首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genus Borrelia includes the causative agents of Lyme disease and relapsing fever. An unusual feature of these bacteria is a genome that includes linear DNA molecules with covalently closed hairpin ends referred to as telomeres. We have investigated the mechanism by which the hairpin telomeres are processed during replication. A synthetic 140 bp sequence having the predicted structure of a replicated telomere was shown to function as a viable substrate for telomere resolution in vivo, and was sufficient to convert a circular replicon to a linear form. Our results suggest that the final step in the replication of linear Borrelia replicons is a site-specific DNA breakage and reunion event to regenerate covalently closed hairpin ends. The telomere substrate described here will be valuable both for in vivo manipulation of linear DNA in Borrelia and for in vitro studies to identify and characterize the telomere resolvase.  相似文献   

2.
Spirochetes of the genus Borrelia include the causative agents of Lyme disease and relapsing fever. These bacteria have a highly segmented genome where most replicons are linear molecules terminated by covalently closed hairpin telomeres. Moreover, these genomes appear to be in a state of flux with extensive and ongoing DNA rearrangements by unknown mechanisms. The B. burgdorferi telomere resolvase ResT generates the hairpin telomeres from replication intermediates in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases and tyrosine recombinases. We report here the unexpected ability of ResT to catalyze the fusion of hairpin telomeres in a reversal of the telomere resolution reaction. We propose that stabilized ResT-mediated telomere fusions are an underlying force for maintaining the B. burgdorferi genome in a state of flux.  相似文献   

3.
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpin telomeres. Hairpin telomeres present an uninterrupted DNA chain to the replication machinery overcoming the ‘end-replication problem’ for the linear replicons. Hairpin telomeres are formed from inverted repeat replicated telomere junctions by the telomere resolvase, ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. We report here that ResT also possesses single-strand annealing activity and a limited ability to promote DNA strand exchange reactions on partial duplex substrates. This combination of activities suggests ResT is a nexus between the seemingly distinct processes of telomere resolution and homologous recombination. Implications for hairpin telomere replication and linear plasmid recombination, including antigenic variation, are discussed.  相似文献   

4.
Borrelia burgdorferi, a causative agent of Lyme disease, has a highly unusual segmented genome composed of both circular molecules and linear DNA replicons terminated by covalently closed hairpin ends or telomeres. Replication intermediates of the linear molecules are processed into hairpin telomeres via the activity of ResT, a telomere resolvase. We report here the results of limited proteolysis and mass spectroscopy to identify two main structural domains in ResT, separated by a chymotrypsin cleavage site between residues 163 and 164 of the 449 amino acid protein. The two domains have been overexpressed and purified. DNA electrophoretic mobility shift assays revealed that the C-terminal domain (ResT(164-449)) displays sequence-specific DNA binding to the box 3,4,5 region of the telomere, while the N-terminal domain (ResT(1-163)) exhibits sequence-independent DNA binding activity. Further analysis by DNase I footprinting supports a model for telomere resolution in which the hairpin binding module of the N-terminal domain is delivered to the box 1,2 region of the telomere through its tethering to ResT(164-449). Conversely, ResT(1-164) may play an important regulatory role by modulating both sequence-specific DNA binding activity and catalysis by the C-terminal domain.  相似文献   

5.
The prophage of coliphage N15 is not integrated into the chromosome but exists as a linear plasmid molecule with covalently closed hairpin ends (telomeres). Upon infection the injected phage DNA circularizes via its cohesive ends. Then, a phage-encoded enzyme, protelomerase, cuts the circle and forms the hairpin telomeres. N15 protelomerase acts as a telomere-resolving enzyme during prophage DNA replication. We characterized the N15 replicon and found that replication of circular N15 miniplasmids requires only the repA gene, which encodes a multidomain protein homologous to replication proteins of bacterial plasmids replicated by a theta-mechanism. Replication of a linear N15 miniplasmid also requires the protelomerase gene and telomere regions. N15 prophage replication is initiated at an internal ori site located within repA and proceeds bidirectionally. Electron microscopy data suggest that after duplication of the left telomere, protelomerase cuts this site generating Y-shaped molecules. Full replication of the molecule and subsequent resolution of the right telomere then results in two linear plasmid molecules. N15 prophage replication thus appears to follow a mechanism that is distinct from that employed by eukaryotic replicons with this type of telomere and suggests the possibility of evolutionarily independent appearances of prokaryotic and eukaryotic replicons with covalently closed telomeres.  相似文献   

