首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recovery of polluted lakes is a complicated process involving many factors. Different lake rehabilitation techniques and former experiences with advanced wastewater treatment and sewage diversion are reviewed. The response in water quality after a nutrient reduction may vary significantly, despite a lowering of the phosphorus concentration in the lake. The different factors influencing the process, such as climatic fluctuations, the growth-limiting effect of nutrients and phosphorus release from the sediments, are discussed, based on examples from a lake recovery study in Sweden carried out in 30 lakes. Due to various interrelationships between physical characteristics and biological mechanisms involved, and to significant fluctuations in these factors from one year to the next, it is difficult to generalize and to forecast the actual response of a certain water body to a reduced nutrient input. Unfortunately, too many monitoring programmes aimed at elucidating the effects of remedial efforts are not designed in such a manner that relevant information can be obtained about the nutrient load — lake response relationships. Ways for optimizing and increasing the predictive power of inventory studies and monitoring programmes are discussed.  相似文献   

2.
磷模型在千岛湖水体污染预测中的应用研究   总被引:3,自引:0,他引:3  
运用国际上通用的多个经验统计磷模型预测千岛湖目前的磷浓度水平,其中第6个模型最适合用于千岛湖的预测预报.利用该模型预测了磷负荷量分别减少1/4、1/2、3/4情况下,千岛湖水体中总磷浓度的响应.同时针对千岛湖营养水平控制的短、长期目标,利用模型计算出了所允许的总磷负荷量及入湖磷浓度.  相似文献   

3.
Lake Verevi is a hypertrophic and strongly stratified (partly meromictic) small temperate lake. Vertical distribution of sediment phosphorus fractions as well as iron, manganese, organic matter and calcium carbonate of the deep bottom sediment was determined. The study focused on the ecologically important layer of the sediment [<20(45) cm]. In the uppermost layers of the sediment, NaOH-NRP (organic P) dominated while HCl-RP (apatite-P) became dominant in some deeper layers below 7 cm. Extremely high concentrations of labile phosphorus fraction (NH4Cl-RP) indicated the low binding capacity of phosphorus by lake sediment. Due to sediment and hypolimnion anoxia, the internal load of phosphorus in this lake is most likely. Potentially mobile phosphorus fractions (NH4Cl-RP, BD-RP, NaOH-NRP) formed 301 kg in upper 10 cm thick sediment layer of hypolimnetic bottom sediment (40% of lake bottom area).  相似文献   

4.
The summer stratification phosphorus budget for eutrophic Edinboro Lake in northwestern Pennsylvania was determined. Phosphorus loading from internal sources contributed 141 kg, (79%) and 55 kg, (68%) of the mass phosphorus increase in the lake in 1981 and 1982, respectively. Calculated anaerobic sediment release rates of total phosphorus were 9.9 and 3.7 mg m–2 day–1 for these two years. The observed summer maximum chlorophyll a concentration was 1.5–3 times greater than that predicted by existing models. Year-to-year variability in the internal phosphorus load for this lake and others is discussed. Without a data base that will permit the comparison of lakes and with and without a significant supply of internal phosphorus, prediction of the relative importance of internal loading in a particular lake will be difficult.  相似文献   

5.
SUMMARY. 1. This review considers the factors which determine the recovery of eutrophic lakes following a reduction in the external phosphorus loading.
2 The mean phosphorus content of a lake should decrease roughly in proportion to the reduction in phosphorus input. Where the lake phosphorus concentration does not decrease as predicted, then the release of phosphorus from the sediment is implicated.
3. The current understanding of the processes by which sediment phosphorus is mobilized and transported into the photic zone is described. The extent to which phosphorus release can maintain lake phosphorus concentrations following the reduction in external loading is influenced by: lake morphometry, flushing rate, sediment type, trophic state and history of enrichment.
4. A reduction in the phytoplankton biomass of a lake is dependent upon the size of the decrease in lake phosphorus concentration and the degree to which phosphorus limits primary production. The importance of phosphorus in limiting phytoplankton production tends to decrease with increasing lake trophic status.
5. Improvements in the condition of highly eutrophic lakes require very large reductions in external phosphorus loading, whereas in mildly enriched lakes moderate changes in the supply of phosphorus have noticeable effects on phytoplankton biomass.  相似文献   

