首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of NH4+-N absorption by algae and aquatic weeds in the dark has been shown to be 4-5 times greater for plants which are N-limited as compared to plants with sufficient available N. Eight species of green algae, 2 blue-green algae, 2 diatoms, and 3 aquatic weeds were used to demonstrate the usefulness of the test in determining if available N was in surplus or limited supply in a particular environment. The test was shown not to differentiate between blue-green algae capable of fixing N (4 species) from media with NO3-N or without combined nitrogen. The factors influencing the results of NH4+-N absorption tests have been investigated. In order to differentiate between plants with sufficient available N and those which are N limited, the rate of NH4+-N absorption (0.1 mg N) over 1-hr incubation in the dark by 10-20 mg of algae or aquatic weed tissues is measured. The relatively simple analysis for NH4+-N in the samples makes it very easy to follow the changing N nutrition of plants in cultures with a limited N supply or in the presence of possible N sources.  相似文献   

2.
基于周丛藻类群落结构的新疆额尔齐斯河生态健康评价   总被引:1,自引:0,他引:1  
周丛藻类对水环境变化较为敏感,可迅速而灵敏的反映水质健康状况。本研究于2019年对额尔齐斯河周丛藻类群落结构和水环境特征进行了系统调查,并运用周丛藻类生物完整性指数(Periphytic algae index of biotic integrity, P-IBI)对生态健康进行了评价。结果表明:额尔齐斯河周丛藻类有6门41属102种,以硅藻门为主。周丛藻类密度和生物量的时间变化趋势为:9月>7月>5月,空间分布趋势为中下游>上游、支流>干流。主成分分析(PCA)与典范对应分析(CCA)显示,影响周丛藻类群落结构的主要环境因子有水温、溶解氧、高锰酸盐指数、氨氮、硝酸盐氮、pH、悬浮物,不同月份的环境影响因素有所差异。额尔齐斯河周丛藻类多样性指数(H′)、丰富度指数(D)、Pielou均匀度指数(J)的平均值分别为3.52、3.02、0.75,显示额尔齐斯河流域整体水质为寡污或无污。P-IBI分析结果显示:5个采样点为健康状态,1个采样点为亚健康状态,3个采样点为一般状况,1个采样点极差,表明额尔齐斯河整体生态健康状况趋于良好。本研究可为额尔齐斯河的水环境监测提供...  相似文献   

3.
Concentration factors (CF) of 54Mn for three aquatic species: green algae (Protococcoidal chlorella), Daphnia magna, and fathead minnows (Pimephales promelas) were determined following direct exposure to the isotope in solution. The maximum accumulation (CF = 911) in P. chlorella was reached at 48 hours of exposure; the maximum uptake (CF = 65) in Daphnia was reached at 8 hours of exposure; and the maximum accumulation (CF = 22.6) in fathead minnows was at 128 hours of exposure. The data indicate that 54Mn accumulation decreases with ascent up a theoretical aquatic food chain when water is the only source of contamination.  相似文献   

4.
Abstract

The aim of this study was to quantify algal colonisation on anthropogenic surfaces (viz. building facades and roof tiles) using chlorophyll a (chl a) as a specific biomarker. Chl a was estimated as the initial fluorescence F0 of ‘dark adapted’ algae using a pulse-modulated fluorometer (PAM-2000). Four isolates of aeroterrestrial green algae and one aquatic isolate were included in this study. The chl a concentration and F0 showed an exponential relationship in the tested range between 0 and 400 mg chl a m?2. The relationship was linear at chl a concentrations <20 mg m?2. Exponential and linear models are presented for the single isolates with large coefficients of determination (exponential: r2 > 0.94, linear: r2 > 0.92). The specific power of this fluorometric method is the detection of initial algal colonisation on surfaces in thin or young biofilms down to 3.5 mg chl a m?2, which corresponds to an abundances of the investigated isolates between 0.2 and 1.5 million cells cm?2.  相似文献   

5.
6.
R. L. France 《Hydrobiologia》1996,325(3):219-222
Stable isotope analysis of carbon has been proposed as a means for discerning the incorporation of terrestrial forest detritus into aquatic foodwebs, and as such, has the potential to be used as a biomonitor of the aquatic effects of riparian deforestation. A synthesis of 13C/12C data from the literature indicates, however, that the scope for successful use of carbon isotope analysis in separating allochthonous and autochthonous food provenance is much more limited than was once thought. This occurs due the overlap in carbon isotope ratios between terrestrial forest detritus and those of both lotic attached algae and lentic filamentous attached algae. Only within rockyshored, oligotrophic lakes without macrophytes, and forest-fringed estuaries and lagoons, where the carbon isotope ratios for attached algae and forest detritus are significantly different, is there any likelihood of discerning the incorporation of allochthonous carbon into aquatic foodwebs using 13C/12C values alone.  相似文献   

