首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical stability of single DNA molecules   总被引:10,自引:0,他引:10       下载免费PDF全文
Using a modified atomic force microscope (AFM), individual double-stranded (ds) DNA molecules attached to an AFM tip and a gold surface were overstretched, and the mechanical stability of the DNA double helix was investigated. In lambda-phage DNA the previously reported B-S transition at 65 piconewtons (pN) is followed by a second conformational transition, during which the DNA double helix melts into two single strands. Unlike the B-S transition, the melting transition exhibits a pronounced force-loading-rate dependence and a marked hysteresis, characteristic of a nonequilibrium conformational transition. The kinetics of force-induced melting of the double helix, its reannealing kinetics, as well as the influence of ionic strength, temperature, and DNA sequence on the mechanical stability of the double helix were investigated. As expected, the DNA double helix is considerably destabilized under low salt buffer conditions (相似文献   

2.
Interaction of low-molecular amines (cystamine, cysteamine, cystaphose, asparagine, beta-alanine) with DNA was studied. The amines change the positive circular dichroism (CD) band of DNA as well as temperature and range width of melting. Effect of amines on DNA depends on ionic strength of the solvent, concentration and structure of the ligand. Monamines cause destabilization of DNA double helix followed by stabilization as ligand concentration increases. At concentrations stabilizing the double helix DNA conformation undergoes transition from the B- to C-form. The results obtained enable to relate the stabilizing effect of low-molecular amines and conformational B leads to C-transition to the non-specific interaction of ligand amino groups with DNA phosphates, and the destabilizing effect of monoamines of low concentrations to their interaction with bases, mainly in the denaturated sites of DNA. It is proposed that a stronger effectiveness of amines as compared to monovalent metals in the conformational shift of DNA towards the C-form is due to the additional effect of disturbance of hydrophobic interactions in DNA double helix.  相似文献   

3.
The conformational properties of two non-histone chromosomal proteins (high-mobility-group proteins 1 and 2) have been studied by spectroscopic methods. The interaction of high-mobility-group protein 1 with DNA has also been studied. 1. Circular dichroism results indicate that in the presence of salt both proteins are 40-50% helical between pH 1 and 9. Above pH 9 denaturation takes place. In the absence of salt the proteins denature below pH 4. 2. Nuclear magnetic resonance spectra show the presence of ring-current shifted peaks and perturbed aromatic resonances, demonstrating that the helix formation is accompanied by specific tertiary folding. 3. Nuclear magnetic resonance spectra of compelxes between high mobility group protein 1 and DNA demonstrate that a low ionic strength a portion of the molecule rich in lysine and containing all the aromatic residues is bound to DNA, whilst a more acidic region of the chain remains free from the DNA.  相似文献   

4.
4',6-Dioarboxyamide-2-phenyl indole (DCI), a non-ionic structural analogue of 4',6-diamidine-2-phenyl indole.2HCl (DAPI), was synthesized in order to verify the hypothesis of intercalation of both dyes into the DNA double helix.The influence of pH, viscosity, and different concentrations of SDS (sodium dodecylsulphate) or NaCl on the optical and fluorescent properties and the changes in thermal transition of both dye complexes with DNA confirm the affinity of the dyes to the double helix as well as their stabilizing influence on the secondary DNA structure.The results of binding studies, carried out by fluorescent methods have shown that the dyes are strongly bound to DNA, though the number of binding sites is small. According to the experimental data, the fluorescent properties of DAPI and DCI complexes with DNA are connected with the intercalating binding mechanism of these dyes. On the other hand, the eventual ionic or hydrogen bonds of dyes outside the DNA helix do not change noticeably their fluorescent properties.  相似文献   

5.
Effect of excluded volume on topological properties of circular DNA   总被引:1,自引:0,他引:1  
We have performed computer simulations of closed polymer chains with allowance for the excluded volume effects within the framework of the free-joint model. The probability of knot formation, the linking probability of a pair of chains and the variance in the writhing number proved to be significantly affected by the excluded volume effects. This is true even for DNA with completely screened charges for which the b/d ratio (where b is the Kuhn statistical length and d is the diameter of the double helix) is as large as 50. Allowance for the electrostatic repulsion (change of the DNA effective diameter d) further increases the effects. The most dramatic dependence on d is found for the probability of knot formation. The data on the dependence of the variance of writhing, mean value of (WR)2, on d indicate that the DNA superhelix energy should be significantly ionic strength-dependent. Special calculations have shown that the free-joint model underestimates the mean value of (Wr)2 value by about 20% as compared with the wormlike model.  相似文献   