6.
Lake eutrophication and community structure   总被引:1,自引:0,他引:1  
The role of external and internal phosphorus loading in the lake eutrophication was estimated according to published data and our own. The role of plankton and benthos animals has been determined in phosphorus excretion and the formation of internal nutrient load. It is shown that the term “eutrophication” is valid both in the anthropogenic and natural increases in the trophic status of the water body.  相似文献   

7.
Gross primary production equals 3160 kcal Xm−2 ×yr−1, 38% coming from the littoral. The efficiencies of both nonpredatory and predatory zooplankton production are high. The production of phytoplankton is expended mostly for sedimentation in April, for grazing by zooplankton in June, heterotrophic respiration and cumulation of dissolved and particulate organic matter in August—September and sedimentation in late autumn. Almost total elimination of zooplankton is done by predators, mostly invertebrates. About 10% of autochthonically produced plus allochthonic matter is annually removed from cycling, mostly as permanent bottom deposits. The annual load of phosphorus is 3 times higher than the permissible VOLLENWEIDER'S level. About 70% of phosphorus load, but only two percent of its reserve in the lake is annually removed from cycling. Progressing eutrophication resulted in several times increased phytoplankton biomass, decrease of phytoplankton P/B and share of nannoplankton, increase of decomposition in epilimnion, etc, during 10 years. Inspite of this, pelagic community in spring still has rather mesotrophic than highly eutrophic character. Increased eutrophication due to human impact (deforestation, agriculture, erosion) is also seen in bottom deposits since the 15th century.  相似文献   

8.
The cycling of nutrients in a closed-basin antarctic lake: Lake Vanda   总被引:2,自引:0,他引:2  
Lake Vanda is a permanently ice covered, meromictic, closed basin lake, located in the Dry Valley region of Southern Victoria Land, Antarctica. A unique feature of the lake water column structure is that the bottom lake waters exist as a natural diffusion cell. The diffusive nature of these waters allows rates of sulfate reduction, nitrification and denitrification to be calculated from nutrient concentration gradients. Calculation reveals that sulfate reduction is by far the most important anoxic process acting to oxidize organic material. In addition, rate calculations reveal that bottom water nutrient profiles are in steady state. One argument in support of this conclusion is that the calculated rate of nitrification balances the flux of ammonia from the anoxic lake waters. The flux of phosphorus from the reducing waters is several times less than would be predicted from the nitrogen and phosphorus content of decomposing lake seston. Solubility calculations show that phosphorus may be actively removed at depth in Lake Vanda by the formation of hydroxyapatite. It is found that estimated rates of nitrogen and phosphorus removal in the bottom lake waters and sediments roughly balance the riverine input flux. This suggests that throughout the lake a nutrient steady state may exist, and that the anoxic zone may be the most important loci for nutrient removal. Finally, the ratio of nitrogen to phosphorus entering Lake Vanda by riverine input is less than the Redfield ratio of 16/1; in contrast to the lake waters which are strongly phosphorus limited at all depths. This curious aspect of the lake's nutrient chemistry is explained by the presence of preformed nitrogen, which has been concentrated in the deep brine due to several episodes of evaporative concentration.  相似文献   

9.
惠州西湖磷模型的初级研究   总被引:1,自引:0,他引:1  
应文晔  钟萍  刘正文 《生态科学》2005,24(4):373-375
国家4A旅游景区之一的惠州西湖地处亚热带地区,属于典型的浅水型城市湖泊.在西湖水体完全混合的假设和西湖实地调查和2003年~2005年监测数据的基础上,对惠州西湖建立了零维总磷模型.文中对总磷模型进行了参数的率定、校正,并用模型对2003年10月到2004年9月一周年进行总磷浓度的模拟预测,从而验证了该模型在惠州西湖水质预测中的适用性和可行性.根据西湖底泥磷释放率的特征提出修正模型,大大降低了原模型模拟误差,更精确拟合惠州西湖的总磷浓度的动态变化,有助于西湖的长期预测工作的进一步开展.  相似文献   

