首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although mice from almost all inbred strains produce IgM anti-DNA antibody in response to B cell mitogens, only (NZB x NZW)F1 mice and mice from other strains that are genetically predisposed to autoimmunity spontaneously produce anti-DNA antibody of the IgG isotype. Because (NZB x NZW)F1 mice display marked B cell hyperactivity, anti-DNA antibody production in these mice has been thought to result from spontaneous, polyclonal B cell activation. Although this may be true for IgM anti-DNA antibodies, our results demonstrate that IgG anti-DNA antibodies are not polyclonal. Rather, IgG anti-DNA autoantibodies within an individual autoimmune mouse are oligoclonal and somatically mutated. These results demonstrate that IgG anti-DNA autoantibodies are the products of clonally selective B cell stimulation and exhibit the same characteristics as secondary immune antibodies to conventional immunogens: they are IgG, they are clonally restricted, and they are somatically mutated.  相似文献   

2.
A model of genetically determinate diabetes mellitus in hybrid db/db mice with hereditary load by generalized autoimmune pathology has been described. The data on the character of hormonal-metabolic disturbances permit a conclusion on more serious course of diabetes mellitus in mice (C57Bl/Ks x NZB)F2 db/db as against (C57BL/Ks x NZW)F2 db/db, that is correlated with expression of autoimmune pathology in parent lines of New Zealand mice NZB and NZW. It is stated that diabetic syndrome in males proceeds in more serious form than in females.  相似文献   

3.
The BM12 mutation and autoantibodies to dsDNA in NZB.H-2bm12 mice   总被引:4,自引:0,他引:4  
Molecular and genetic tools have been used to shed light on the genes that contribute to susceptibility to murine lupus and the mechanisms that lead to immunopathology. The MHC genes and their products have been consistently shown to contribute toward the development of disease. To understand the contribution of MHC-class II genes, our laboratory had derived two inbred strains of mice, NZB.H-2bm12 and NZB.H-2b. These new colonies of mice were studied and compared in the 10th generation backcross; inbreeding was serially followed by H-2 typing, responses to beef/porcine insulin, and the presence of the B6 Ig allotype, IgG2ab. Of great interest is the finding that NZB.H-2bm12, in contrast to NZB.H-2b or NZB (H-2d), mice develop high titer autoantibodies to dsDNA. This result is unique because NZB (H-2d) mice, unliked NZB x NZW (NZB/W F1) or NZB x SWR (SNF1) hybrids do not develop autoantibodies to dsDNA, even after immunization. NZB mice, in contrast, are characterized only by autoantibodies to ssDNA. Our observation is also striking because the gene conversion that resulted in the I-A beta bm12 mutation occurred at amino acid residues 68, 71, and 72 of I-E beta b. Recently the contribution of NZW to accelerated autoimmunity in the NZB x NZW F1 hybrid has also been linked to H-2 and a single amino acid change at amino acid 72 of I-E beta. Thus, amino acid residue 72 may be a hot spot for disorders of immune regulation when superimposed on the appropriate genetic background. NZB mice expressing the I-Abm12 mutation will allow specific dissection of the requirements for autoantibody production to dsDNA uncomplicated by heterozygosity.  相似文献   

4.
Both suppressive and promoting roles of NKT cells have been reported in the pathogenesis of systemic lupus erythematosus (SLE). Herein, we found that although New Zealand mice have normal frequencies of NKT cells, their in vitro potential to produce IL-4 and IFN-gamma in response to alpha-galactosylceramide was remarkably impaired in New Zealand Black (NZB) mice prone to mild SLE, while production was highly up-regulated in nonautoimmune New Zealand White (NZW) mice and at intermediate levels in (NZB x NZW)F(1) mice, which are prone to severe SLE. Because this aberration is evident in young mice before disease onset, genetic mechanisms are thought to be involved. Genome-wide quantitative trait locus analysis and association studies revealed that a locus linked to D11Mit14 on chromosome 11 may be involved in the difference in cytokine-producing potential between NZB and NZW NKT cells. Additionally, (NZB x NZW)F(1) x NZB backcross progeny with the NZW genotype for D11Mit14 showed significantly increased frequencies of age-associated SLE phenotypes, such as high serum levels of IgG, IgG anti-DNA Abs, and lupus nephritis. In coculture studies, alpha-galactosylceramide-stimulated NKT cells from NZW and (NZB x NZW)F(1) mice, but not from NZB mice, showed significantly enhanced Ig synthesis by B cells. These findings suggest that the D11Mit14-linked NZW locus may contribute to the development of SLE in (NZB x NZW)F(1) mice through a mechanism that up-regulates NKT cell function. Thus, this NZW allele may be a candidate of the NZW modifiers that act to promote (NZB x NZW)F(1) disease.  相似文献   