6.
It has been shown that at low concentrations of rare amino acids (from 10(-3) M to 10(-1) M of the substance) stechiometric complexes amino acid -- DNA are formed, which bring about partial substitution of counterions screening phosphate groups and to a change of spatial structure of DNA water molecules. The DNA-solvent molecular interactions are changed, accompanied by an abrupt decrease of helix-coil enthalpy transition which leads to the unwinding of DNA double helix. In the region of amino acid high concentrations (greater than 1-1,5 M) a rise of thermostability and winding of DNA double helix is observed. It has been established that B----C-like conformational transition stimulated by the rise of DNA thermostability is a result of counterions dehydration and the increase of effective ionic strength of the solution which is due to the rise of amino acid-zwitterions content in it.  相似文献   

7.
Variance of writhe for wormlike DNA rings with excluded volume   总被引:2,自引:0,他引:2  
We have calculated the variance of the equilibrium distribution of a circular wormlike polymer chain over the writhing number, less than (Wr)2 greater than, with allowance for the excluded volume effects. Within this model the less than (Wr)2 greater than value is a function of the number of Kuhn statistical segments, n, and the chain diameter, d measured in Kuhn statistical lengths, b. Simulated DNA chains varied from 200 to 10,000 base pairs and the d value varied from 0.02 to 0.2. Theory predicts a considerable ionic strength dependence of the DNA superhelix energy as a consequence of the change in the DNA diameter. A comparison with the available experimental data has yielded an estimate of the DNA torsional rigidity, the Kuhn statistical length, and the effective diameter of the double helix under conditions of the complete screening of the DNA electrostatic potential.  相似文献   

8.
The effects on thermal denaturation of calf thymus DNA (ct-DNA) and its conformational changes induced by the presence in solution of different polyols, namely glycerol, i-erytritol, (−) and (+) arabitol, -mannitol, -sorbitol and myo-inositol, have been investigated by means of differential scanning calorimetry (DSC) and circular dichroism (CD). By increasing the concentration of these additives a decrease in both the denaturation enthalpy (ΔdH) and temperature of the maximum of the denaturation peak (Tmax) of DNA is observed. The values of these thermodynamic parameters depend on both the nature and concentration of the solute. The overall destabilization of DNA molecule has been related to the different capability of polyhydric alcohols to interact with the polynucleotide solvation sites replacing water and to the modification of the electrostatic interactions between the polynucleotide and its surrounding atmosphere of counterions. The particular behaviour of (−) arabitol, which showed a much greater destabilizing ability compared to the other polyols, was further investigated and attributed to a direct more effective interaction with the double helix of DNA. CD spectra showed only a slight alteration of DNA-B structure in the presence of all the molecules here studied, except for (−) arabitol where the DNA molecule seems to undergo a meaningful conformational change. The salt concentration dependence of DNA thermal stability in the presence of (−) arabitol indicates a conformational change of polynucleotide towards a more extended conformation.  相似文献   

9.
Manning GS 《Biophysical journal》2006,91(10):3607-3616
To understand better the effect of electrostatics on the rigidity of the DNA double helix, we define DNA*, the null isomer of DNA, as the hypothetical structure that would result from DNA if its phosphate groups were not ionized. For the purposes of theoretical analysis, we model DNA* as identical to ordinary DNA but supplemented by a longitudinal compression force equal in magnitude but oppositely directed to the stretching (tension) force on DNA caused by phosphate-phosphate repulsions. The null isomer DNA* then becomes an elastically buckled form of fully ionized DNA. On this basis, we derive a nonadditive relationship between the persistence length P of DNA and the persistence length P* of its null isomer. From the formula obtained we can predict the value of P* if P is known, and we can predict the ionic strength dependence of P under the assumption that P* does not depend on ionic strength. We predict a value of P* for null DNA drastically lower than the value of P for DNA in its ordinary state of fully ionized phosphates. The predicted dependence of P on salt concentration is log-c over most of the concentration range, with no tendency toward a salt-independent value in the range of validity of the theory. The predictions are consistent with much of the persistence-length data available for DNA. Alternate theories of the Odijk-Skolnik-Fixman type, including one by the author, are considered skeptically on the grounds that the underlying model may not be realistic. Specifically, we doubt the accuracy for real polyelectrolytes of the Odijk-Skolnik-Fixman assumption that the polymer structure is invariant to changes in electrostatic forces.  相似文献   