7.
The accumulation of natural radioisotopes by aquatic organisms and bottom sediments was studied in two small rivers, one uncontaminated and the other polluted by effluents of uranium ore mining and milling. Parabolic regressions between the water and uppermost sediment content of both uranium and total beta activity (corrected for 40K content) is presented and demonstrates the water cumulative capacity of organically rich sediments. For 226Ra no significant differences between sediments with different organic content were found. The 226Ra content of bottom sediments is expressed as a power function of radium and calcium concentration in the water. In the given reaches, 53% and 85% of uranium and over 90% of 226Ra and total beta activity (corrected for 40K) was accumulated in the upper two centimetres of sediments and biomass of aquatic vegetation. Filamentous algae, plankton, aquatic bryophyta and macrophyta from the present and other published data showed rather higher cumulation capacities as compared with bottom sediments.  相似文献   

8.
Field observations of changes in the populations of aquatic weeds and phytoplankton have confirmed that aquatic weeds have antagonistic activity toward phytoplankton. Nutritional studies in the laboratory indicate that cultures of the aquatic weeds, Myriophyllum sp., Ceratophyllum sp., and duckweed (Lemma minor L.); liquid cultures of barley (Hordeum vulgare L., Dickson variety); and cultures of the filamentous green algae, Cladophora sp. and Pithophora oedogonium (Mont.) Withrock, will remain relatively free of epiphytes or competing phytoplankton if the cultures are nitrogen-limited. Field observations of Cladophora sp. have confirmed that the growth of epiphytes on the Cladophora is related to conditions of surplus available nitrogen compounds. It is proposed that this antagonistic activity may be due to a “nitrogen sink” effect in which the aquatic weeds or filamentous green algae prevent the growth of contaminating algae by competition for the limited nitrogen compounds available. However, the presence of bacteria-sized organisms which have selective toxicity to certain algae indicates that perhaps multiple factors exist. Discussed are the ecological implications of associations of certain algae with bacteria that have selective toxicities for other species of algae under certain environmental conditions such as nitrogen-limited growth.  相似文献   

9.
Cells of the green algaSelenastrum capricornutum were immobilized in alginate beads. The alga was able to grow inside these beads without being grazed by zooplankton. For P-limited immobilized cells, however, a lower µ m and initial slope of the Monod growth curve µ m /K s were found than for free cells.To study the feasibility of immobilized algae to estimate algal growth potentialin situ in aquatic ecosystems, a series of experiments were conducted in indoor model ecosystems (microcosms) and in a small stream. The use of immobilized algae allowed a continuous registration of algal growth potential integrated over periods with natural fluctuations in the environment. The method of encapsulation of the algae can, however, still be improved. The alginate matrix is exposed to marked degradation by microorganisms when incubated in polluted streams for a period longer than two weeks. The applicability of other types of matrices should be tested.Author for correspondence  相似文献   

10.
It is known that macromolecular organic matter in aquatic environments, i.e., humic substances, is highly aliphatic. These aliphatic macromolecules, predominantly paraffinic in structure, are prevalent in marine and lacustrine sediments and are believed to originate from algae or bacteria. A comparative study of mixed and pure cultures of green algae and their decomposed residues was performed by using solid-state 13C nuclear magnetic resonance spectroscopy as the primary analytical method. Results obtained in this study confirm the presence of components that are chemically refractory and that are defined as alghumin and hydrolyzed alghumin. These were detected in heterogeneous, homogeneous, and axenic biomasses composed of several genera of Chlorophyta. Although the chemical composition of algal biomass varied with culture conditions, the chemical structure of the alghumin and hydrolyzed alghumin, demonstrated by 13C nuclear magnetic resonance spectroscopy appeared to be constant for members of the Chlorophyta examined in this study. The alghumin was dominated by carbohydrate-carbon, with minor amounts of amide or carboxyl carbon and paraffinic carbon, the latter surviving strong hydrolysis by 6 N HCI (hydrolyzed alghumin). Bacterial decomposition of heterogeneous algal biomass labeled with 13C was conducted under both aerobic and anaerobic conditions to determine chemical structure and stability of the refractory material. The refractory fraction ranged from 33% in aerobic to 44% in anaerobic cultures. The refractory fraction recovered from either aerobic or anaerobic degradation comprised 40% alghumin, which represented an enrichment by 10% relative to the proportion of alghumin derived from whole cells of algae. The paraffinic component in the hydrolyzed alghumin of whole algal cells was found to be 1.8% and increased to 5.1 and 6.9% after aerobic and anaerobic bacterial degradation, respectively. It is concluded that members of the Chlorophyta contain a common insoluble structure composed of paraffinic carbon that is resistant to chemical and bacterial degradation under conditions used in this study. The paraffinic structure is identical to those constituting humin of aquatic origin. Thus, alga-derived macromolecular compounds deposited in aquatic environments (alghumin) probably contribute to sedimentary humic substances.  相似文献   