5.
Systemic lupus erythematosus (SLE) is inherited as a complex polygenic trait. (New Zealand Black (NZB) x New Zealand White (NZW)) F(1) hybrid mice develop symptoms that remarkably resemble human SLE, but (NZB x PL/J)F(1) hybrids do not develop lupus. Our study was conducted using (NZW x PL/J)F(1) x NZB (BWP) mice to determine the effects of the PL/J and the NZW genome on disease. Forty-five percent of BWP female mice had significant proteinuria and 25% died before 12 mo of age compared with (NZB x NZW)F(1) mice in which >90% developed severe renal disease and died before 12 mo. The analysis of BWP mice revealed a novel locus (chi(2) = 25.0; p < 1 x 10(-6); log of likelihood = 6.6 for mortality) designated Wbw1 on chromosome 2, which apparently plays an important role in the development of the disease. We also observed that both H-2 class II (the u haplotype) and TNF-alpha (TNF(z) allele) appear to contribute to the disease. A suggestive linkage to proteinuria and death was found for an NZW allele (designated Wbw2) telomeric to the H-2 locus. The NZW allele that overlaps with the previously described locus Sle1c at the telomeric part of chromosome 1 was associated with antinuclear autoantibody production in the present study. Furthermore, the previously identified Sle and Lbw susceptibility loci were associated with an increased incidence of disease. Thus, multiple NZW alleles including the Wbw1 allele discovered in this study contribute to disease induction, in conjunction with the NZB genome, and the PL/J genome appears to be protective.  相似文献   

6.
The F(1) hybrid of New Zealand Black (NZB) and New Zealand White (NZW) mice develop an autoimmune disease similar to human systemic lupus erythematosus. Because NZB and (NZB x NZW)F(1) mice manifest expansions of marginal zone (MZ) B and B1a cells, it has been postulated that these B cell abnormalities are central to the NZB genetic contribution to lupus. Our previous studies have shown that a major NZB contribution comes from the Nba2 locus on chromosome 1. C57BL/6 (B6) mice congenic for Nba2 produce antinuclear Abs, and (B6.Nba2 x NZW)F(1) mice develop elevated autoantibodies and nephritis similar to (NZB x NZW)F(1) mice. We studied B cell populations of B6.Nba2 mice to better understand the mechanism by which Nba2 leads to disease. The results showed evidence of B cell activation early in life, including increased levels of serum IgM, CD69(+) B cells, and spontaneous IgM production in culture. However, B6.Nba2 compared with B6 mice had a decreased percentage of MZ B cells in spleen, and no increase of B1a cells in the spleen or peritoneum. Expansions of these B cell subsets were also absent in (B6.Nba2 x NZW)F(1) mice. Among the strains studied, B cell expression of beta(1) integrin correlated with differences in MZ B cell development. These results show that expansions of MZ B and B1a cells are not necessary for the NZB contribution to lupus and argue against a major role for these subsets in disease pathogenesis. The data also provide additional insight into how Nba2 contributes to lupus.  相似文献   

7.
The sex hormones, estradiol and testosterone, are able to modulate the status of spontaneous reactions of humoral immunity to type I collagen in ontogenesis of NZB x NZW (F1) females. Administration of estradiol to puber and unpuber females leads to a significant increase in the reactivity levels. The autoimmune status to type I collagen in NZB x NZW (F1) males is nonreactive to sex hormones influence. The results obtained corroborate the suggestion of the important role of sex hormones in formation of sex dimorphism and age variability to autoimmunity to type I collagen.  相似文献   

