首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloned B-cell lines from a female T16H/XSxr mouse in which Tdy expression was suppressed due to X inactivation and from a male X/XSxr mouse, both of the (kxb)F1 haplotype, were examined for H-Y expression. This was determined both by their ability to act as targets for H-2k and H-2b-restricted H-Y-specific cytotoxic T cells and by their ability to stimulate the proliferation of H-2Kk, H-2Db (class I) and Ab (class II)-restricted T-cell clones. In B-cell clones from the T16H/XSxr mouse, expression of H-Y/Db exhibited partial X inactivation and only a proportion ( 30%) of the cells were targets for or stimulated H-2Db-restricted H-Y-specific T cells. In contrast, H-Y eiptopes restricted by H-2k (H-Y/Kk, H-Y/Dk) and Ab (H-Y/Ab) exhibited no X inactivation. Furthermore, no inactivation of H-Y/Db, H-Y/Ab, or H-Yk was observed in the male X/XSxr mouse. These results indicate that the T16H/XSxr female is a mosaic, as a result of the variable spread of X inactivation into the Sxr region. They further suggest that the H-Y antigen recognized in association with H-2k and H-2Db class I molecules and Ab class II molecules may be the product of more than one gene.  相似文献   

2.
1. We studied the seasonal dynamics of suspended particulate matter in a turbid, large shallow lake during an annual period (2005–06). We relate the patterns of seston concentration (total suspended solids), phytoplankton biomass and water transparency to the seasonal pattern of incident solar radiation (I0). We also report the seasonal trends of phytoplankton primary production (PP) and photosynthesis photoinhibition due to photosynthetically active radiation (PAR) and ultraviolet radiation (UVR) (Iβ and UV50). 2. We first collected empirical evidence that indicated the conditions of light limitation persisted during the study period. We found that the depth‐averaged irradiance estimated for the time of the day of maximum irradiance (Imean–noon) was always lower than the measured onset of light saturation of photosynthesis (Ik). 3. We then contrasted the observations with theoretical expectations based on a light limitation scenario. The observed temporal patterns of seston concentration, both on a volume and area basis, were significantly explained by I0 (R2 = 0.39 and R2 = 0.37 respectively). The vertical diffuse attenuation coefficient (kdPAR) (R2 = 0.55) and the depth‐averaged irradiance (Imean) (R2 = 0.66), significantly increased with the I0; while the irradiance reaching the lake bottom (Iout) significantly decreased with the incident irradiance (R2 = 0.49). However, phytoplankton biovolume maxima were not coincident with the time of the year of maximum irradiance. 4. A significant positive relationship was observed between PP estimated on an area basis and I0 (R2 = 0.51, P < 0.001). In addition, the parameters describing the photosynthetic responses to high irradiances displayed marked seasonal trends. The photosynthesis photoinhibition due to PAR as well as to UV were significantly related to incident solar radiation (PAR: R2 = 0.73; UV: R2 = 0.74). These results suggest adaptation of the phytoplankton community in response to changes in incident solar radiation.  相似文献   

3.
Planktonic algae are not abundant in the brackish waters of San Francisco Bay-estuary (mean chlorophyll a 5 µg 1–1), despite the high level of nutrients usually present due to the input of treated sewage from 3 million people. Macroalgae (seaweeds) are sometimes locally abundant in the Bay. Phytoplankton are abundant (chlorophyll a > 50 µg 1–1) and seaweeds uncommon in the almost freshwater Delta and upper estuary despite lower nutrient levels. Direct competition between these algal groups could explain the observed distributions.Given the size of the algae, large containers were needed for the determination of possible resource competition. Experiments were carried out in flow-through mesocosms (analog tanks) of 3 m3 volume. The macroalgae Ulva lactuca or Gigartina exasperata and a diatom-dominated phytoplankton, all from San Francisco Bay, were grown separately and together and with and without treated sewage effluent or other artificial nutrient additions. When grown alone phytoplankton and macroalgae were greatly stimulated by wastewater addition to unmodified baywater. The phytoplankton grew much more slowly in the presence of natural densities of Ulva. Allelochemical effects were tested for but not demonstrated.Resource competition for inorganic nitrogen was determined to be the probable cause of the depression of phytoplankton by Ulva. At its rapid growth rates in the flow-through mesocosms (up to 14% day–1) this macroalga can reduce inorganic nitrogen to low levels. Ulva has a greater affinity (lower KS) for nitrogen than do some of the plankton of the Bay. Ulva may outcompete phytoplankton by reducing nitrogen to levels below those capable of supporting phytoplankton growth. Other macroalgae such as Gigartina and Enteromorpha need to be studied to determine if they also can depress phytoplankton growth by resource competition.  相似文献   