11.
The presence of copper in water environment may have detrimental effects on aquatic organisms, including algae, where different enzymatic systems can be affected. Algae acid phosphatase plays important roles in metabolic processes such as decomposition of organic phosphate, autophagic digestive process, recycling cellular materials and zygote formation during reproduction. This work describes an in vitro activation effect of copper on the acid phosphatase of the green algae Pseudokirchneriella subcapitata (formely Selenastrum capricornutum) under preincubation condition. Apparent Michaelis constant values of 1.21 and 0.37 mM, and activation energy values of 26.8 and 13.6 kJ mol−1 were determined in the absence and in the presence of 0.2 mM Cu2+, respectively. The dissociation constant value for Cu2+ binding to the enzyme was determined to be 22.04 μM. The decrease of the apparent Michaelis constant (Km) and activation energy values in the presence of Cu2+ correlates well with its activating effect on the acid phosphatase activity. This propriety could be used as a sensitive bioindicator for copper in environmental samples.  相似文献   

12.
Several classes of glycerolipids were isolated from the total lipids of the algae Saccharina cichorioides, Eualaria fistulosa, Fucus evanescens, Sargassum pallidum, Silvetia babingtonii (Ochrophyta, Phaeophyceae), Tichocarpus crinitus, and Neorhodomela larix (Rhodophyta, Florideophyceae). The structures of these lipids were examined by nuclear magnetic resonance (NMR) spectroscopy, including 1D (1H and 13C) and 2D (COSY, HSQC and HMBC) experiments. All of the investigated algae included common galactolipids and sulfonoglycolipids as the major glycolipids. Minor glycolipids isolated from S. cichorioides, T. crinitus, and N. laris were identified as lyso‐galactolipids with a polar group consisted of the galactose. Comparison of the 1H NMR data of minor nonpolar lipids isolated from the extracts of the brown algae S. pallidum and F. evanescens with the 1H NMR data of other lipids allowed them to be identified as diacylglycerols. The structures of betaine lipids isolated from brown algae were confirmed by NMR for the first time. The fatty acid compositions of the isolated lipids were determined by gas chromatography‐mass spectrometry.  相似文献   

13.
  • 1 Large amounts of terrestrial detritus enter many low‐order forested streams, and this organic material is often the major basal resource in the metazoan food webs of such systems. However, despite their apparently low biomass, algae are the dominant food of organisms in a number of aquatic communities which conventionally would have been presumed to be dependent on allochthonous detritus, particularly those in the tropics and also in lowland intermittent streams in arid Australia.
  • 2 The dual stable isotope signatures (δ13C and δ15N) of potential primary food sources were compared with the isotopic signatures of common aquatic animals in lowland intermittent streams in south‐eastern Australia, in both spring and summer, to determine whether allochthonous detritus was an important nutritional resource in these systems. The isotopic signatures of the major potential allochthonous plant food sources (Eucalyptus, Phalaris and Juncus) overlapped, but were distinct from algae and the dominant macrophytes growing in the study reaches. The isotopic signatures of biofilm were more spatially and temporally variable than those of the other basal resources.
  • 3 Despite allochthonous detritus having relatively high C : N ratios compared to other potential basal resources, results from isosource mixing model calculations demonstrated that this detritus, and the associated biofilm, were the major energy sources assimilated by macroinvertebrate primary consumers in both spring and summer. The importance of these energy sources was also reflected in animals higher in the food web, including predatory macroinvertebrates and fish. These resources were supplemented by autochthonous sources of higher nutritional value (i.e. filamentous algae and macrophytes, which had relatively low C : N ratios) when they became more prolific as the streams dried to disconnected pools in summer.
  • 4 The results highlight the importance of allochthonous detritus (particularly from Eucalyptus) as a dependable energy source for benthic macroinvertebrates and fish in lowland intermittent streams of south‐eastern Australia. This contrasts with previous stable isotope studies conducted in lowland intermittent streams in arid Australia, which have reported that the fauna are primarily dependent on autochthonous algae.
  相似文献   

