首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Instability of s male-sterile cytoplasm in maize   总被引:4,自引:0,他引:4  
Singh A  Laughnan JR 《Genetics》1972,71(4):607-620
A number of S male-sterile plants from several shrunken-2 inbred lines were crossed initially with an R138-TR inbred line pollinator carrying the nonrestoring genotype for S sterile cytoplasm. One such cross, involving a male-sterile female parent from inbred line M825, produced, unexpectedly, a number of male-fertile F1 progeny, along with the expected male-sterile off-spring. Pollen records of plants in F2, F3 and F4 progenies in the exceptional pedigree, and of a variety of testcross and backcross progenies from these male-fertile exceptions, indicate that the exceptional male fertility is not attributable to the action of either dominant or recessive nuclear restorer genes. They are, however, consistent with the hypothesis that the event responsible for the appearance of exceptional male-fertile offspring among progeny of the original cross involved a change from male-sterile to male-fertile condition in the cytoplasm of the male-sterile M825 plant involved as the female parent in this cross. It appears that this plant bore an ear in which there was a relatively early mutational event at the cytoplasmic level resulting in a chimera involving some kernels which carried S male-sterile cytoplasm, and others which carried the mutated fertile cytoplasmic condition. The finding of a number of additional ear chimeras supports this contention.—The evidence suggests that the change from sterile to fertile cytoplasm has occurred in a number of other instances. The male-sterile line M825 is especially prone to this change. These findings are of particular interest because it has heretofore been considered that both S and T types of male-sterile cytoplasm are highly stable.—The data presented here are not sufficient to support the notion that the exceptional event involves a qualitative change, analogous to gene mutation, in a cytoplasmic entity governing the expression of male fertility. It is equally plausible that the exceptional male fertility is the result of occasional transfer of normal cytoplasm through the male germ cells of maintainer parents.  相似文献   

2.
Summary Plants resistant to Helminthosporium maydis race T were obtained following selection for H. maydis pathotoxin resistance in tissue cultures of susceptible, Texas male-sterile (T) cytoplasm maize. The selected lines transmitted H. maydis resistance to their sexual progeny as an extranuclear trait. Of 167 resistant, regenerated plants, 97 were male fertile and 70 were classified male sterile for reasons that included abnormal plant, tassel, anther or pollen development. No progeny were obtained from these male-sterile, resistant plants. Male fertility and resistance to the Phyllosticta maydis pathotoxin that specifically affects T cytoplasm maize were co-transmitted with H. maydis resistance to progeny of male-fertile, resistant plants. These three traits previously were associated only with the normal (N) male-fertile cytoplasm condition in maize. Three generations of progeny testing provided no indication that the cytoplasmic association of male sterility and toxin susceptibility had been broken by this selection and regeneration procedure. Restriction endonuclease analysis of mitochondrial DNA (mtDNA) revealed that three selected, resistant lines had distinct mtDNA organization that distinguished them from each other, from T and from N cytoplasm maize. Restriction patterns of the selected resistant lines were similar to those from T cytoplasm mtDNA; these patterns had not been observed in any previous analyses of various sources of T cytoplasm. The mtDNA analyses indicated that the male-fertile, toxin-resistant lines did not originate from selection of N mitochondrial genomes coexisting previously with T genomes in the T cytoplasm line used for selection.Scientific Journal Series Article no. 11,185 of the Minnesota Agricultural Experiment Station and no. 2295 of the Florida Agricultural Experiment Station. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee of warrantly of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable  相似文献   

3.
 A spontaneously derived fertile plant was recovered from a petaloid cytoplasmic male-sterile (CMS) carrot inbred line. Genetic analysis indicated a single nuclear gene was responsible for the restoration to fertility. Within a family segregating for the nuclear restorer in combination with the sterility-inducing cytoplasm, fertile plants were recovered that could not restore fertility when crossed to sterile genotypes. Genetic analysis indicated cytoplasmic reversion for fertility, and Southern analysis, comparing mtDNA organization of the fertile revertant and its CMS progenitor, identified mitochondrial genome rearrangements. Hybridization of cosmids representing a 108-kb subgenomic circle of the sterile line to DNA of a fertile maintainer and fertile revertant lines indicated a similar mtDNA organization for these genotypes that was distinct from that of the sterile line. Six restriction fragments totalling 43.2 kb were common to the fertile maintainer and revertant and absent in the sterile; other restriction fragments totalling 38.2 kb were present only for the sterile line. Unique fragments of low stoichiometry, two for the fertile maintainer and three for the revertant, distinguished these lines. The reversion to fertility in the sterile line could have resulted from the amplification of a mitochondrial submolar genome highly homologous to that found in the fertile maintainer line. Received: 4 October 1997/Accepted: 12 December 1997  相似文献   