6.
An unusual feature of bacteria in the genus Borrelia (causative agents of Lyme disease and relapsing fever) is a segmented genome consisting of multiple linear DNA molecules with covalently closed hairpin ends, known as telomeres. The hairpin telomeres are generated by a DNA breakage and reunion process (telomere resolution) promoted by ResT, an enzyme using an active site related to that of tyrosine recombinases and type IB topoisomerases. In this study, we define the minimal sequence requirements for a functional telomere and identify specific basepairs that appear to be important for telomere resolution. In addition, we show that the two naturally occurring and distinct telomere spacings found in B. burgdorferi can both be efficiently processed by ResT. This flexibility for substrate utilization by ResT supports the argument for a single telomere resolvase in Borrelia. Furthermore, although telomere recognition requires sequence specificity in part of the substrate, DNA cleavage is instead position dependent and occurs at a fixed distance from the axis of symmetry and the conserved sequence of box 3 in the different replicated telomere substrates. This positional dependence for DNA cleavage has not been observed previously for a tyrosine recombinase.  相似文献   

7.
Spirochetes of the genus Borrelia include the causative agents of Lyme disease and relapsing fever. They possess unusual, highly segmented genomes composed mostly of linear replicons with covalently closed hairpin telomeres. The telomeres are formed from inverted repeat replicated telomere junctions ( rTel s) by the telomere resolvase, ResT. ResT uses a reaction mechanism with similarities to that employed by the type IB topoisomerases and tyrosine recombinases. Here, we report that the relationship of ResT to the tyrosine recombinases extends to the ability to synapse-replicated telomeres and to catalyse the formation of a Holliday junction. We also report that ResT can use asymmetrized substrates that mimic the properties of a recombination site for a tyrosine recombinase, to form Holliday junctions. We propose a model for how this explains the origin of genome linearity in the genus Borrelia.  相似文献   

8.
Replication at the telomeres of the Streptomyces linear plasmid pSLA2   总被引:13,自引:6,他引:7  
The Streptomyces linear plasmid pSLA2 initiates DNA replication bidirectionally towards its telomeres from a site located near the centre of the molecule; at the telomeres, the recessed ends of lagging strands are filled in by non-displacing DNA synthesis. Here, we report experiments that test three proposed mechanisms for lagging-strand fill-in. We present data inconsistent with recombinational or terminal hairpin models for the formation of full-length duplex pSLA2 DNA. Instead, we find that deletions in short, distantly separated homologous palindromes in the leading-strand 3' overhang prevent propagation of linear pSLA2 DNA, implicating a mechanism of palindrome-mediated leading-strand fold-back in telomere replication. We further show that circularized pSLA2 DNA molecules are opened in vivo precisely at the terminal nucleotides of telomeres, generating functional linear replicons containing native telomeres covalently bound to a protein at their 5' DNA termini. Together, our results support a model in which pairing of multiple widely separated pSLA2 palindromes anchors the 3' end of the leading-strand overhang to a site near the overhang's base — providing a recognition site for terminal-protein-primed DNA synthesis and subsequent endonucleolytic processing. Thus, the replication of Streptomyces plasmid telomeres may have features in common with the mechanism proposed for telomere replication in autonomous parvoviruses.  相似文献   

9.
The genus Borrelia includes the causative agents of Lyme disease and relapsing fever. An unusual feature of these bacteria is a segmented genome consisting mostly of a number of linear DNA molecules with covalently closed hairpin ends or telomeres. In this study we show that the BBB03 locus encodes the B. burgdorferi telomere resolvase, ResT. The purified protein catalyzes telomere resolution in vitro through a unique reaction: breakage of two phosphodiester bonds in a single DNA duplex (one on each strand) and joining of each end with the opposite DNA strand to form covalently closed hairpin telomeres. Telomere resolution by ResT occurs through a two-step transesterification reaction involving the formation of a covalent protein-DNA intermediate at a position three nucleotides from the axis of symmetry in each strand of the substrate.  相似文献   