10.
X-ray fibre-diffraction studies indicate a high degree of stereochemical specificity in interactions between water and the DNA double helix. Evidence for this comes from data that show that the molecular conformations assumed by DNA in fibres are highly reproducible and that the hydration-driven transitions between these conformations are fully reversible. These conformational transitions are induced by varying the relative humidity of the fibre environment and hence its water content. Further evidence for stereochemical specificity comes from the observed dependence of the conformation assumed on the ionic content of the fibre and the nucleotide sequence of the DNA. For some transitions, information on stereochemical pathways has come from real-time X-ray fibre diffraction using synchrotron radiation; information on the location of water with respect to the double helix for a number of DNA conformations has come from neutron fibre diffraction. This structural information from fibre-diffraction studies of DNA is complemented by information from X-ray single-crystal studies of oligonucleotides. If the biochemical processes involving DNA have evolved to exploit the structural features observed in DNA fibres and oligonucleotide single crystals, the challenges in developing alternatives to a water environment can be expected to be very severe.  相似文献   

11.
A general theory of polyelectrolyte solutions is here used to calculate the differences in Gibbs free energy, enthalpy, and entropy between the coil and helix forms of DNA at any temperature and salt concentration. The salt has univalent cations and is assumed present in excess over the base concentration. The results are restricted to sufficiently dilute solutions. It is shown that the salt concentrations effect is entirely entropic in origin. When applied to the melting temperature, the calculations yield a relation between the enthalpy difference at the melting temperature and the slope of the plot of melting temperature vs. the logarithm of the salt concentration. In accord with observation, both the Gibbs free energy difference at any fixed temperature and the melting temperature are predicted to be linear functions of the log of the salt concentration. However, the theory is not in quantitative agreement with enthalpy data. Data on various colligative and transport properties of both helix and coil forms are reviewed in the text and in Appendix B, and good agreement is found with theory for both forms. No attempt is made to explain why the theory is quantitative for these properties but not for heat measurements. Finally, in Appendix A, an approximate calculation is made of the free energy contributions due to ionic effects not associated with the salt concentration.  相似文献   

12.
M. Daune 《Biopolymers》1969,7(5):659-670
The theory of polyelectrolyte solution of Alexandrowicz: and Katchalsky is used to calculate the electrostatic potential of single stranded polynucleotides for different ionic strength. We have considered the potential of double stranded DNA as the superposition of the different potentials produced by each chain, provided the average distance between the strands is higher than an ionic strength-dependent parameter b. For ionic strength lower than 5 × 10?2M, the assumption is no longer valid, and a cylindrical model with a uniform charge density must be used. The continuity between the two models was tested, and thus we can calculate the electrical potential at the vicinity of a phosphate group in the whole range of ionic-strength where the double helix is stable. It was therefore possible to determine the theoretical number of ions bound electrostatically to DNA and we found an increase of ion binding with a decrease of ionic strength. Such a model was further applied to the change of specific volume in different salt solutions. Comparison is made with recent pycnometric data on Na? and Cs? salts of DNA. Agreement is good in the case of Cs+, but for Na+, cation binding is likely to be accompanied by a change of the hydration of DNA, which depends on ionic strength. With the same model we can see easily the ion-trapping properties of DNA which play an important role in any formation of complex between heavy ions and bases.  相似文献   

13.
We present experiments on the bias-induced release of immobilized, single-stranded (ss) 24-mer oligonucleotides from Au-surfaces into electrolyte solutions of varying ionic strength. Desorption is evidenced by fluorescence measurements of dye-labeled ssDNA. Electrostatic interactions between adsorbed ssDNA and the Au-surface are investigated with respect to 1), a variation of the bias potential applied to the Au-electrode; and 2), the screening effect of the electrolyte solution. For the latter, the concentration of monovalent salt in solution is varied from 3 to 1600 mM. We find that the strength of electric interaction is predominantly determined by the effective charge of the ssDNA itself and that the release of DNA mainly occurs before the electrochemical double layer has been established at the electrolyte/Au interface. In agreement with Manning's condensation theory, the measured desorption efficiency (etarel) stays constant over a wide range of salt concentrations; however, as the Debye length is reduced below a value comparable to the axial charge spacing of the DNA, etarel decreases substantially. We assign this effect to excessive counterion condensation on the DNA in solutions of high ionic strength. In addition, the relative translational diffusion coefficient of ssDNA in solution is evaluated for different salt concentrations.  相似文献   