4.
Zhanshan Ma 《Molecular ecology》2015,24(21):5428-5445
Taylor's (1961, Nature, 189:732) power law, a power function (amb) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single‐species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US‐NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power‐law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed‐species population spatial aggregation (heterogeneity) and type IV PLE for mixed‐species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs.  相似文献   

5.
1. The in situ abundance, biomass and mean cell volume of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic German mining lake (Lake 111; pH 2.65), were determined over three consecutive years (spring to autumn, 2001–03). 2. Actinophrys sol exhibited pronounced temporal and vertical patterns in abundance, biomass and mean cell volume. Increasing from very low spring densities, maxima in abundance and biomass were observed in late June/early July and September. The highest mean abundance recorded during the study was 7 × 103 Heliozoa L?1. Heliozoan abundance and biomass were higher in the epilimnion than in the hypolimnion. Actinophrys sol cells from this acidic lake were smaller than individuals of the same species found in other aquatic systems. 3. We determined the growth rate of A. sol using all potential prey items available in, and isolated and cultured from, Lake 111. Prey items included: single‐celled and filamentous bacteria of unknown taxonomic affinity, the mixotrophic flagellates Chlamydomonas acidophila and Ochromonas sp., the ciliate Oxytricha sp. and the rotifers Elosa worallii and Cephalodella hoodi. Actinophrys sol fed over a wide‐size spectrum from bacteria to metazoans. Positive growth was not supported by all naturally available prey. Actinophrys sol neither increased in cell number (k) nor biomass (kb) when starved, with low concentrations of single‐celled bacteria or with the alga Ochromonas sp. Positive growth was achieved with single‐celled bacteria (k = 0.22 ± 0.02 d?1; kb = ?0.06 ± 0.02 d?1) and filamentous bacteria (k = 0.52 ± <0.01 d?1; kb = 0.66 d?1) at concentrations greater than observed in situ, and the alga C. acidophila (up to k = 0.43 ± 0.03 d?1; kb = 0.44 ± 0.04 d?1), the ciliate Oxytricha sp. (k = 0.34 ± 0.01 d?1) and in mixed cultures containing rotifers and C. acidophila (k = 0.23 ± 0.02–0.32 ± 0.02 d?1; maximum kb = 0.42 ± 0.05 d?1). The individual‐ and biomass‐based growth of A. sol was highest when filamentous bacteria were provided. 4. Existing quantitative carbon flux models for the Lake 111 food web can be updated in light of our results. Actinophrys sol are omnivorous predators supported by a mixed diet of filamentous bacteria and C. acidophila in the epilimnion. Heliozoa are important components in the planktonic food webs of ‘extreme’ environments.  相似文献   

6.
Summary Annual phytoplankton primary production in the tidal channels of the western Wadden Sea cannot be estimated more precisely than 150±50 g C.m–2a–1, due to large spatial and short-term temporal variations. This implies that year-to-year variations and eventually long-term trends have to be very pronounced to be measurable even with a weekly sampling program.Short-term temporal variation in primary production of microphytobenthos living on the tidal flats is less pronounced, but spatial variation is large. Primary production on high tidal flats is larger than on flats lower in the tidal zone. Year-to-year variation on a tidal flat station occupied now for 12 years was large. This variation cannot be explained by year-to-year variations in nutrients, light or temperature, but probably by year-to-year variations in grazing. Macrophytobenthic primary production plays a subordinate role in the western Wadden Sea after the disappearance ofZostera fields. It is difficult to give one figure for the annual primary production of an average tidal flat due to the variations mentioned. Tentatively, microphytobenthic plus macrophytobenthic plus phytoplankton primary production on and above an average tidal flat is estimated at 150±50 g C.m–2a–1,i.e. the same as estimated for phytoplankton primary production in the tidal channels.The western Wadden Sea receives a considerable amount of particulate organic carbon from outside the area, estimated at 240 g C.m–2a–1. Formerly the North Sea was thought to be the only source. New data indicate also an import from the Ysselmeer. The import of total organic carbon, particulate plus dissolved, from the Ysselmeer exceedsin situ primary production. From this import Ysselmeer DOC is probably not used very much in the Wadden Sea. However, Ysselmeer POC, consisting for 50% on average of living phytoplankton cells, may form a suitable food source for Wadden Sea invertebrates. Cell counts ofScenedesmus sp., a freshwater alga used as a natural tracer for Ysselmeer POC in the western Wadden Sea, indicate that a large part of the Ysselmeer POC is retained here.  相似文献   