10.
Spirochetes of the genus Borrelia include the tick-transmitted causative agents of Lyme disease and relapsing fever. They possess unusual genomes composed mainly of linear replicons terminated by closed DNA hairpins. Hairpin telomeres are formed from inverted repeat replicated telomere junctions (rTels) by the telomere resolvase ResT. ResT uses a reaction mechanism similar to that of the type IB topoisomerases and tyrosine recombinases. ResT can catalyze three distinct reactions: telomere resolution, telomere fusion, and Holliday junction (HJ) formation. HJ formation is known to occur only in the context of a synapsed pair of rTels. To test whether telomere resolution was synapsis-dependent, we performed experiments with rTel substrates immobilized on streptavidin-coated beads. We report that telomere resolution by ResT is synapsis-independent, indicating that alternative complexes are formed for telomere resolution and HJ formation. We also present evidence that dual hairpin telomere formation precedes product release. This mechanism of telomere resolution prevents the appearance of broken telomeres. We compare and contrast this mechanism with that proposed for TelK, the telomere resolvase of φKO2.  相似文献   

11.
The Borrelia telomere resolvase, ResT, forms the unusual hairpin telomeres of the linear Borrelia replicons in a process referred to as telomere resolution. Telomere resolution is a DNA cleavage and rejoining reaction that proceeds from a replicated telomere intermediate in a reaction with mechanistic similarities to that catalyzed by type IB topoisomerases. Previous reports have implicated the hairpin-binding module, at the end of the N-terminal domain of ResT, in distorting the DNA between the scissile phosphates so as to promote DNA cleavage and hairpin formation by the catalytic domain. We report that unwinding the DNA between the scissile phosphates, prior to DNA cleavage, is a key cold-sensitive step in telomere resolution. Through the analysis of ResT mutants, rescued by substrate modifications that mimic DNA unwinding between the cleavage sites, we show that formation and/or stabilization of an underwound pre-cleavage intermediate depends upon cooperation of the hairpin-binding module and catalytic domain. The phenotype of the mutants argues that the pre-cleavage intermediate promotes strand ejection to favor the forward reaction and that subsequent hairpin capture is a reversible reaction step. These reaction features are proposed to promote hairpin formation over strand resealing while allowing reversal back to substrate of aborted reactions.  相似文献   

12.
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularises via cohesive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). We demonstrate that this enzyme acts in vivo on specific substrates, and show that it is necessary for replication of the linear prophage. We show that protelomerase is an end-resolving enzyme responsible for processing of replicative intermediates. Removal of protelomerase activity resulted in accumulation of replicative intermediates that were found to be circular head-to-head dimers. N15 protelomerase and its target site constitute a functional unit acting on other replicons independently of other phage genes; a mini-F or mini-P1 plasmid carrying this unit replicates as a linear plasmid with covalently closed ends. Our results suggest the following model of N15 prophage DNA replication. Replication is initiated at an internal ori site located close to the left end of plasmid DNA and proceeds bidirectionally. After replication of the left telomere, protelomerase cuts this sequence and forms two hairpin loops telL. After duplication of the right telomere (telR) the same enzyme resolves this sequence producing two linear plasmids. Alternatively, full replication of the linear prophage to form a circular head-to-head dimer may precede protelomerase-mediated formation of hairpin ends.  相似文献   

13.
Agrobacterium tumefaciens C58, the pathogenic bacteria that causes crown gall disease in plants, harbors one circular and one linear chromosome and two circular plasmids. The telomeres of its unusual linear chromosome are covalently closed hairpins. The circular and linear chromosomes co-segregate and are stably maintained in the organism. We have determined the sequence of the two ends of the linear chromosome thus completing the previously published genome sequence of A. tumefaciens C58. We found that the telomeres carry nearly identical 25-bp sequences at the hairpin ends that are related by dyad symmetry. We further showed that its Atu2523 gene encodes a protelomerase (resolvase) and that the purified enzyme can generate the linear chromosomal closed hairpin ends in a sequence-specific manner. Agrobacterium protelomerase, whose presence is apparently limited to biovar 1 strains, acts via a cleavage-and-religation mechanism by making a pair of transient staggered nicks invariably at 6-bp spacing as the reaction intermediate. The enzyme can be significantly shortened at both the N and C termini and still maintain its enzymatic activity. Although the full-length enzyme can uniquely bind to its product telomeres, the N-terminal truncations cannot. The target site can also be shortened from the native 50-bp inverted repeat to 26 bp; thus, the Agrobacterium hairpin-generating system represents the most compact activity of all hairpin linear chromosome- and plasmid-generating systems to date. The biochemical analyses of the protelomerase reactions further revealed that the tip of the hairpin telomere may be unusually polymorphically capable of accommodating any nucleotide.  相似文献   