8.
Treatment of murine lupus with monoclonal anti-T cell antibody   总被引:14,自引:0,他引:14  
Three strains of autoimmune mice (MRL/lpr, NZB/NZW, and BXSB) were treated with repeated injections of rat monoclonal anti-T cell antibody (anti-Thy-1.2) in order to determine 1) the extent and duration of target cell depletion, 2) the effect of T cell depletion on the course of autoimmunity, and 3) the magnitude and consequences of the host immune response to the monoclonal antibody. Mice were treated with 6 mg of anti-Thy-1.2 every 2 wk beginning early in their disease. Treatment produced a substantial reduction in circulating T cells in all three strains. Therapy was beneficial in MRL/lpr mice. It reduced lymphadenopathy, lowered autoantibody concentrations, retarded renal disease, and prolonged life. In contrast, treatment did not improve autoimmunity in NZB/NZW mice, and it caused fatal anaphylaxis in BXSB mice. These findings demonstrate that monoclonal antilymphocyte antibodies can serve as specific probes to examine the cells that contribute to autoimmunity. Moreover, they illustrate the potential therapeutic value of monoclonal antilymphocyte antibodies when a pathogeneic cell subset can be identified. However, the same antibody may have a broad range of effects, from efficacy to severe toxicity, even in diseases that share clinical features.  相似文献   

9.
The susceptibility of autoimmune NZB and (NZB X NZW)F1 mice to the induction of tolerance by monomeric BSA was compared with several normal mouse strains. Unresponsiveness in T and B lymphocyte compartments was probed by challenging with DNP8BSA and measuring anti-DNP and anti-BSA antibodies separately. Tolerance induced by monomeric BSA was carrier specific, and there was no evidence of epitope-specific suppression. Normal NZW, NFS, and B10.D2 mice were easily rendered tolerant with monomeric BSA and did not produce anti-DNP or anti-BSA antibodies after challenge with DNP8BSA. By contrast, the lack of anti-DNP antibody response in similarly treated NZB mice was dependent on the dose of monomeric BSA, indicating that the helper T cells were partially resistant to tolerance induction. NZB mice treated with a high dose of monomeric BSA produced anti-BSA, but not anti-DNP, antibodies after immunization. Thus, the anti-carrier B cells in NZB mice may have been primed by monomeric BSA. The presence of the xid gene on the NZB background rendered the mice susceptible to induction of tolerance, suggesting that the tolerance defect in NZB mice involves the B cell compartment. This abnormal antibody response was a dominant trait: (NZB X NFS)F1 and (NZB X B10.D2)F1 mice had the same characteristics as NZB mice. These F1 hybrids do not develop autoimmune disease, indicating that resistance to experimental tolerance induction expressed at a B cell level may not be sufficient for disease development. In contrast to NZB and other NZB F1 hybrids, (NZB X NZW)F1 hybrids treated with monomeric BSA and challenged with DNP8BSA responded to both DNP and BSA. The contribution of a B cell defect to the tolerance abnormality of (NZB X NZW)F1 mice was examined by analyzing the effect of the xid gene on the progeny of (NZB.xid X NZW)F1 mice. Unlike the effect of the xid gene on NZB mice, both phenotypically normal heterozygous female and phenotypically xid hemizygous male mice produced anti-DNP and anti-BSA antibodies after tolerance induction and immunization, demonstrating that a major helper T cell abnormality was present in (NZB X NZW)F1 mice. The (NZW X B10.D2)F1 hybrid was rendered tolerant by this procedure, indicating that the helper T cell defect (NZB X NZW)F1 mice may have resulted from gene complementation with the NZB mice contributing partial resistance of T helper cells to tolerance induction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Both NZB nu/+ and NZW nu/+ mice were microbially clean by cesarean section. The (NZB x NZW)F1 hybrid (NZB/W) nu/nu mice and nu/+ littermates were then generated by mating of NZB nu/+ with NZW nu/+mice under specific pathogen-free conditions. The female NZB/W F1 nu/nu mice did not develop autoimmune kidney disease, whereas all of nu/+ female littermates mice exhibited proteinuria and died of renal failure with a 50% survival time of 35 wk. Namely, nude mice had no signs of proteinuria up to the time of their death caused by other diseases rather than glomerulonephritis, and their mean survival time was greater than 45 wk. Nude mice had also no anti-ssDNA antibody in their serum. However, splenic B cells of NZB/W nude mice exhibited hyper-responsiveness to both LPS and B151-TRF2, a T cell-derived polyclonal B cell-stimulation factor, and produced large numbers of Ig-secreting cells and anti-TNP plaque-forming cells as well as anti-ssDNA antibody comparable to the nu/+ littermate mice. Interestingly, thymus-engrafted NZB/W nude mice developed autoimmune disease exemplified by the induction of anti-ssDNA antibody and proteinuria at approximately the same time as their nu/+ littermates. These results indicate that the B cell hyper-responsiveness found in NZB/W mice is apparently determined by the T cell-independent process, and T cells are obligatorily required for the development of autoimmune disease in NZB/W mice.  相似文献   

