首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This Commentary describes a call for submissions for the upcoming Special Issue focused on the research topics presented at the Australian Society of Biophysics (ASB) in 2020 and 2021. Submissions from past and present ASB members who could not attend these meetings are also welcome as contributions to this special issue.

In 2020, the ASB held its 44th Annual Conference virtually, enabling joint sessions with the University of California Davis Early Career Researchers, Biophysical Society of Japan, and the New Zealand Section of ASB to take place despite the ongoing COVID-19 pandemic. To complement these ASB joint meetings, Biophysical Reviews in partnership with the Australian Society for Biophysics (ASB) will present the second of a series of Special Issues highlighting the activities of a National Biophysical Society. This National Biophysical Society Special Issue series will highlight the activities and showcase the areas of research carried out by its members.Review articles are solicited from speakers and poster presenters of the 44th and participants at the 45th ASB annual conferences. Commentaries from session chairs and meeting organisers are also requested. Submissions from those who have had long-standing association with ASB or with knowledge of its history are also most welcome. This Special Issue will be prepared and edited by the above authors.  相似文献   

2.
JGP study shows that a mechanosensitive complex containing Piezo1 and Pannexin1 couples osmotic pressure to ATP secretion in bile duct cholangiocytes.

Cholangiocytes are epithelial cells that line the bile ducts within the liver and modify the composition of hepatocyte-derived bile. In this issue of JGP, Desplat et al. identify a mechanosensory complex that may help cholangiocytes respond to changes in osmotic pressure (1).Angélique Desplat (left), Patrick Delmas (center), and colleagues identify a mechanosensitive pathway that couples hypotonic stress to calcium influx and ATP release in cholangiocytes. Cell swelling induces calcium influx through the stretch-activated ion channel Piezo, triggering ATP release by Pannexin1 channels. This leads to the activation of P2X4 receptors and further calcium influx. Piezo1 (red) and Pannexin1 (green) colocalize in cells and may interact to form a mechanosensory complex that facilitates the hypotonic stress response.The activity of cholangiocytes can be regulated not only by chemical signals, such as hormones and bile acids, but also by mechanical cues arising from changes in bile composition and flow. “Abnormal mechanical tension is also an aggravating factor in many biliary diseases, including primary sclerosing cholangitis,” explains Patrick Delmas, a Research Director at Centre National de la Recherche Scientifique/Aix-Marseille-Université. “So, identifying the molecular players in cholangiocyte force sensing could provide a step forward for better management of biliary diseases.”Current models suggest that mechanical cues trigger an influx of calcium into cholangiocytes, leading to the release of ATP, which, by stimulating purinergic receptors at the cell surface, promotes further calcium influx and induces the secretion of anions, water, and HCO3 to modify the tonicity and pH of hepatic bile (2, 3). To identify mechanosensitive proteins that might regulate this pathway, Delmas and colleagues, including first author Angélique Desplat, purified mouse cholangiocytes from intrahepatic bile ducts and subjected them to hypotonic stress (1). The subsequent cell swelling activates calcium influx and ATP release.Desplat et al. found that depleting or inhibiting the stretch-activated ion channel Piezo1 significantly reduced this response to hypotonic stress. This mechanosensitive channel mediates the initial calcium influx into cholangiocytes when activated by cell swelling.The subsequent release of ATP is mediated by a different channel, however. Desplat et al. found that cholangiocytes express high levels of the gap junction family protein Pannexin1, and that pharmacologically inhibiting Pannexin1 channels reduced the amount of ATP released in response to hypotonic stress and Piezo1 activation.Delmas and colleagues suspect that the increase in intracellular calcium mediated by Piezo1 may activate Pannexin1 channels to release ATP, and this activation may be facilitated by a physical association between the two proteins: the researchers found that recombinant versions of the two channel proteins colocalize within the plasma membrane of cholangiocytes and can be coimmunoprecipitated.Finally, the researchers determined that the ATP released through Pannexin1 channels amplifies the signal initiated by hypotonic stress by activating purinergic P2X4 receptors, leading to further increases in intracellular calcium levels. Transfecting Piezo1-deficient HEK293 cells, which usually don’t respond to hypotonic stress, with cDNAs encoding Piezo1, Pannexin1, and P2X4R was sufficient to reconstitute the entire pathway of calcium influx and ATP release.Cholangiocytes express other mechanosensitive channels, including TRPV4, which has previously been implicated in the cells’ response to hypotonic stress (4). The functions of TRPV4 and Piezo1 may therefore be partially redundant, providing some robustness to cholangiocytes mechanical signaling pathways. However, it is also possible that, in vivo, the two channels respond to different stimuli and elicit distinct downstream effects. “Further investigation is warranted to better understand the respective roles of these two molecular players,” says Delmas. “To continue our work, we would like to challenge our model in vivo by testing whether Piezo1 agonists are able to regulate bile acid secretion.”  相似文献   