7.
The size distributions of deletions, insertions, and indels (i.e., insertions or deletions) were studied, using 78 human processed pseudogenes and other published data sets. The following results were obtained: (1) Deletions occur more frequently than do insertions in sequence evolution; none of the pseudogenes studied shows significantly more insertions than deletions. (2) Empirically, the size distributions of deletions, insertions, and indels can be described well by a power law, i.e., f k = Ck b , where f k is the frequency of deletion, insertion, or indel with gap length k, b is the power parameter, and C is the normalization factor. (3) The estimates of b for deletions and insertions from the same data set are approximately equal to each other, indicating that the size distributions for deletions and insertions are approximately identical. (4) The variation in the estimates of b among various data sets is small, indicating that the effect of local structure exists but only plays a secondary role in the size distribution of deletions and insertions. (5) The linear gap penalty, which is most commonly used in sequence alignment, is not supported by our analysis; rather, the power law for the size distribution of indels suggests that an appropriate gap penalty is w k = a + b ln k, where a is the gap creation cost and blnk is the gap extension cost. (6) The higher frequency of deletion over insertion suggests that the gap creation cost of insertion (a i ) should be larger than that of deletion (a d ); that is, a i a d = In R, where R is the frequency ratio of deletions to insertions. Correspondence to: W.-H. Li  相似文献   

8.
The heuristic analysis of the relationship between the parameters of equations of linear (L. von Bertalanffy) and allometric shell growth was carried out on Unio pictorum (Linnaeus, 1758), U. tumidus Retzius, 1778, and U. crassus Retzius 1778 (Unionidae) from European Russia. Growth constants of the shell, k, were studied for length (k L ), height (k h ), and convexity (k C ). It was shown that the ratios of growth constants (k h /k L , k C /k h , and k C/k L ) and parameter bfrom the allometric equations (h=aL b ;B=ah b ; C=aL b ) are connected by a strong negative correlation. If the b parameter is more than 1 (positive allometry), the growth constant relations are less than one, if b < 1 (negative allometry), the growth constant proportions are more than 1, and, in case when b is close to 1, (isometry), the growth constant proportions are also close to 1. All three types of allometric growth (isometry and both positive and negative allometry) are observed in the studied mussels.  相似文献   

9.
The perennially ice-covered lakes of Antarctica have hydrodynamically stable water columns with a number of vertically distinct phytoplankton populations. We examined the photosynthesis-irradiance characteristics of phytoplankton from four depths of Lake Bonney to determine their physiological condition relative to vertical gradients in irradiance and temperature. All populations studied showed evidence of extreme shade adaptation, including low Ik values (15–45 μE · m?2· s?1) and extremely low maximal photosynthetic rates (PBm less than 0.3 μg C ·μg chl a?1· h?1). Photosynthetic rates were controlled by temperature as well as light variations with depth. Lake Bonney has an inverted temperature profile within the trophogenic zone that increased from 0° C at the ice-water interface to 6° C from 10 to 18 m. Deeper phytoplankton (10 m and 17 m) were found to have photosynthetic capacities (PBm) and efficiences (α) three to five times higher than those at the ice-water interface. However, Q10 values were only ca. 2 for PBm (no temperature dependence was evident for α), suggesting that a simple temperature response cannot explain all the differences between populations. Lake Bonney phytoplankton (primarily cryptophytes and chlorophytes) had photosynthetic characteristics similar to diatoms from other physically stable environments (e.g. sea ice, benthos) and may be ecologically analogous to multiple deep chlorophyll maxima.  相似文献   