14.
In a eutrophic lake, a crash of the algal population was followed by a significant increase in the number of virus-like particles (from ca. 1 106 ml–1 to ca. 26 106 ml–1), and soon thereafter by an increase of the amount of extracellular DNA (from ca. 20 µg l–1 to ca. 40 µg l–1). The same pattern of correlation between decrease of algae and increase of viruses and extracellular DNA could be demonstrated by an in vitro experiment with a Chlorella-virus-system. Lysis of algae by viruses increased both the number of viruses and the amount of DNA in the culture medium. Extracellular DNA mainly consisted of material with a molecular weight below 500 bp.The Chlorella-virus-system is discussed. It could be used as a model-system for studying the dynamics of interaction of viruses and algae in aquatic ecosystems.  相似文献   

15.
Abstract Results obtained with Hydrodictyon africanum, and data from the literature, show that most green algae of the chlorophyte type (e.g. Chlorella, Chlamydomonas, Hydrodictyon) differ in their photosynthetic C fixation characteristics from most green algae of the charophyte type (e.g. Spirogyra, Chara) and from C3 higher plants. The chlorophyte algae fix inorganic carbon by the photosynthetic carbon reduction cycle pathway, but have a low CO2 compensation point in 250 μM O2, a low inhibition of CO2 fixation from 10 μM CO2/250 μM O2 when compared with 10 μM CO2/zero O2, and a low half-saturation constant for CO2. These three characteristics are different from those of charophytes and C3 higher plants, and resemble those of C4 higher plants. It is suggested that these characteristics of chlorophyte algae are the result of a ‘CO2 concentrating mechanism’ which increases the CO2/O2 ratio at the site of ribulose bisphosphate carboxylase-oxygenase action in a similar way to that achieved by the C4?C3 acid cycle in C4 plants. In the chlorophyte algae, however, CO2 concentration probably involves active HCO3? transport at the inner membrane of the chloroplast envelope. Active HCO3? transport can occur at the plasmalemma of charophyte algae and submerged aquatic higher plants as well as chlorophyte algae, so it is unlikely to explain the differences between the two groups of aquatic green plants. Differences in the properties of ribulose bisphosphate carboxylase-oxygenase, and differences in CO2 production in the light, also seem inadequate to account for the different photosynthetic characteristics. The chlorophyte type of ‘C02 concentrating mechanism’ appears to be common in other classes of eukaryotic algae, and in cyanophytes. Some of the ‘advanced’ members of these eukaryotic algal classes (including the chlorophytes) may lack the mechanism, while some ‘primitive’ charophytes may retain the mechanism which their ancestors presumably possessed.  相似文献   

16.
Best known for aquatic colonial algae such as Hydrodictyon, Pediastrum, or Scenedesmus, the order Sphaeropleales also contains numerous coccoid taxa from aquatic and terrestrial habitats. Recent findings indicate that coccoid lineages in this order are very diverse genetically and may be the prevalent form, although their diversity is often hidden morphologically. This study characterizes coccoid algae recently discovered from desert soil crusts that share morphological and ecological features with the genera Bracteacoccus, Pseudomuriella, and Chromochloris. Analyses of a multi‐gene data set that includes members from all sphaeroplealean families are used to examine the monophyly of these morphologically similar taxa, which are shown instead to be phylogenetically distinct and very divergent. We propose new generic names for these lineages: Bracteamorpha, Rotundella, and Tumidella. In addition, we propose an updated family‐level taxonomy within Sphaeropleales that includes ten new families of coccoid algae to accommodate the newly presented genera and many incertae sedis taxa in the order: Bracteamorphaceae, Chromochloridaceae, Dictyococcaceae, Dictyochloridaceae, Mychonastaceae, Pseudomuriellaceae, Rotundellaceae, Schizochlamydaceae, Schroederiaceae, and Tumidellaceae.  相似文献   