14.
Causative agents of Lyme disease and relapsing fever, including Borrelia burgdorferi and Borrelia hermsii, respectively, are unusual among bacteria in that they possess a segmented genome with linear DNA molecules terminated by hairpin ends, known as telomeres. During replication, these telomeres are processed by the essential telomere resolvase, ResT, in a unique biochemical reaction known as telomere resolution. In this study, we report the identification of the B. hermsii resT gene through cross-species hybridization. Sequence comparison of the B. hermsii protein with the B. burgdorferi orthologue revealed 67% identity, including all the regions currently known to be crucial for telomere resolution. In vitro studies, however, indicated that B. hermsii ResT was unable to process a replicated B. burgdorferi type 2 telomere substrate. In contrast, in vivo cross-species complementation in which the native resT gene of B. burgdorferi was replaced with B. hermsii resT had no discernible effect, even though B. burgdorferi strain B31 carries at least two type 2 telomere ends. The B. burgdorferi ResT protein was also able to process two telomere spacing mutants in vivo that were unresolvable in vitro. The unexpected differential telomere processing in vivo versus in vitro by the two telomere resolvases suggests the presence of one or more accessory factors in vivo that are normally involved in the reaction. Our current results are also expected to facilitate further studies into ResT structure and function, including possible interaction with other Borrelia proteins.  相似文献   

15.
The termini of linear chromosomes are protected by specialized DNA structures known as telomeres that also facilitate the complete replication of DNA ends. The simplest type of telomere is a covalently closed DNA hairpin structure found in linear chromosomes of prokaryotes and viruses. Bidirectional replication of a chromosome with hairpin telomeres produces a catenated circular dimer that is subsequently resolved into unit-length chromosomes by a dedicated DNA cleavage-rejoining enzyme known as a hairpin telomere resolvase (protelomerase). Here we report a crystal structure of the protelomerase TelK from Klebsiella oxytoca phage varphiKO2, in complex with the palindromic target DNA. The structure shows the TelK dimer destabilizes base pairing interactions to promote the refolding of cleaved DNA ends into two hairpin ends. We propose that the hairpinning reaction is made effectively irreversible by a unique protein-induced distortion of the DNA substrate that prevents religation of the cleaved DNA substrate.  相似文献   

16.
Evolution of the linear DNA replicons of the Borrelia spirochetes.   总被引:9,自引:0,他引:9  
Members of the spirochete genus Borrelia carry numerous linear DNA replicons with covalently closed hairpin telomeres. The genome of one member of this genus, B. burgdorferi B31, has now been completely characterized and contains a linear chromosome, twelve linear plasmids and nine circular extra-chromosomal elements. The phylogenetic position of the Borrelia spirochetes strongly suggests that a progenitor with circular replicons acquired the ability to replicate linear DNA molecules.  相似文献   

17.
Linear replicons can be found in a minority of prokaryotic organisms, including Borrelia species and Agrobacterium tumefaciens. The problem with replicating the lagging strand end of linear DNAs is circumvented in these organisms by the presence of covalently closed DNA hairpin telomeres at the DNA termini. Telomere resolvases are enzymes responsible for generating these hairpin telomeres from a dimeric replication intermediate through a two-step DNA cleavage and rejoining reaction referred to as telomere resolution. It was previously shown that the agrobacterial telomere resolvase, TelA, possesses ssDNA annealing activity in addition to telomere resolution activity. The annealing activity derives, chiefly, from the N-terminal domain. This domain is dispensable for telomere resolution. In this study, we used activity analyses of an N-terminal domain deletion mutant, domain add back experiments, and protein–protein interaction studies and we report that the N-terminal domain of TelA is involved in inhibitory interactions with the remainder of TelA that are relieved by the binding of divalent metal ions. We also found that the regulation of telomere resolution by the N-terminal domain of TelA extends to suppression of inappropriate enzymatic activity, including hairpin telomere fusion (reaction reversal) and recombination between replicated telomeres to form a Holliday junction.  相似文献   