3.
Xiao R  Xu XZ 《Current biology : CB》2010,20(21):R936-R938
Mechanosensory transduction underlies touch, hearing and proprioception and requires mechanosensitive channels that are directly gated by forces; however, the molecular identities of these channels remain largely elusive. A new study has identified Piezo1 and Piezo2 as a novel class of mechanosensitive channels.  相似文献   

4.
Written by someone who has worked in the mechanobiology field for close to 40 years, this commentary describes some historical background to the recent award of one-half of the Nobel Prize for Physiology or Medicine to Ardem Patapoutian for his discovery of the family of mechanosensitive Piezo ion channels, which function as mechanoreceptors feeling the environment in senses such as touch, pain, and proprioception.  相似文献   

5.
Mechanosensitive channels play important roles in the physiology of many organisms, and their dysfunction can affect cell survival. This suggests that they might be therapeutic targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, dysentery, leishmaniasis and trypanosomiasis that are responsible for millions of deaths each year worldwide. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of mechanosensitive channels. Entamoeba histolytica, Leishmania spp., Trypanosoma cruzi and Trichomonas vaginalis have genes encoding homologues of Piezo channels, while most pathogenic protozoa have genes encoding homologues of mechanosensitive small-conductance (MscS) and K+-dependent (MscK) channels. In contrast, all parasites examined lack genes encoding mechanosensitive large-conductance (MscL), mini-conductance (MscM) and degenerin/epithelial Na+ (DEG/ENaC) channels. Multiple sequence alignments of evolutionarily distant protozoan, amoeban, plant, insect and vertebrate Piezo channel subunits define an absolutely conserved motif that may be involved in channel conductance or gating. MscS channels are not present in humans, and the sequences of protozoan and human homologues of Piezo channels differ substantially. This suggests the possibility for specific targeting of mechanosensitive channels of pathogens by therapeutic drugs.  相似文献   

6.
This Editorial describes both the motivation for, and the five articles appearing in, the Issue Focus dedicated to the 2nd Costa Rica Biophysics Symposium which was held in March 2021. Some recent history about both the symposium and developments in science occurring within Costa Rica is described. 

The Costa Rica Biophysics Symposium was conceived as a forum for faculty, scholars and students interested on cutting-edge topics in biophysics and related fields. Following the success of the first event organized in 2019 (Solís et al (2020), the second edition of the symposium took place on March 2021 with the support of the Academia Nacional de Ciencias de Costa Rica (ANC, National Academy of Sciences of Costa Rica), the International Union of Pure and Applied Biophysics (IUPAB), the German Society of Biophysics (DGfB), and the Universidad Nacional of Costa Rica (UNA). The symposium aimed to reinforce and enhance the novel network of investigators established in the 2019 event. Participation of Costa Rican presenters, either located in the country or abroad, and foreign scientists from the USA, Germany, France, and Switzerland (Solís et al. (2021a) translated into an expansion and internationalization of the previous network. Moreover, the symposium attracted a broad international audience, which increases the opportunities of further international collaboration.The meeting was organized into 14 presentations and one keynote lecture. It was attended by researchers of the three main universities of Costa Rica: Universidad Nacional (UNA), Universidad de Costa Rica (UCR) and Tecnológico de Costa Rica (TEC). Presenters from international universities were also present, including UT Southwestern Medical Center, USA; Klinikum Nürnberg Medical School, Germany; École Polytechnique Fédérale de Lausanne, Switzerland; Institut de Neurosciences de Montpellier, France; University of California Berkeley, USA; and The University of Chicago, USA. The topics presented in the symposium were diverse and covered cutting-edge biophysical research areas. The presentations ranged from channel electrophysiology, machine learning focused on cellular microscopy, prediction of protein–protein interactions, channelopathies and novel biophysical techniques, among others (Solís et al., 2021a). Furthermore, each lecture was followed by questions from the audience, allowing discussion, engagement and interaction between researchers in spite of the limitations of a virtual symposium. The closing event for the symposium was a lecture by the world-renowned biophysicist Francisco Bezanilla from the University of Chicago, who engaged the audience into a master presentation of his vast research on protein voltage-sensor domains (VSD) with a focus on his recent work on the non-canonical mechanisms for VSD-mediated regulation of pore domains in voltage-gated potassium channels (Carvalho-de-Souza and Bezanilla 2019). After the consequent discussion, the symposium finished with a networking activity, where audience and presenters were able to socialize and share experiences.  相似文献   