10.
H-2 class I antigen expression on mouse teratocarcinoma cell lines   总被引:1,自引:0,他引:1  
Immunity against PCC3 teratocarcinoma cells (129, H-2 b) was induced in allogeneic (C3H, H-2 k) mice by preimmunization with L cells (C3H, H-2 k) expressing cosmid-introduced K b or D b genes, but not with nontransfected L cells. In addition, the growth of PCC3 cells in sublethally irradiated (C3H × B6-H-2 bm1)F1 and (C3H × B6-H-2 bm13 )F1 mice bearing the K bm1 and D bm13 mutations, respectively, was either prevented, stopped, or delayed in comparison with the (C3H × B6)F1 (k × b) mice, which failed to reject the PCC3 cells. The teratocarcinoma line OC15S was exceptional because it reacted specifically with Kb- and Db-specific (but not Ib-specific) alloantisera, and because Kb- and Db-specific antibodies could be absorbed by OC15S cells. The subpopulation of OC15S cells bearing the ECMA-7 antigen characteristic for embryonic carcinoma (EC) cells was isolated by the fluorescence-activated cell sorter and was shown to react specifically with Kb- and Db-specific antisera. These experiments show that teratocarcinoma cells express antigens similar or identical to the K-and D-region products of differentiated cells. The lack of expression of class I antigens is thus neither a condition nor a consequence of the pluripotentiality of the EC cells. The exact nature of the major histocompatibility complex antigens on EC cells has yet to be established using the methods of molecular biology and biochemistry.  相似文献   

11.
Spatial context influences patch residence time in foraging hierarchies   总被引:1,自引:0,他引:1  
Understanding responses of organisms to spatial heterogeneity in resources has emerged as a fundamentally important challenge in contemporary ecology. We examined responses of foraging herbivores to multi-scale heterogeneity in plants. We asked the question, “Is the behavior observed at coarse scales in a patch hierarchy the collective outcome of fine scale behaviors or, alternatively, does the spatial context at coarse scales entrain fine scale behavior?” To address this question we created a nested, two-level patch hierarchy. We examined the effects of the spatial context surrounding a patch on the amount of time herbivores resided in the patch. We developed a set of competing models predicting residence time as a function of the mass of plants contained in a patch and the distance between patches and examined the strength of evidence in our observations for these models. Models that included patch mass and inter-patch distance as independent variables successfully predicted observed residence times (bears: r 2=0.67–0.76 and mule deer: r 2=0.33–0.55). Residence times of grizzly bears (Ursus arctos) and mule deer (Odocoileus hemionus) responded to the spatial context surrounding a patch. Evidence ratios of Akaike weights demonstrated that models containing effects of higher levels in the hierarchy on residence time at lower levels received up to 34 times more support in the data than models that failed to consider the higher level context for grizzly bears and up to 48 times more support for mule deer. We conclude that foraging by large herbivores is influenced by more than one level of heterogeneity in patch hierarchies and that simple empirical models offer a viable alternative to optimal foraging models for the prediction of patch residence times.  相似文献   

12.
Zooplankton in the main channel of the Nakdong River and in three tributaries was sampled from June 1994 to September 1995. Planktonic rotifers (Brachionus spp., Keratella spp., and Polyarthra spp.), cyclopoid nauplii and small cladocerans (Bosmina longirostris) were numerically dominant. There was considerable longitudinal variation of zooplankton biomass in the main channel as well as spatial heterogeneity among the major tributaries. In the middle region of the main channel, between river kilometer (RK) 170 and 150 above the estuary dam, total zooplankton abundance sharply increased from less than 100 ind. L—1 to more than 1,000 ind. L—1. In a downstream direction toward the estuary dam, phytoplankton biomass increased while total zooplankton biomass decreased. However, as shown by the increasing transport of zooplankton biomass, zooplankton was diluted in the reach of the estuary dam. Advective effects from major tributaries appear to be the contributory factor for the higher zooplankton biomass in the middle region. Overall, rather the external factors (flushing, retention) than internal factors (e.g., phytoplankton) appear to be responsible for changes in zooplankton abundance toward the river mouth.  相似文献   

13.
Hybrid resistance (HR) is primarily controlled by the genes of the Hemopoietic histocompatibility-1 (Hh-1) locus within the H-2 complex. HR is a consequence of the Hh-1-controlled target determinants in homozygous parental strain mice and their absence in heterozygous F1 hybrid mice. To examine the mechanism that controls the Hh-1 phenotype, three independent clones of somatic cell hybrids between parental lines EL-4 (C57BL/6 origin, H-2 b ) and R1 (C58 origin, H-2 k ) were studied. The line EL-4 is Hh-1b-positive and is subject to HR by H-2 b heterozygous F1 mice, but R1 lacks the Hh-1 b allele and is not susceptible to HR. Of the three hybrid clones, F263.2 is Hh-1b-positive, whereas the other two, F262.2 and F264.2, are Hh-1-negative, as judged by these cells' capacity to compete in vivo with the grafted parental C57BL/6 bone marrow cells in the resistant (C57BL/6 × C3H)F1 mice. All three clones express the H-2b and H-2k class I antigens equally well, are susceptible to activated NK cells to the same extent, and all carry four copies of chromosome 17. However, Southern analysis reveals that clone F263.2 contains three copies of H-2 b chromosome and one H-2 k , whereas the other two clones carry two copies each of the parental chromosome 17. The results suggest that the relative copy number of specific alleles is the crucial determinanr of the Hh-1 phenotype, and render unlikely both the gene dosage hypothesis and the trans-acting dominant suppression hypothesis to account for the noncodominant expression of the Hh-1 phenotype.  相似文献   