11.
Lupus glomerulonephritis is initiated by deposition of IgG-containing immune complexes in renal glomeruli. FcR engagement by immune complexes (IC) is crucial to disease development as uncoupling this pathway in FcRgamma(-/-) abrogates inflammatory responses in (NZB x NZW)F1 mice. To define the roles of FcR-bearing hemopoietic cells and of kidney resident mesangial cells in pathogenesis, (NZB x NZW)F1 bone marrow chimeras were generated. Nephritis developed in (NZB x NZW)F1 mice expressing activating FcRs in hemopoietic cells. Conversely, recipients of FcRgamma(-/-) bone marrow were protected from disease development despite persistent expression of FcRgamma in mesangial cell populations. Thus, activating FcRs on circulating hemopoietic cells, rather than on mesangial cells, are required for IC-mediated pathogenesis in (NZB x NZW)F1. Transgenic FcRgamma(-/-) mice expressing FcRgamma limited to the CD11b+ monocyte/macrophage compartment developed glomerulonephritis in the anti-glomerular basement disease model, whereas nontransgenic FcRgamma(-/-) mice were completely protected. Thus, direct activation of circulating FcR-bearing myeloid cells, including monocytes/macrophages, by glomerular IC deposits is sufficient to initiate inflammatory responses.  相似文献   

12.
CD1d-restricted NKT cells expressing invariant TCR alpha-chain rearrangements (iNKT cells) have been reported to be deficient in humans with a variety of autoimmune syndromes and in certain strains of autoimmune mice. In addition, injection of mice with alpha-galactosylceramide, a specific glycolipid agonist of iNKT cells, activates these T cells and ameliorates autoimmunity in several different disease models. Thus, deficiency and reduced function in iNKT cells are considered to be risk factors for the development of such diseases. In this study we report that the development of systemic lupus erythematosus in (New Zealand Black (NZB) x New Zealand White (NZW))F(1) mice was paradoxically associated with an expansion and activation of iNKT cells. Although young (NZB x NZW)F(1) mice had normal levels of iNKT cells, these expanded with age and became phenotypically and functionally hyperactive. Activation of iNKT cells in (NZB x NZW)F(1) mice in vivo or in vitro with alpha-galactosylceramide indicated that the immunoregulatory role of iNKT cells varied over time, revealing a marked increase in their potential to contribute to production of IFN-gamma with advancing age and disease progression. This evolution of iNKT cell function during the progression of autoimmunity may have important implications for the mechanism of disease in this model of systemic lupus erythematosus and for the development of therapies using iNKT cell agonists.  相似文献   

13.
The study of polymorphism of humoral immunoreactions to the type I (AC) collagen in CBA/Lac, C57B1/6-J inbred mice and NZB X NZW (F1) hybrids showed the presence of genetically determined variability of the above mentioned trait. The analysis of intralinear dispersions of AC levels in NZB X NZW (F1) mice revealed sex dimorphism and age variability of the trait. A suggestion was made that sex hormones are important factors in ontogenic formation and modulation of autoimmunity to the type I collagen in NZB X NZW (F1) mice.  相似文献   