7.
JGP study finds that the C. elegans orthologue of the PIEZO family is a mechanosensitive ion channel that regulates pharyngeal pumping and food sensation.

The PIEZO family of mechanosensitive cation channels has been implicated in a wide variety of physiological processes in mammals and is also associated with human disease. Mammalian genomes encode two family members, known as Piezo1 and Piezo2, but invertebrates such as the nematode Caenorhabditis elegans only possess a single Piezo-related gene (1). The function of the C. elegans orthologue, known as pezo-1, has largely remained obscure, but, in this issue of JGP, Millet et al. reveal that it encodes a bona fide mechanosensitive ion channel that regulates pharyngeal activity (2).Jonathan Millet (left), Valeria Vásquez (center), and colleagues reveal that pezo-1, the sole PIEZO family member in C. elegans, is a mechanosensitive ion channel that regulates pharyngeal pumping and food sensation, particularly when worms are fed with large and stiff bacterial filaments that are difficult to swallow (graphic created with BioRender.com).In 2020, an elegant study demonstrated that pezo-1 controls C. elegans ovulation and fertilization (3). However, explains Valeria Vásquez from the University of Tennessee Health Science Center, whether pezo-1 encodes for a mechanosensitive ion channel was unknown. “PEZO-1 is expressed in many tissues, including the pharynx, which is the organ we decided to concentrate on in our study,” Vásquez says.Muscle cells in the C. elegans pharynx rhythmically contract and relax to pump food into the worm’s intestine. Vásquez and colleagues, including first author Jonathan Millet, found that PEZO-1 is expressed in several different pharyngeal cell types (2), including the gland cells whose secretions lubricate the pharynx, and the proprioceptive NSM neurons that are thought to sense the presence of food within the pharynx lumen and release serotonin to increase the rate of pharyngeal pumping.Millet et al. analyzed pharyngeal pumping in worms lacking pezo-1, as well as in animals expressing a pezo-1 point mutant that, in human Piezo1, increases channel function by slowing channel deactivation and inactivation. Loss or gain of pezo-1 function had surprisingly little effect on pharyngeal activity, causing only mild alterations in the duration and frequency of pumping induced by serotonin, and more obvious effects when challenged with high osmolarity solutions.Worms cultured in the laboratory are usually fed a diet of small, easily ingested Escherichia coli cells and, both loss and gain of pezo-1 function increased the pharynx’s response to this type of food. In their natural habitat, however, C. elegans encounter bacteria of various shapes and sizes, some of which might be harder to swallow. “It occurred to me that it might make a difference if we fed the worms with bacteria that were stiffer and longer,” Vásquez says.The researchers therefore provided their pezo-1 mutants with E. coli treated with cephalexin, an antibiotic that inhibits cell separation and causes the bacteria to form long, spaghetti-like filaments. Compared with wild-type worms fed with this diet, pharyngeal activity was markedly enhanced by the gain-of-function pezo-1 mutant, but substantially reduced in the absence of pezo-1, almost as if the worms were “choking” on the bacterial filaments.Crucially, by performing patch-clamp experiments on both cultured C. elegans cells and insect cells expressing recombinant pezo-1, Millet et al. confirmed that PEZO-1 is, indeed, a mechanosensitive ion channel. However, it remains to be seen exactly how PEZO-1 helps the pharynx sense the physical parameters of food and adjust its pumping activity accordingly. One possibility is that the channel acts within the proprioceptive neurons to regulate the release of serotonin.Intriguingly, the Drosophila PIEZO orthologue controls feeding behavior in flies (4). “However, it’s not known which mechanosensitive channels are important in the pharyngeal system of mammals,” Vásquez says. “Our studies in C. elegans could therefore open an opportunity to understand food sensation in humans.”  相似文献   