14.
The level of cell proliferation and interleukin-2 (IL-2) production observed in an anti-Mls mixed lymphocyte reaction between spleen cells from H-2 compatible, Mls incompatible mouse strains is determined by the H-2 haplotype of the mouse combination. Thus, while AKR (H-2 k) spleen cells stimulated strong M1sa responses in H-2k responder cells, AKR H-2b spleen cells stimulated no or negligible M1sa responses in responder cells from H-2 bmouse strains. This effect was observed at the levels of IL-2 production and cell proliferation. The magnitude of the response observed using F1 (H-2 k/H-2 b) responder cells was found to be a function of stimulator rather than responder cells. The poor stimulatory capacity of AKRH-2 bspleen cells was also shown not to be due to the loss of the stimulatory Mls aallele during the construction of the congenic strain from AKR and C57BL/6 parental strains. Using stimulator cells from a second series of congenic mice, we found H-2 b(strain DLLP) again to represent a poorly Mlsa stimulatory H-2 haplotype. In addition, H-2q (DBA/1) cells displayed very poor Mlsa stimulatory potential while H-2d (D1.C) cells were efficient Mlsa stimulators. Again the effect was shown to be at the level of the stimulator cells. In toto, our findings indicate that the H-2 kand H-2 dhaplotypes encode strong Mlsa stimulatory potential while the H-2 band H-2 qhaplotypes determine poor Mlsa stimulatory potential in primary in vitro responses, measured as cell proliferation and IL-2 production.Abbreviations used in this paper: CTL cytotoxic T lymphocyte - IL-1 interleukin-1 - IL-2 interleukin-2 - MLR mixed lymphocyte reaction - NMS normal mouse serum  相似文献   

15.
Spectral light attenuation, from the surface to 20 m, was followed on 15 sunny days and compared with the vertical phytoplankton distribution. The most penetrating wavelengths lie between 565 and 590 nm. High phytoplankton density causes a rapid loss of blue light with depth. Consequently the yellow and red regions of the spectrum contain a relatively high proportion of the light energy present at a particular depth. The vertical attenuation coefficients of monochromatic light Kd(λ) in the 400 to 700 nm region are influenced significantly by the phytoplankton biomass. The specific light attenuation coefficient for chlorophyll a (kc) is highest below 550 nm (e.g. 450 nm, surface layer: kc = 0.027 m2 · mg−1, n = 14; lowermost layer: kc = 0.044 m2 · mg−1, n = 9).  相似文献   

16.
During summer 2008, as part of the Circumpolar Flaw Lead system study, we measured phytoplankton photosynthetic parameters to understand regional patterns in primary productivity, including the degree and timescale of photoacclimation and how variability in environmental conditions influences this response. Photosynthesis–irradiance measurements were taken at 15 sites primarily from the depth of the subsurface chlorophyll a (Chl a) maximum (SCM) within the Beaufort Sea flaw lead polynya. The physiological response of phytoplankton to a range of light levels was used to assess maximum rates of carbon (C) fixation (P m*), photosynthetic efficiency (α *), photoacclimation (E k), and photoinhibition (β *). SCM samples taken along a transect from under ice into open water exhibited a >3-fold increase in α * and P m*, showing these parameters can vary substantially over relatively small spatial scales, primarily in response to changes in the ambient light field. Algae were able to maintain relatively high rates of C fixation despite low light at the SCM, particularly in the large (>5 μm) size fraction at open water sites. This may substantially impact biogenic C drawdown if species composition shifts in response to future climate change. Our results suggest that phytoplankton in this region are well acclimated to existing environmental conditions, including sea ice cover, low light, and nutrient pulses. Furthermore, this photoacclimatory response can be rapid and keep pace with a developing SCM, as phytoplankton maintain photosynthetic rates and efficiencies in a narrow “shade-acclimated” range.  相似文献   