14.
The melting temperature of the poly(dA) . poly(dT) double helix is exquisitely sensitive to salt concentration, and the helix-to-coil transition is sharp. Modern calorimetric instrumentation allows this transition to be detected and characterized with high precision at extremely low duplex concentrations. We have taken advantage of these properties to show that this duplex can be used as a sensitive probe to detect and to characterize the influence of other solutes on solution properties. We demonstrate how the temperature associated with poly(dA) . poly(dT) melting can be used to define the change in bulk solution cation concentration imparted by the presence of other duplex and triplex solutes, in both their native and denatured states. We use this information to critically evaluate features of counterion condensation theory, as well as to illustrate "crosstalk" between different, non-contacting solute molecules. Specifically, we probe the melting of a synthetic homopolymer, poly(dA) . poly(dT), in the presence of excess genomic salmon sperm DNA, or in the presence of one of two synthetic RNA polymers (the poly(rA) . poly(rU) duplex or the poly(rU) . poly(rA) . poly(rU) triplex). We find that these additions cause a shift in the melting temperature of poly(dA) . poly(dT), which is proportional to the concentration of the added polymer and dependent on its conformational state (B versus A, native versus denatured, and triplex versus duplex). To a first approximation, the magnitude of the observed tm shift does not depend significantly on whether the added polymer is RNA or DNA, but it does depend on the number of strands making up the helix of the added polymer. We ascribe the observed changes in melting temperature of poly(dA) . poly(dT) to the increase in ionic strength of the bulk solution brought about by the presence of the added nucleic acid and its associated counterions. We refer to this communication between non-contacting biopolymers in solution as solvent-mediated crosstalk. By comparison with a known standard curve of tm versus log[Na+] for poly(dA) . poly(dT), we estimate the magnitude of the apparent change in ionic strength resulting from the presence of the bulk nucleic acid, and we compare these results with predictions from theory. We find that current theoretical considerations correctly predict the direction of the t(m) shift (the melting temperature increases), while overestimating its magnitude. Specifically, we observe an apparent increase in ionic strength equal to 5% of the concentration of the added duplex DNA or RNA (in mol phosphate), and an additional apparent increase of about 9.5 % of the nucleic acid concentration (mol phosphate) upon denaturation of the added DNA or RNA, yielding a total apparent increase of 14.5 %. For the poly(rU) . poly(rA) . poly(rU) triplex, the total apparent increase in ionic strength corresponds to about 13.6% of the amount of added triplex (moles phosphate). The effect we observe is due to coupled equilibria between the solute molecules mediated by modulations in cation concentration induced by the presence and/or the transition of one of the solute molecules. We note that our results are general, so one can use a different solute probe sensitive to proton binding to characterize subtle changes in solution pH induced by the presence of another solute in solution. We discuss some of the broader implications of these measurements/results in terms of nucleic acid melting in multicomponent systems, in terms of probing counterion environments, and in terms of potential regulatory mechanisms.  相似文献   

15.
Dichroism decay curves of DNA fragments with chain lengths in the range of 179-256 bp show an amplitude inversion suggesting the existence of a positive dichroism component, when these fragments are dissolved at monovalent salt concentrations above approx. 5 mM and are exposed to field pulses with amplitudes and/or lengths above critical values. At the critical values, the unusual dichroism is reflected by an apparent acceleration of the decay curves, which can be fitted by single exponentials with time constants much below the values expected from the DNA contour lengths. The critical pulse amplitudes and lengths decrease with increasing DNA chain length and increasing salt concentration. The experimental data are consistent with results obtained by hydrodynamic and electric model calculations on smoothly bent DNA double helices. The DNA is represented by a string of overlapping beads, which is used to calculate the rotational diffusion tensor and the center of diffusion. The distribution of phosphate charges is asymmetric with respect to this center and thus gives rise to a substantial permanent dipole moment. The magnitude of this dipole moment is calculated as a function of DNA curvature and is used together with experimental values of polarizabilities for simulations of dichroism decay curves. The curves simulated for bent DNA show the same phenomenon as observed experimentally. The ionic strength dependence of the unusual dichroism is explained by an independently observed strong decrease of the polarizability with increasing salt concentration. The field strength dependence is probably due to field-induced bending of double helices driven by the change of the dipole moment. Although our calculations are on rigid models of DNA and thus any flexibility of the double helix has not been considered, we conclude that the essential part of our experimental results can be explained by our model.  相似文献   