10.
有机磷农药对滇池微囊藻生长和摄磷效应的影响   总被引:2,自引:0,他引:2  
采集滇池水体作为铜绿微囊藻培养基,研究了两种有机磷农药(甲胺磷和辛硫磷)对微囊藻生长和摄磷效应的动力学规律。结果表明,在滇池水体中添加较低浓度的甲胺磷(0.8、1.6、3.2mg/L)和辛硫磷(0.02、0.06、0.1mg/L)均能不同程度地促进微囊藻的生长,且在HGZ培养基中抑制微囊藻生长的浓度在滇池水体中却能促进微囊藻的生长。微囊藻的生长取决于细胞内磷的浓度且对磷的吸收利用存在积累性,在微囊藻生长初期,摄取各形态磷的速率较快;随后微囊藻摄取各形态磷的速率较慢。总溶解磷(TSP)和溶解反应磷(SRP)是微囊藻优先摄取的磷形态,在生长过程中微囊藻利用了大量的溶解有机磷(DOP)作为磷源加速生长。这一特点对于微囊藻成为淡水湖泊富营养化发展过程中的一种重要优势种具有极为重要的作用。  相似文献   

11.
1. How climate warming may interact with other pressures on aquatic ecosystems is an important issue for research and management. We combined lake monitoring data with a palaeolimnological study to explore the combined effects of eutrophication and subsequent oligotrophication with a long‐term temperature increase in epilimnetic waters. Our goals were (i) to evaluate how well sediment‐based reconstructions reflect the instrumental observations, (ii) to use the palaeo‐record to characterise a reference state for the lake and (iii) to explore whether data from the sediment record can aid in separating the effects of nutrient load and temperature in a large and deep lake. 2. Lake Mjøsa is a large and deep lake in south‐eastern Norway. Eutrophication symptoms peaked in the 1970s, which led to extensive measures to reduce the phosphorus load. A monitoring programme has run continuously from 1972. Monitoring has documented a marked decrease in phosphorus load and algal biomass and also revealed an increase in epilimnetic temperature and extended summer stratification. 3. Records of algal pigments and diatoms were extracted from sediment cores taken from 236 m depth. The pigment record documented dramatic changes in lake production consistent with the monitoring record. The diatom record reflected well the eutrophication history of the lake and also demonstrated that the assemblage of the recent recovery stage differs from that of the pre‐eutrophication period. 4. Ordination of diatom assemblages over time constrained by proxies for nutrient load and temperature indicated that the diatom assemblage correlated with both factors, which together accounted for 60% of the variation in diatom composition. No interaction was detected between these factors. The results suggest that the diatom assemblage has responded to varying nutrient loads as well as to changes in temperature and/or factors that correlate with temperature. 5. Reconstructions of algal biomass and total phosphorus content mirrored known changes through the monitoring period, although the absolute phosphorus estimates were too high relative to the instrumental record. The sediment record from Lake Mjøsa provides a baseline for lake production in terms of algal pigments and organic contents, and for the diatom assemblage composition in a pristine stage.  相似文献   

12.
1. Loch Leven is a shallow, eutrophic lake in Scotland, U.K. It has experienced much change over the 30 years that it has been studied; this has primarily been due to reduced nutrient loads to the lake through active catchment management. Its recovery has been slow and, therefore, we used a phytoplankton community model (PROTECH) to test its sensitivity to changing nutrient loads and water temperature.
2. PROTECH was initialized to simulate the observed phytoplankton community in 1995 and was then repeatedly run through a combination of step-wise changes in water temperature and nutrient load (two treatments were simulated for nutrient load: one changing both nitrate and phosphorus, and one changing just phosphorus). The effect on total chlorophyll- a concentration, cyanobacteria abundance and phytoplankton diversity was examined.
3. Whilst changes in temperature had little effect, variations in the nutrient load produced a range of responses. Increasing only the phosphorus load caused a large increase in Anabaena abundance and total chlorophyll- a concentration. However, the opposite response was recorded when nitrate load was changed as well, with Anabaena increasing its biomass under reduced nutrient load scenarios.
4. The key factor determining the type of response appeared to be nitrogen availability. Anabaena , a nitrogen fixer, could exploit the phosphorus resource of Loch Leven under limiting nitrogen conditions, allowing it to dominate under most of the scenarios tested apart from those supplying extra nitrogen to the lake. The model predictions agree with the observed data, which show that Anabaena continues to dominate the summer phytoplankton bloom in Loch Leven despite the considerable reduction in phosphorus supply from the catchment. This research provides a possible explanation for this.  相似文献   