14.
15.
Increased autoantibody production by NZB/NZW B cells in response to IL-5   总被引:4,自引:0,他引:4  
We previously demonstrated that B cells from NZB/NZW but not nonautoimmune mice secrete high levels of autoantibodies in response to factor(s) derived from type 2 Th cell (Th2) clones. Supernatants from type 1 Th cell clones, which contain a different set of lymphokines, were not stimulatory. In the present experiments, we attempted to define the active Th2 factor(s) and to better understand the cellular basis for the hyperresponsiveness. In response to optimal concentrations of supernatant (Th2-Sup), B cells from 3-mo-old NZB/NZW mice produced up to 40-fold greater amounts of IgM anti-DNA compared with unstimulated B cells, whereas BALB/c B cells produced levels only slightly above background. Although Th2-Sup contained large amounts of IL-4, comparable concentrations of rIL-4 alone did not stimulate NZB/NZW B cells. Furthermore, a blocking anti-IL-4 mAb did not prevent Th2-Sup-stimulated autoantibody production. Th2-Sup was fractionated by HPLC, and the stimulatory factor(s) was found in fractions known to contain IL-5 (also known as B cell growth factor II). Indeed, a highly purified preparation of IL-5 reproduced the effects of Th2-Sup by stimulating NZB/NZW B cells to produce high levels of IgM anti-DNA antibodies while enhancing production by nonautoimmune cells only slightly. In limiting dilution studies, NZB/NZW compared with BALB/c spleens contained a three- to four-fold greater frequency of DNA-specific B cells that were responsive to IL-5. Together, the results suggest a potential role for IL-5 in the pathogenesis of NZB/NZW autoimmune disease.  相似文献   

16.
To investigate the possible effects of NZW genes on the class conversion of dsDNA-specific antibodies in NZB X NZW (B/W)F1 hybrids, we measured IgM, IgG1, and IgG2 dsDNA-specific antibodies, using the Crithidia luciliae kinetoplast immunofluorescence test, in NZB, NZW, B/W F1 hybrid, B/W F1 X NZB backcross, and B/W F1 X NZW backcross mice at 4, 7, and 10 months of age. The highest serum levels of IgM dsDNA-specific antibodies were observed in NZB mice at the ages tested; however, the amounts of IgG1 and IgG2 antibodies were scanty. In contrast, a large amount of both IgG1 and IgG2 dsDNA-specific antibodies was produced in B/W F1 hybrids, in which the serum IgM antibodies were lower than those observed in NZB mice. NZW mice were virtually negative for these antibodies. Progeny testing suggested that a combined effect of two unlinked dominant genes of the NZB strain determines the production of dsDNA-specific antibodies and that these genes only act to produce IgM antibodies. These traits are to a great degree modified by the NZW loci in B/W F1 hybrids, and a combined effect of two unlinked dominant genes leads to conversion of the class of the antibodies from IgM to IgG, which, in turn, increases the serum levels of dsDNA-specific antibodies. The F1 hybrid of C57BL/6 and NZW strains produced no dsDNA-specific antibodies, indicating that the relevant NZB predisposing genes are required for the NZW gene action. Linkage studies showed that one of such NZW genes is to some extent linked to the H-2 complex on chromosome 17, but not to Mup-1 (chromosome 4) or a coat color locus (chromosome 2). The appearance of IgG dsDNA-specific antibodies correlated well with the incidence of renal disease in B/W F1 X NZB backcross mice.  相似文献   

17.
Human autoimmune diseases thought to arise from the combined effects of multiple susceptibility genes include systemic lupus erythematosus (SLE) and autoimmune diabetes. Well-characterised polygenic mouse models closely resembling each of these diseases exist, and genetic evidence links receptors for the Fc portion of immunoglobulin G (FcR) with their pathogenesis in mice and humans [1] [2] [3]. FcRs may be activatory or inhibitory and regulate a variety of immune and inflammatory processes [4] [5]. FcgammaRII (CD32) negatively regulates activation of cells including B cells and macrophages [6]. FcgammaRII-deficient mice are prone to immune-mediated disease [7] [8] [9]. The gene encoding FcgammaRII, Fcgr2, is contained in genetic susceptibility intervals in mouse models of SLE such as the New Zealand Black (NZB) contribution to the (NZB x New Zealand White (NZW)) F1 strain [1] [10] [11] and the BXSB strain [12], and in human SLE [1] [2] [3]. We therefore sequenced Fcgr2 and identified a haplotype defined by deletions in the Fcgr2 promoter region that is present in major SLE-prone mouse strains (NZB, BXSB, SB/Le, MRL, 129 [13]) and non-obese diabetic (NOD) mice but absent in control strains (BALB/c, C57BL/6, DBA/2, C57BL/10) and NZW mice. The autoimmune haplotype was associated with reduced cell-surface expression of FcgammaRII on macrophages and activated B cells and with hyperactive macrophages resembling those of FcgammaRII-deficient mice, and is therefore likely to play an important role in the pathogenesis of SLE and possibly diabetes.  相似文献   