8.
We have investigated the effect of high hydrostatic pressure on MscS, the bacterial mechanosensitive channel of small conductance. Pressure affected channel kinetics but not conductance. At negative pipette voltages (corresponding to membrane depolarization in the inside-out patch configuration used in our experiments) the channel exhibited a reversible reduction in activity with increasing hydrostatic pressure between 0 and 900 atm (90 MPa) at 23°C. The reduced activity was characterized by a significant reduction in the channel opening probability resulting from a shortening of the channel openings with increasing pressure. Thus high hydrostatic pressure generally favoured channel closing. Cooling the patch by approximately 10°C, intended to order the bilayer component of the patch by an amount similar to that caused by 50 MPa at 23°C, had relatively little effect. This implies that pressure does not affect channel kinetics via bilayer order. Accordingly we postulate that lateral compression of the bilayer, under high hydrostatic pressure, is responsible. These observations also have implications for our understanding of the adaptation of mechanosensitive channels in deep-sea bacteria.A Proceeding of the 28th Annual Meeting of the Australian Society for Biophysics.  相似文献   

9.
Enterochromaffin (EC) cells are the primary mechanosensors of the gastrointestinal (GI) epithelium. In response to mechanical stimuliEC cells release serotonin (5-hydroxytryptamine; 5-HT). The molecular details ofEC cell mechanosensitivity are poorly understood. Recently, our group found that human and mouseEC cells express the mechanosensitive ion channel Piezo2. The mechanosensitive currents in a humanEC cell model QGP-1 were blocked by the mechanosensitive channel blocker D-GsMTx4.

In the present study we aimed to characterize the effects of the mechanosensitive ion channel inhibitor spider peptide D-GsMTx4 on the mechanically stimulated currents from both QGP-1 and human Piezo2 transfected HEK-293 cells. We found co-localization of 5-HT and Piezo2 in QGP-1 cells by immunohistochemistry. QGP-1 mechanosensitive currents had biophysical properties similar to dose-dependently Piezo2 and were inhibited by D-GsMTx4. In response to direct displacement of cell membranes, human Piezo2 transiently expressed in HEK-293 cells produced robust rapidly activating and inactivating inward currents. D-GsMTx4 reversibly and dose-dependently inhibited both the potency and efficacy of Piezo2 currents in response to mechanical force. Our data demonstrate an effective inhibition of Piezo2 mechanosensitive currents by the spider peptide D-GsMTx4.  相似文献   


10.
This Commentary is a call for submissions for the upcoming Issue Focus that will highlight some of the scientific topics discussed during the 2nd Costa Rica Biophysics Symposium.

The Second Costa Rican Biophysics Symposium1 was organized on March 11th and March 12th of 2021. The first edition of this symposium was organized in 2019 at the National Academy of Sciences in Costa Rica (Solís et al. 2020). Due to the success of this event, the organizers decided to pursue a second edition of this scientific meeting. However, the global emergency of COVID-19 forced to keep social distancing as part of the sanitary measures and therefore, the second edition was held virtually. Nevertheless, the event was a great success as measured by the number of registrations near to 130, the quality of the presentations of the 15 speakers from 5 different countries (Costa Rica, Switzerland, USA, France, and Germany), and the level of participation during the Q & A sessions of each talk. As the highlight of the symposium, we had the pleasure to host Dr. Francisco Bezanilla as the keynote speaker and who highlighted some of his recent work on non-canonical mechanisms of voltage sensor domain coupling to pore domains in voltage-gated potassium channels (Carvalho-de-Souza and Bezanilla 2019).In commemoration of the 2nd Costa Rica Biophysics Symposium, Biophysical Reviews will publish an Issue Focus in 2022 highlighting some of the scientific topics discussed during the event. Review articles from speakers and attendees who were part of the event are solicited. The format for the review articles is similar to those submitted for the special issue of the 20th International Congress of the International Union of Pure and Applied Biophysics (IUPAB) (Itri et al. 2021). The Special Issue for the 20th IUPAB International Congress will be prepared and edited by the current authors (Christopher Solís, Gustavo Chaves, and José Ángel Rodriguez-Corrales).  相似文献   