18.
The prophage of coliphage N15 is not integrated into the bacterial chromosome but exists as a linear plasmid molecule with covalently closed ends. Upon infection of an Escherichia coli cell, the phage DNA circularizes via cohensive ends. A phage-encoded enzyme, protelomerase, then cuts at another site, telRL, and forms hairpin ends (telomeres). Purified protelomerase alone processes circular and linear plasmid DNA containing the target site telRL to produce linear double-stranded DNA with covalently closed ends in vitro. N15 protelomerase is necessary for replication of the linear prophage through its action as a telomere-resolving enzyme. Replication of circular N15-based miniplasmids requires the only gene repA that encodes multidomain protein homologous to replication proteins of bacterial plasmids replicated by theta-mechanism, particularly, phage P4 alpha-replication protein. Replication of the N15 prophage is initiated at an internal ori site located within repA. Bidirectional replication results in formation of the circular head-to-head, tail-to-tail dimer molecule. Then the N15 protelomerase cuts both duplicated telomeres generating two linear plasmid molecules with covalently closed ends. The N15 prophage replication thus appears to follow the mechanism distinct from that employed by poxviruses and could serve as a model for other prokaryotic replicons with hairpin ends, and particularly, for linear plasmids and chromosomes of Borrelia burgdorferi.  相似文献   

19.
Spirochetes of the genus Borrelia have double-stranded linear plasmids with covalently closed ends. The physical nature of the terminal connections was determined for the 16-kb linear plasmid of the B31 strain of the Lyme disease agent Borrelia burgdorferi. Native telomeric fragments representing the left and right ends of this plasmid were isolated and subjected to Maxam-Gilbert sequence analysis. At the plasmid ends the two DNA strands formed an uninterrupted, perfectly palindromic, AT-rich sequence. This Borrelia linear plasmid consisted of a continuous polynucleotide chain that is fully base paired except for short single-stranded hairpin loops at each end. The left and right telomeres of the 16-kb plasmid were identical for 16 of the first 19 nucleotide positions and constituted an inverted terminal repeat with respect to each other. The left telomere of the 49-kb plasmid of strain B31 was identical to the corresponding telomere of the 16-kb plasmid. Different-sized plasmids of other strains of B. burgdorferi also contained sequences homologous to the left end of the 16-kb plasmid. When the borrelia telomeres were compared with telomeric sequences of other linear double-stranded DNA replicons, sequence similarities were noted with poxviruses and particularly with the iridovirus agent of African swine fever. The latter virus and a Borrelia sp. share the same tick vector. These findings suggest that the novel linear plasmids of Borrelia originated through a horizontal genetic transfer across kingdoms.  相似文献   

20.
The ability of linear replicons to propagate their DNA after telomere damage is essential for perpetuation of the genetic information they carry. We introduced deletions at specific locations within telomeres of streptomycete linear plasmids and investigated mechanisms that enable survival. Here, we report that rescue of such plasmids in Streptomyces lividans occurs by three distinct types of events: (i) repair of the damaged telomere by homologous recombination; (ii) circularization of the plasmid by non-homologous end-to-end joining; and (iii) formation of long palindromic linear plasmids that duplicate the intact telomere by a non-recombinational process. The relative frequency of use of these survival mechanisms depended on the location and length of the telomeric DNA deletion. Repair by intermolecular recombination between the telomeres of chromosomes and plasmids, deletion of additional DNA during plasmid circularization, and insertion of chromosomal DNA fragments into plasmids during end-to-end joining were observed. Our results show that damage to telomeres of Streptomyces linear replicons can promote major structural transformations in these replicons as well as genetic exchange between chromosomes and extrachromosomal DNA. Our findings also suggest that spontaneous circularization of linear Streptomyces chromosomes may be a biological response to instances of telomere damage that cannot be repaired by homologous recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号