13.
Human activity has been the cause of continuing decline of water quality in most Dutch lakes. Development of lake restoration programmes must take into account the lake functions. Major reduction of the nutrient and pollutant loading is the primary step in lake restoration. Still, the recovery of eutrophic lakes is retarded frequently because of internal phosphorus loading by the lakes' sediments. Sediment dredging, as an additional tool for water quality management to accelerate accomplishing the desired water quality, is studied. In this paper we evaluate the preliminary results of eight lake restoration projects in the Netherlands. The lakes are compared in order to estimate the magnitude of the internal phosphorus loading. Dredging as an additional measure was carried out twice in the peatlake Geerplas. In the Nieuwkoop Lakes only the external phosphorus loading was substantially reduced from 0.9 to 0.2 g P m–2 y–1. Provisional results of these two shallow peatlake restoration projects focussed on eutrophication abatement with and without dredging, are presented. Both show a decrease in phosphorus concentration in the lakes. The necessity to dredge the lakes is discussed.  相似文献   

14.
Mass balances of total nitrogen and total phosphorus were calculated for Lake Verevi (area 0.126 km2, maximum depth 11 m, mean depth 3.6 m), a sharply stratified small lake located in South Estonia within the borders of the town Elva. The lake has up to 10 small inflows but only three of them are nearly permanent. Accidental overflows from near-by oxidation ponds during high floods have been the major source of the nutrient load of the lake in the past. L. Verevi receives a significant part of its inflow from groundwater, which is difficult to measure. In dry years the outflow is temporary. During summer the lake is sharply thermally and chemically stratified. The spring turnover is often incomplete even in homothermal conditions, thus giving the lake some meromictic features. The influx of nitrogen exceeded the outflux at any supposed proportion (20%, 50%, 80%) of surface runoff. The lake retained 45–90% of the nitrogen influx by sedimentation and/or by denitrification. The largest nitrogen losses with loss rates more than 10 kg N d−1 occurred in May and June. The calculated phosphorus retention rate became strongly negative during mixing periods. From June to November, phosphorus release from the sediment exceeded sedimentation by 205 kg in 1991 and by 79 kg in 1993. Earlier stagnation and absence of a full spring turnover in the 2000 has slowed down the recovery of the lake because less phosphorus is flushed out. However, the stronger stratification and significantly smaller phosphorus content in the epilimnion limits biological activity and as a result improves the water quality of the surface layer.  相似文献   