11.
This introductory article is the first of four short articles from the Tribute to Alex Hope Symposium held at the 2008 Australian Society for Biophysics meeting in Canberra, Australia, as a tribute to Professor Alex Hope, who died in July last year. As well as briefly introducing the other three articles by three former PhD students, it will also be a biographical memoir of Alex Hope.  相似文献   

12.
A red blood cell (RBC) performs its function of adequately carrying respiratory gases in blood by its volume being ~60% of that of a sphere with the same membrane area. For this purpose, human and most other vertebrate RBCs regulate their content of potassium (K+) and sodium (Na+) ions. The focus considered here is on K+ efflux through calcium-ion (Ca2+)-activated Gárdos channels. These channels open under conditions that allow Ca2+ to enter RBCs through Piezo1 mechanosensitive cation-permeable channels. It is postulated that the fraction of open Piezo1 channels depends on the RBC shape as a result of the curvature-dependent Piezo1-bilayer membrane interaction. The consequences of this postulate are studied by introducing a simple model of RBC osmotic behavior supplemented by the dependence of RBC membrane K+ permeability on the reduced volume (i.e., the ratio of cell volume to its maximal possible volume) of RBC discoid shapes. It is assumed that because of its intrinsic curvature and strong interaction with the surrounding membrane, Piezo1 tends to concentrate in the dimple regions of these shapes, and the fraction of open Piezo1 channels depends on the membrane curvature in that region. It is shown that the properties of the described model can provide the basis for the formation of the negative feedback loop that interrelates cell volume and its content of potassium ions. The model predicts the relation, valid for each cell in an RBC population, between RBC volume and membrane area, thus explaining the large value of the measured membrane area versus the volume correlation coefficient. The mechanism proposed here for RBC volume regulation is in accord with the loss of this correlation in RBCs of Piezo1 knockout mice.  相似文献   

13.
Piezo ion channels have been found to be essential for mechanical responses in cells. These channels were first shown to exist in Neuro2A cells, and the gene was identified by siRNAs that diminished the mechanical response. Piezo channels are approximately 2500 amino acids long, have between 24–32 transmembrane regions, and appear to assemble into tetramers and require no other proteins for activity. They have a reversal potential around 0 mV and show voltage dependent inactivation. The channel is constitutively active in liposomes, indicating that no cytoskeletal elements are required. Heterologous expression of the Piezo protein can create mechanical sensitivity in otherwise insensitive cells. Piezo1 currents in outside-out patches were blocked by the extracellular MSC inhibitor peptide GsMTx4. Both enantiomeric forms of GsMTx4 inhibited channel activity in a manner similar to endogenous mechanical channels. Piezo1 can adopt a tonic (non-inactivating) form with repeated stimulation. The transition to the non-inactivating form generally occurs in large groups of channels, indicating that the channels exist in domains, and once the domain is compromised, the members simultaneously adopt new properties. Piezo proteins are associated with physiological responses in cells, such as the reaction to noxious stimulus of Drosophila larvae. Recent work measuring cell crowding, shows that Piezo1 is essential for the removal of extra cells without apoptosis. Piezo1 mutations have also been linked to the pathological response of red blood cells in a genetic disease called Xerocytosis. These finding suggest that Piezo1 is a key player in cells’ responses to mechanical stimuli.  相似文献   