16.
本文以小牛胸腺DNA和λDNA为材料,首次用激光拉曼光谱研究了4’6二脒基—2—苯基吲哚(DAPI)与DNA的结合机制.认为DAPI是以非镶嵌的方式在DNA小沟中同DNA的AT碱基对此氢键结合.在低PH下,这种结合受到抑制,盐浓度的高低与DAPI-DNA复合体的荧光强度成负相关.  相似文献   

17.
Most polyelectrolyte theories of the effect of ions on the thermal melting of DNA assume that the predominant influence of the cations comes through their charge. Ion size and structure are treated, for analytic convenience, as negligible variables. We have examined the validity of this assumption by measuring the melting temperature of calf thymus DNA as a function of salt concentration with four univalent cations of different hydrated radii. These are K+ (3.3 A), (n-Pr)4N+ (4.5 A), (EtOH)4N+ (4.5 A), and C222-K+ (5 A). C222-K+ is a complex of cryptand C222 with K+. With K+ as the sole cation, Tm varies linearly with the log of ionic strength over the range 0.001-0.1 M. With all the K+ sequestered by an equimolar amount of C222, Tm is depressed by 10-20 degrees C and the slope of Tm vs. ionic strength is lower. At low ionic strength, an even greater reduction in Tm is achieved with (n-Pr)4N+; but the similar-sized (EtOH)4N+ gives a curve more similar to K+. Theoretical modeling, taking into account cation size through the Poisson-Boltzmann equation for cylindrical polyelectrolytes, predicts that larger cations should be less effective in stabilizing the double helix; but the calculated effect is less than observed experimentally. These results show that valence, cation size, and specific solvation effects are all important in determining the stability of the double-helical form of DNA.  相似文献   

18.
Fluorescence resonance energy transfer studies allow to determine global shape properties of nucleic acids and nucleoprotein complexes. In many DNA-protein complexes, the DNA is more or less bent and the degree of bending can be obtained by FRET. For example, the DNA in complex with the integration host factor (IHF) is kinked by approximately 160 degrees building a U-shaped structure. The two DNA helix ends come close to one another in space in a distance range easily measurable by FRET. The global DNA structure of this complex can be mimicked by introducing two regions with unpaired bases ('bulges') into the DNA each producing a sharp kink of approximately 80 degrees. These U-shaped DNA constructs were used to measure the electrostatic interaction of the two nearly parallel negatively charged DNA helix arms. The electrostatic repulsion between the helix arms, and as a consequence their distance, decreases with growing salt concentration of mono- or divalent cations. This experimental approach also allows the sensitive study of the local structure of DNA sequences positioned between the two bulges.  相似文献   

19.
Two factors are mainly responsible for the stability of the DNA double helix: base pairing between complementary strands and stacking between adjacent bases. By studying DNA molecules with solitary nicks and gaps we measure temperature and salt dependence of the stacking free energy of the DNA double helix. For the first time, DNA stacking parameters are obtained directly (without extrapolation) for temperatures from below room temperature to close to melting temperature. We also obtain DNA stacking parameters for different salt concentrations ranging from 15 to 100 mM Na+. From stacking parameters of individual contacts, we calculate base-stacking contribution to the stability of A•T- and G•C-containing DNA polymers. We find that temperature and salt dependences of the stacking term fully determine the temperature and the salt dependence of DNA stability parameters. For all temperatures and salt concentrations employed in present study, base-stacking is the main stabilizing factor in the DNA double helix. A•T pairing is always destabilizing and G•C pairing contributes almost no stabilization. Base-stacking interaction dominates not only in the duplex overall stability but also significantly contributes into the dependence of the duplex stability on its sequence.  相似文献   

20.
The thermal denaturation as a measure of the structural stability of the nucleoprotein in bacteriophage T7 has been studied in dependence of the ionic environment. Optical density and circular dichroism melting curves measured at wavelengths characterizing either the DNA or protein conformational changes were compared to identify different steps of the denaturation and to follow the effect of the ions. Monovalent salts strengthen the helical structure of intraphage DNA logarithmically in the way as they do in the case of isolated double-stranded DNA. Mg2+ and Ca2+ at very low concentrations stabilize the DNA helicity. Higher divalent ion concentrations decrease the stability of the double helix because of the repulsive ionic interactions. The high structural sensitivity of DNA in the presence of Mg2+ and Ca2+ in this "in situ" environment can be related to the biological role of these ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号