15.
Tibbs Run Lake was sampled from December 1979 to December 1980, monthly during the winter and biweekly during the spring, summer, and autumn. Primary production was measured from March 1980 to February 1981, either monthly or biweekly, as indicated above. The mean annual hydrogen ion concentration was equivalent to pH 4.33. This pH was 46% lower (based on H+ concentrations) than the 1977–1978 mean. The low pH of the lake is due to inputs of acid precipitation and the low buffering capacity of the watershed. Predictions of further reductions in the lake pH, based on mean annual hydrogen ion concentrations and hydrogen ion retention coefficients (RH) from Shellito (1979) and this study, indicate that the lake pH should reach an equilibrium with the precipitation pH between 1982 and 1985, assuming the precipitation pH continues to average 4.10. The stratified period mean chlorophyll a and total phosphorus concentrations were 22.1 mg/m3 and 19.3 μg/1, respectively. Total phosphorus loading to the lake was 0.233 gP/m2/yr. To examine the effects of neutralization and fertilization with phosphorus an in situ bag enclosure experiment, lasting 16 days, was performed during the summer of 1980. In the bags, phosphorus (20 μg/1 on days 0,4,8,12 as KH2PO4) was added alone and in combination with a base addition (IN KOH). The base additions raised the pH to approximately 7.8. Other treatments included base addition alone and a control. The maximum chlorophyll a concentration was found in the phosphorus treatment (∼30 mg/m3) on day 6. The phosphorus plus base treatment exhibited a 10 day lag before reaching a maximum chlorophyll a concentration (∼27 mg/m3) on day 16. The highest production rate was found in the phosphorus plus base treatment on day 12 (∼27 mgC/m3/hr.). A similar bag experiment, lasting 46 days, was performed during the late summer and early autumn of 1980. The treatments were the same as in the first experiment, however, the nitrate-nitrogen depletion in the lake and treatments necessitated the addition of nitrogen (2 mg/1 as NaNO3) to one of each replicate treatment on day 5. On day 34, the maximum chlorophyll a concentrations were found in the phosphorus plus base nitrogen treatment (∼120 mg/m3) and the phosphorus plus nitrogen treatment (∼38.8 mg/m3). The control plus nitrogen treatment was submerged and possibly contaminated on day 5. All treatments not receiving nitrogen, except for the phosphorus plus base treatment, decreased in the chlorophyll a concentration throughout the experiment. The phosphorus plus base treatment peaked in the chlorophyll a concentration on day 45 (∼28 mg/m3) despite non-detectable levels of nitrate-nitrogen. The maximum primary production rate was found in the phosphorus plus base plus nitrogen treatment (∼32 mgC/m3/hr.) on day 11.  相似文献   

16.
淀山湖富营养化过程的统计学特征   总被引:1,自引:0,他引:1  
程曦  李小平  陈小华 《生态学报》2012,32(5):1355-1362
湖泊营养物输入及响应指标的统计学规律正在受到越来越广泛的关注。对淀山湖在不同富营养化阶段和近期总磷TP、总氮TN和叶绿素Chl a的频率分布以及TP-Chl a关系的经验方程进行了分析,结果表明:(1)淀山湖TP、TN和Chl a的平均浓度和离散程度随着湖泊富营养化程度的加剧而增加,其中以Chl a的增幅最大;(2)在富营养化条件下,即使营养物TP得到一定程度的控制,Chl a大于15μg/L的概率继续增加了20%以上。仅仅削减营养物的峰值,对降低湖泊初级生产力水平的贡献有限;(3)TP-Chl a对数回归方程的斜率随湖泊富营养化程度的升高而增加,由20世纪80年代的0.54增加到目前的2.46。淀山湖营养物输入及响应指标的统计学特征,可以用来表征水体富营养化程度,评价湖泊生态恢复的进程和效果,为湖泊营养物基准和标准的制定提供最为实际的统计学支持。  相似文献   

17.
A study was conducted in Mona Lake, a small eutrophic lake located in western Michigan (USA) to address the temporal and spatial variability of external and internal phosphorus loading. External P load varied among subbasins, which was mostly related to discharge, but also to land use. Black Creek, which drains lands with natural cover and agriculture, accounted for the majority of flow, and total phosphorus (TP) and soluble reactive phosphorus (SRP) load, to Mona Lake. However, the relative contribution of SRP load was greater in Little Black Creek, which flows through a mostly urbanized subbasin, than in Black Creek. The relative importance of internal loading was strongly related to season, as internal TP loads contributed only ∼9% of the overall P load in April 2005, but ∼68–82% of the overall P load in the summer and early fall seasons. Internal TP and SRP loading was greater under anaerobic than aerobic conditions. Mean anaerobic TP release rates ranged from 0.80 to 15.56 mg P m−2 d−1, varying with site and season. Spatial variability in both internal phosphorus loading and sediment P concentration was also evident. By taking into account the spatial and temporal variability of different loading sources, management practices can be targeted to optimize nutrient source control strategies.  相似文献   