14.
This article, from the Tribute to Alex Hope Symposium at the 2008 Australian Society for Biophysics meeting, represents reminiscences of PhD studies done under my former supervisor, Professor Alex Hope. The studies demonstrated and quantified electroosmosis in giant algal cells of Chara and isolated segments of cell wall by measuring instantaneous current-induced volume flows. The studies also uncovered and modelled an unstirred-layer transport number effect that gave rise to an additional transiently increasing current-induced volume flow component, which could be mistaken for electroosmosis. In addition, action potential induced volume flows and pressure changes were measured in these cells and successfully modelled. An appreciation of the influence of Alex Hope and his laboratory environment, together with some of the further studies that resulted from this work, is also mentioned.  相似文献   

15.
Activity of the bacterial mechanosensitive channels of small conductance MscS/MscK of E. coli was investigated under high hydrostatic pressure (HHP) using the “flying-patch” patch-clamp technique. The channels were gated by negative pipette voltage and their open probability was measured at HHP of 0.1 to 80 MPa. The channel open probability decreased with increasing HHP. When the osmolyte methylamine N-oxide (TMAO) was applied to the cytoplasmic side of the inside-out excised membrane patches of E. coli giant spheroplasts the inhibitory effect of HHP on the channel activity was suppressed at pressures of up to 40 MPa. At 40 MPa and above the channel open probability decreased in a similar fashion with or without TMAO. Our study suggests that TMAO helps to counteract the effect of HHP up to 40 MPa on the MscS/MscK open state by “shielding” the cytoplasmic domain of the channels.  相似文献   

16.
Alzheimer’s disease is the most common form of dementia in the elderly, and is characterised by extracellular amyloid plaques composed of the β-amyloid peptide (Aβ). However, disease progression has been shown to correlate more closely with the level of soluble Aβ oligomers. Recent evidence suggests that these oligomers are covalently crosslinked, possibly due to the interaction of Aβ with redox-active metal ions. These findings offer new avenues for the treatment and prevention of disease, by modulating metal binding or preventing the formation of neurotoxic Aβ oligomers. Australian Society for Biophysics Special Issue: Metals and Membranes in Neuroscience.  相似文献   

17.
The Piezo channel is a versatile mechanosensitive cation channel that mediates tactile, vascular development, and proprioception. GsMTx4 is the only reported inhibitor specifically targeting Piezo channels. Although the sequence of GsMTx4 is reported, the crystal structure of GsMTx4 is still unknown. Here, we achieved the two‐segment synthesis of GsMTx4 and its enantiomer, enGsMTx4, through hydrazide based Native Chemical Ligation, and analyzed the crystal structure of GsMTx4 through the racemic crystallization technology. By analyzing the structure, we found that there is a hydrophobic patch surrounded by aromatic residues and charged residues.  相似文献   

18.
Tooth and bone are independent tissues with a close relationship. Both are composed of a highly calcified outer structure and soft inner tissue, and both are constantly under mechanical stress. In particular, the alveolar bone and tooth constitute an occlusion system and suffer from masticatory and occlusal force. Thus, mechanotransduction is a key process in many developmental, physiological and pathological processes in tooth and bone. Mechanosensitive ion channels such as Piezo1 and Piezo2 are important participants in mechanotransduction, but their functions in tooth and bone are poorly understood. This review summarizes our current understanding of mechanosensitive ion channels and their roles in tooth and bone tissues. Research in these areas may shed new light on the regulation of tooth and bone tissues and potential treatments for diseases affecting these tissues.  相似文献   

19.
In his plenary session entitled Five Questions on the Future, Harvard anthropologist Arthur Kleinman capitalized on the 2009 Society for Medical Anthropology Conference’s theme of Medical Anthropology at the Intersections to speculate on the future of the discipline.As he reflects on the field of anthropology, which had lacked theory, ethnography, and strong ties to public health and medicine, Harvard anthropologist Arthur Kleinman celebrates the accomplishments made by his contemporaries by saying, “My generation has made medical anthropology what it is today.” However, he is now looking to the future of the discipline, saying it must re-examine itself as a field.During the 2009 Society for Medical Anthropology Conference at Yale University, Kleinman capitalized on the theme of Medical Anthropology at the Intersections in his plenary session entitled Five Questions on the Future. Casting the conference itself as a kind of intersection, Kleinman not only lauded its size and diversity, but asserted that it marked a pivotal moment in which medical anthropology must re-evaluate its central questions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号