18.
The link between infection and autoimmunity is not yet well understood. This study was designed to evaluate if an acute viral infection known to induce type I interferon production, like influenza, can by itself be responsible for the breakdown of immune tolerance and for autoimmunity. We first tested the effects of influenza virus on B cells in vitro. We then infected different transgenic mice expressing human rheumatoid factors (RF) in the absence or in the constitutive presence of the autoantigen (human immunoglobulin G [IgG]) and young lupus-prone mice [(NZB x NZW)F(1)] with influenza virus and looked for B-cell activation. In vitro, the virus induces B-cell activation through type I interferon production by non-B cells but does not directly stimulate purified B cells. In vivo, both RF and non-RF B cells were activated in an autoantigen-independent manner. This activation was abortive since IgM and IgM-RF production levels were not increased in infected mice compared to uninfected controls, whether or not anti-influenza virus human IgG was detected and even after viral rechallenge. As in RF transgenic mice, acute viral infection of (NZB x NZW)F(1) mice induced only an abortive activation of B cells and no increase in autoantibody production compared to uninfected animals. Taken together, these experiments show that virus-induced acute type I interferon production is not able by itself to break down B-cell tolerance in both normal and autoimmune genetic backgrounds.  相似文献   

19.
New Zealand Black (NZB) and New Zealand White (NZW) mice are genetically predisposed to a lupus-like autoimmune syndrome. To further define the loci linked to disease traits in NZB and NZW mice in the context of the BALB/c genetic background, linkage analyses were conducted in two crosses: (NZW x BALB/c.H2(z))F(1) x NZB and (NZB x BALB/c)F(2). Novel loci linked to autoantibody production and glomerulonephritis, present in both NZB and NZW mice, were identified on proximal chromosomes 12 and 4. The chromosome 12 locus showed the strongest linkage to anti-nuclear Ab production. Additionally, a number of other novel loci linked to lupus traits derived from both the New Zealand and non-autoimmune BALB/c genomes were identified. Furthermore, we confirm the linkage of disease to a number of previously described lupus-associated loci, demonstrating that they are relatively background independent. These data provide a number of additional candidate gene regions in murine lupus, and highlight the powerful effect the non-autoimmune background strain has in influencing the genetic loci linked to disease.  相似文献   

20.
Genetic complementation in female (BXSB x NZW)F2 mice   总被引:1,自引:0,他引:1  
F(1) hybrids among New Zealand Black (NZB), New Zealand White (NZW), and BXSB lupus-prone strains develop accelerated autoimmunity in both sexes regardless of the specific combination. To identify BXSB susceptibility loci in the absence of the Y chromosome accelerator of autoimmunity (Yaa) and to study the genetics of this complementation, genome-wide quantitative trait locus (QTL) mapping was performed on female (BXSB x NZW)F(2) mice. Six QTL were identified on chromosomes 1, 4, 5, 6, 7, and 17. Survival mapped to chromosomes 5 and 17, anti-chromatin Ab to chromosomes 4 and 17, glomerulonephritis to chromosomes 6 and 17, and splenomegaly to chromosomes 1, 7, and 17. QTL on chromosomes 4 and 6 were new and designated as Lxw1 and -2, respectively. Two non-MHC QTL (chromosomes 1 and 4) were inherited from the BXSB and the rest were NZW-derived, including two similar to previously defined loci. Only two of 11 previously defined non-MHC BXSB QTL using male (Yaa(+)) crosses were implicated, suggesting that some male-defined BXSB QTL may require coexpression of the Yaa. Findings from this and other studies indicate that BXSB and NZB backgrounds contribute completely different sets of genes to complement NZW mice. Identification of susceptibility genes and complementing genes in several lupus-prone strain combinations will be important for defining the epistatic effects and background influences on the heterogeneous genetic factors responsible for lupus induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号