18.
刘静静  董春颖  宋英琦  孙培德 《生态学报》2012,32(24):7932-7939
通过采集北里湖不同季节的柱状芯样,在实验室静态模拟沉积物氨氮(NH+4-N)和可溶解性磷酸盐(PO3-4-P)的释放,同时研究了沉积物间隙水中NH+4-N及PO3-4-P的垂直分布特征.结果表明,沉积物间隙水NH+4-N随深度的增加有上升的趋势,PO3-4-P随深度的增加呈先升后降的趋势.氮、磷营养盐在沉积物—水界面均存在浓度梯度,表明存在自间隙水向上覆水扩散的趋势.沉积物NH+4-N在春季、夏季、秋季、冬季的释放速率分别为0.074 mg·m-2· d-1、0.340mg· m-2· d-1、0.087 mg· m-2· d-1、0.0004 mg·m-2·d-1,pO3-4-P的释放速率则分别为0.340 mg·m-2·d-1、0.518 mg·m-2·d-1、0.094 mg·m-2·d-1、-0.037 mg· m-2·d-1.不同采样点表现出明显的季节和空间差异性,释放速率表现为夏季>春季、秋季>冬季.根据静态模拟出的不同季节下内源氮、磷释放速率计算,全湖内源氮、磷营养盐的贡献分别为0.0037、0.0057t/a.该研究可为北里湖富营养化及内源污染的治理提供基础数据.  相似文献   

19.
Evaluation of recent limnological changes at Lake Apopka   总被引:4,自引:0,他引:4  
Recent changes in submersed macrophytes and water quality variables have been offered as the strongest evidence that the current restoration program at Lake Apopka will be effective (Lowe et al., 2000); however, the new beds of submersed plants in Lake Apopka are found only on hard substrates on the fringes of the lake within 40 m of shore and are protected from waves by cattails (Typha spp.). They occupy only 0.02% of the lake area, and there is no indication that they can colonize the flocculent sediments that make up 90% of the lake area. There is no correlation between annual inputs of phosphorus and total phosphorus concentrations in the lake, and patterns of change in chlorophyll and other water quality variables do not follow changes in phosphorus loads. Rather than reflecting decreases in phosphorus loading, the recent changes could be related to the harvest of benthivorous fish or are just the normal fluctuations found in lakes that have not been perturbed. Regardless of the reason the macrophytes were lost in the 1940s, the new analyses confirm our previous findings that the high turbidities in Lake Apopka are due to the resuspension of sediments, and that the fluid mud cannot support the colonization of submersed aquatic macrophytes. Even without the fluid mud, the target phosphorus concentration of 55 mg m–3 is too high to bring about the restoration of the former macrophyte beds in the lake.  相似文献   

20.
Eutrophication is a water quality issue in lakes worldwide, and there is a critical need to identify and control nutrient sources. Internal phosphorus (P) loading from lake sediments can account for a substantial portion of the total P load in eutrophic, and some mesotrophic, lakes. Laboratory determination of P release rates from sediment cores is one approach for determining the role of internal P loading and guiding management decisions. Two principal alternatives to experimental determination of sediment P release exist for estimating internal load: in situ measurements of changes in hypolimnetic P over time and P mass balance. The experimental approach using laboratory-based sediment incubations to quantify internal P load is a direct method, making it a valuable tool for lake management and restoration.Laboratory incubations of sediment cores can help determine the relative importance of internal vs. external P loads, as well as be used to answer a variety of lake management and research questions. We illustrate the use of sediment core incubations to assess the effectiveness of an aluminum sulfate (alum) treatment for reducing sediment P release. Other research questions that can be investigated using this approach include the effects of sediment resuspension and bioturbation on P release.The approach also has limitations. Assumptions must be made with respect to: extrapolating results from sediment cores to the entire lake; deciding over what time periods to measure nutrient release; and addressing possible core tube artifacts. A comprehensive dissolved oxygen monitoring strategy to assess temporal and spatial redox status in the lake provides greater confidence in annual P loads estimated from sediment core incubations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号