD56+ NK cells, CD3high T cells and CD45ROhigh CD4+ T‐cell subsets (p < .05). Both H. pylori‐infected and noninfected children with gastritis were characterized by an increased percentage of memory/effector CD4+ T cells, the presence of NK cells with CD56high, memory T‐cell subset with CD4high, and naive, memory, memory/effector, and effector T‐cell subsets with CD8high (p < .05). Gastric inflammation scores correlated positively with the percentage of CD4+ T lymphocytes in H. pylori‐infected children (r = .42, p = .03). In noninfected children, gastric inflammation scores correlated positively with the percentage of B cells (r = .45, p = .04). Conclusion: In H. pylori‐negative children, gastritis was associated with an increased percentage of activated NK and T cells, and intermediate‐differentiated peripheral blood CD4+ T cells, which was more pronounced in H. pylori‐positive children who also showed an increased B‐cell response. However, increased inflammation was only associated with the elevation of CD4+ T‐cell percentage in H. pylori‐positive children as well as B‐cell percentage in H. pylori‐negative children with gastritis.  相似文献   

19.
Arsenic trioxide (ATO) and paclitaxel (TAXOL) are effective in the treatment of various types of cancers. Both drugs induce G2/M arrest. We have previously shown that ATO is a potent inducer of apoptosis in myeloma cells expressing mutant p53 engaging both the intrinsic and extrinsic apoptotic pathways. Here we compared the effect of ATO and TAXOL on myeloma cells expressing mutant p53 and varying levels of Bcl-2. ATO rapidly induced Apo2/TRAIL, activation of caspase 8, cleavage of BID, depolarization of mitochondrial membrane (MM) and release of AIF from mitochondria in a Bcl-2 independent fashion. Apoptosis was associated with early formation of ring-like perinuclear condensed chromatin co-localized with AIF. In contrast, paclitaxel-induced apoptosis and MM depolarization, cytochrome C release and activation of caspase 9 was blocked by Bcl-2. Apoptosis was associated with a random chromatin condensation and nuclear fragmentation with no early involvement of AIF.  相似文献   

20.
Abstract Mitochondria are involved in apoptosis of mammalian cells and even single‐cell organisms, but mitochondria are not required in apoptosis in cultured Drosophila cells such as S2 and BG2 cell lines. It is not very clear whether mitochondria are involved in apoptosis in other insect cells such as lepidopteran cell lines. Thus, we determined to elucidate the role of mitochondria in apoptosis induced by ultraviolet radiation in Spodoptera litura (Lepidoptera: Noctuidae) cell line (SL‐ZSU‐1). The Western blot results suggested that cytochrome c in the ultraviolet‐treated SL‐1 cells was released from the mitochondria to cytosol as early as 4 h after the induction of ultraviolet radiation and increased in the cytosolic fractions in a time‐dependent manner. Flow cytometric analysis of mitochondrial membrane potential (ΔΨm) of SL‐ZSU‐1 cell treated with ultraviolet‐C (UV‐C) light indicated the decrease in mitochondrial membrane potential was dependent on the times of ultraviolet treatment. Both of them are different from apoptosis in cultured Drosophila melanogaster cell lines (S2 and BG2) and it appears evident mitochondria are involved in apoptosis of the studied lepidopteran cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号