17.
18.
A new automated procedure for nanomolar nitrate analysis was applied to the study of uptake of low nitrate concentrations (< 100 ngat l–1) by phytoplankton. The precision of this analytical method (± 3 ngat l–1) made it possible to monitor the absorption of very low quantities of nitrate over short term periods by a low cell-density culture of the marine diatom Phaeodactylum tricornutum, where the levels of particulate nitrogen and chlorophyll were equivalent to those found in oligotrophic areas (0.5 µgat N l–1 and 0.4 µg l–1 respectively). By continuous monitoring of nitrate disappearance from the culture medium, we are able to describe accurately the transient uptake responses of the diatom after a spike addition of trace quantities of nitrate and thus to provide new information on the still largely unknown small-scale phenomenon of pulsed nitrate supply in the upper layer of stratified oceans and rapid uptake of these nitrate patches by phytoplankton.The results show that a N-limited culture of Phaeodactylum tricornutum is immediately capable of taking up trace quantities of nitrate (< 100 ngat l–1) at high rates (0.10–0.14 h–1) . These initial rates are one order of magnitude higher than the theoretical rates calculated from the Michaelis-Menten equation and are close to the level of V max (0.15 h–1) obtained when cells are exposed to saturating nitrate concentrations. This rapid initial uptake would be a considerable advantage in oligotrophic areas where nanomolar nitrate supply is thought to be episodic. The present results suggest that phytoplankton evolve adaptations to utilize the available nitrate at the spatial and temporal scales at which it occurs. On the other hand, we can consider this physiological adaptation as evidence of nitrate pulses in the field which would invalidate the steady-state approach to the oligotrophic ecosystems.  相似文献   

19.
Aim In this continental‐scale study, the biodiversity of benthic and planktonic algal communities was explored. A recent analysis of extinct and extant tree communities by Enquist et al. (2002) showed that richness of higher taxa was a power function of species richness, invariant across temporal and spatial scales. Here we examined whether the relationships between algal richness at hierarchical taxonomic levels conform to power laws as seen for trees, and if these relationships differ between benthic and planktonic habitats. Location Streams from more than 50 major watersheds in the United States. Method A total of 3698 samples were collected from 1277 locations by the National Water‐Quality Assessment Program. Three types of stream habitat were sampled: richest targeted habitats, depositional targeted habitats, and phytoplankton. The relationships between taxonomic richness at the species level vs. all higher categories from genus to phylum across the three habitats were examined by ordinary least squares (OLS) regressions after ln‐transformation of all variables. The slopes, b, of these regressions represent the exponents of the power functions that scaled the richness of higher taxonomic levels (T) to species richness (S) in the form: TSb. Results Algal richness at hierarchical taxonomic categories (genus to phylum) is a power function of species richness. The scaling exponent of this function, which captures the diversification of higher taxa, i.e. the rate of increase of their richness with the increase of species richness, is significantly different across environments. Main conclusions The differential algal diversification in the three studied habitats emphasizes the fundamental role of the environment in structuring the communities of simple organisms such as algae. The finding that the diversification of higher taxa is greater in the seemingly homogeneous planktonic environment, when compared to benthic habitats, encompassing an array of ecological niches, poses a new paradox of the plankton.  相似文献   

20.
Habitat selection can be considered as a hierarchical process in which animals satisfy their habitat requirements at different ecological scales. Theory predicts that spatial and temporal scales should co‐vary in most ecological processes and that the most limiting factors should drive habitat selection at coarse ecological scales, but be less influential at finer scales. Using detailed location data on roe deer Capreolus capreolus inhabiting the Bavarian Forest National Park, Germany, we investigated habitat selection at several spatial and temporal scales. We tested 1) whether time‐varying patterns were governed by factors reported as having the largest effects on fitness, 2) whether the trade‐off between forage and predation risks differed among spatial and temporal scales and 3) if spatial and temporal scales are positively associated. We analysed the variation in habitat selection within the landscape and within home ranges at monthly intervals, with respect to land‐cover type and proxys of food and cover over seasonal and diurnal temporal scales. The fine‐scale temporal variation follows a nycthemeral cycle linked to diurnal variation in human disturbance. The large‐scale variation matches seasonal plant phenology, suggesting food resources being a greater limiting factor than lynx predation risk. The trade‐off between selection for food and cover was similar on seasonal and diurnal scale. Habitat selection at the different scales may be the consequence of the temporal variation and predictability of the limiting factors as much as its association with fitness. The landscape of fear might have less importance at the studied scale of habitat selection than generally accepted because of the predator hunting strategy. Finally, seasonal variation in habitat selection was similar at the large and small spatial scales, which may arise because of the marked philopatry of roe deer. The difference is supposed to be greater for wider ranging herbivores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号