17.
The effect of pH upon the photosynthesis of littoral marine algae   总被引:1,自引:0,他引:1  
L. R. Blinks 《Protoplasma》1963,57(1-4):126-136
Summary The photosynthetic rates of a number of littoral marine algae were determined over a pH range from 8.1 to 10.3, employing the Winkler technique to measure evolved oxygen. In a large number of red, brown and green algae, the rate fell to a low value, or to complete inhibition, at pH 9.5 and higher. This indicates, in conformity with general permeability theory, that the HCO3 }-ion cannot readily penetrate the cells, and is hence not available for photosynthesis.However, in two genera of coralline red algae (Bossea andCorallina) photosynthesis persists up to pH 10 or higher (though at a considerably reduced rate). This can be interpreted as due to utilization of the HCO3 }-ion (though probably not the CO3=ion). But several other non-coralline red algae (Centroceras, Botryocladia andGastroclonium), as well as the brown algaPelvetia (and possiblyFucus), and the green algaeUlva andEnteromorpha display this same ability.Thus the utilization of HCO3 }-ion cannot alone be ascribed as the cause of calcium carbonate deposition, since several other non-calcareous algae have this same power. The utilization of HCO3 }-at least permits calcification, however. The question might be reversed, to ask whyUlva, Enteromorpha. Pelvetia and several red algae are not calcified. Some cell wall property may be involved.  相似文献   

18.
Cyanobacteria and eukaryotic algae are important primary producers in a variety of environments, yet their distribution and response to environmental change in saline lakes are poorly understood. In this study, the community structure of cyanobacteria and eukaryotic algae in the water and surface sediments of six lakes and one river on the Qinghai–Tibetan Plateau were investigated with the 23S rRNA gene pyrosequencing approach. Our results showed that salinity was the major factor controlling the algal community composition in these aquatic water bodies and the community structures of water and surface sediment samples grouped according to salinity. In subsaline–mesosaline lakes (salinity: 0.5–50 g L?1), Cyanobacteria (Cyanobium, Synechococcus) were highly abundant, while in hypersaline lakes (salinity: >50 g L?1) eukaryotic algae including Chlorophyta (Chlorella, Dunaliella), Bacillariophyta (Fistulifera), Streptophyta (Chara), and Dinophyceae (Kryptoperidinium foliaceum) were the major members of the community. The relative abundance ratio of cyanobacteria to eukaryotic algae was significantly correlated with salinity. The algae detected in Qinghai–Tibetan lakes exhibited a broader salinity range than previously known, which may be a result of a gradual adaptation to the slow evolution of these lakes. In addition, the algal community structure was similar between water and surface sediment of the same lake, suggesting that sediment algal community was derived from water column.  相似文献   

19.
Penguin colony is one of the Earth’s simplest ecosystems. As the seabird with the largest population in Antarctica, penguin is a unique indicator of Antarctic environment and climate changes. In this study, we collected an ornithogenic sediment core from Gardner Island in Vestfold Hills, East Antarctica, reconstructed an 8,500 years variation history of penguin population and vegetation abundance on this island, and examined the evolution of the penguin colony. We used the levels of two molecular markers cholesterol and cholestanol as the proxy indicators of penguin population size. Other molecular markers, including C24:0 alkenoic acid, C18 n-alkanol and phytol were used as the proxy indicators of aquatic moss, algae, and general vegetation, respectively. It is shown that the growth of algae was mainly affected by the nutritional supply from penguin droppings, so their abundance was positively linked with penguin population. The growth of aquatic moss, however, was controlled more by the degree of water body transparency than by nutrient availability. Because the pollution of water body increased as penguin population grew, aquatic moss abundance showed a seesaw-like relationship with penguin population. These results suggested that penguins played a dominant role in this simple ecosystem in the Antarctic environment. The reconstructed relationship between penguin population and vegetation abundance may offer new insights to understand ancient Antarctic environment and ecology.  相似文献   

20.
Summary The hypothesis that relative water motion and boundary layer diffusion processes affect carbon isotope ratios of aquatic plants was tested in tidal pool and surge zone comparisons of the surfgrass Phyllospadix spp. No evidence was found that submerged plants growing in still upper tidal pools were isotopically different from those growing submerged in lower tidal surge zones. Significant decreases in 13C/12C ratios for plants growing emersed in the intertidal may have been caused by uptake of atmospheric carbon dioxide. Marine algae (Egregia menziesii and Halosaccion americanum) growing at the same location and tidal elevations as the seagrasses showed somewhat different isotopic fractionation patterns, suggesting that causes of isotopic variability in the seagrasses were not necessarily the same as those in the two marine algae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号