4.
 Mitochondrial (mt) DNA variation for six petaloid cytoplasmic male-sterile (CMS) and three fertile maintainer lines of carrot was assessed to establish genetic relationships. Total DNA was digested with restriction enzymes and probed with six homologous mtDNA cosmid probes. The six CMS accessions derived from wild carrot, four from Guelph, Ontario, one from Orleans, Massachusetts, and one from Madison, Wisconsin, were more closely related with each other (F=0.91) than with fertile maintainer lines derived from cultivated germplasm (F=0.62). The fertile maintainer lines were likewise found to be more similar to each other (F=0.78) than to the sterile lines. Three sterile lines, originating from wild carrot populations within 1 km of each other in Guelph, Ontario, were most closely related (F=0.96). The high degree of similarity among the six petaloid CMS lines which originated from individual wild carrot plants, some from geographically diverse regions, suggests that the cytoplasm responsible for this trait was imported to, or else evolved, only once in North America. Received: 1 December 1997 / Accepted: 12 December 1997  相似文献   

5.
^60Co—γ射线诱导的小麦T型雄性不育系育性恢复突变   总被引:5,自引:1,他引:4  
用~(60)Co-γ射线诱导小麦T型雄性不育系T小偃4号A、T郑引1号A均获得了农艺性状优良、恢复力强的恢复系。育性恢复突变是涉及一个或少数几个位点核基因的显性突变。利用性状优良的T型不育系诱导育性恢复突变是选育恢复系和发掘恢复源的有效途径。  相似文献   

6.
Cytoplasmic Sterility Factors in VICIA FABA L   总被引:2,自引:0,他引:2       下载免费PDF全文
Tissues of cytoplasmic male sterile, maintainer, restorer, and restored lines, and sterile plants which reverted to fertility in Vicia faba were examined in ultrathin sections. Cytoplasmic spherical bodies (CSB), ca. 70 nm in diameter, were observed in tissues of all sterile plants but not in tissues of maintainer, restorer or restored sterile plants. No CSB were observed in a reverted fertile branch of a tiller-sterile plant, nor in 5 of 6 reverted fertile plants. One reverted fertile plant contained CSB in ovules. It is proposed that the CSB are the sites of, or possibly, products of, sterility factors in Vicia faba.  相似文献   

7.
Wild abortive cytoplasmic male sterility has been extensively used in hybrid seed production in the tropics. Using protoplast fusion between cytoplasmic male sterile and fertile maintainer lines; we report here, transfer of wild abortive cytoplasmic male sterility to the nuclear background of RCPL1-2C, an advance breeding line which also served as maintainer of this cytoplasm. In total, 27 putative cybrids between V20A and RCPL1-2C and 23 lines between V20A and V20B were recovered and all of them were sterile. DNA blots prepared from the mitochondrial DNA of the cybrid lines from both the sets were probed with orf155 that is known to exhibit polymorphism between the mitochondrial DNA of the male-sterile and fertile maintainer lines. Hybridization of orf155 to 1.3 kb HindIII-digested mitochondrial DNA fragment of the cybrids showed transfer of mitochondrial DNA from wild abortive cytoplasmic male-sterile line to the maintainers, viz. RCPL 1-2C and V20B. Expression of male sterility was confirmed by the presence of sterile pollen grains and the lack of seed setting due to selfing in all the cybrid lines. These cybrids, on crossing with respective fertile maintainers set seeds that in turn, produced sterile BC1 plants. DNA blots from HindIII-digested mitochondrial DNA of these BC1 plants when probed with orf155 again exhibited localization of orf155 in wild abortive cytoplasm-specific 1.3 kb HindIII-digested mitochondrial DNA fragments. This demonstrated that the cytoplasmic male sterility transferred through protoplast fusion retained intact female fertility and was inherited and expressed in BC1 plants. Fusion-derived CMS lines, on pollination with pollen grains from restorer, showed restoration of fertility in all the lines. The results demonstrate that protoplasts fusion can be used for transferring maternally inherited traits like cytoplasmic male sterility to the desired nuclear background which can, in turn, be used in hybrid seed production programme of rice in the tropical world.  相似文献   

8.
A new cytoplasmic male sterility (CMS) source in Brassica juncea (2n = 36; AABB) was developed by substituting its nucleus into the cytoplasm of Enarthrocarpus lyratus (2n = 20; E(l)E(l)). Male sterility was complete, stable and manifested in either petaloid- or rudimentary-anthers which were devoid of fertile pollen grains. Male sterile plants resembled the euplasmic B. juncea except for slight leaf yellowing and delayed maturity. Leaf yellowing was due mainly to higher level of carotenoids rather than a reduction in chlorophyll pigments. Female fertility in male-sterile plants varied; it was normal in lines having rudimentary anthers but poor in those with petaloid anthers. Each of the 62 evaluated germplasm lines of B. juncea was a functional maintainer of male sterility. The gene(s) for male-fertility restoration ( Rf) were introgressed from the cytoplasm donor species through homoeologous pairing between A and E(l) chromosomes in monosomic addition plants (2n = 18II+1E(l)). The percent pollen fertility of restored F(1) ( lyr CMS x putative restorer) plants ranged from 60 to 80%. This, however, was sufficient to ensure complete seed set upon by bag selfing. The CMS ( lyr) B. juncea compared favourably with the existing CMS systems for various productivity related characteristics. However, the reduced transmission frequency of the Rf gene(s) through pollen grains, which was evident from the sporadic occurrence of male-sterile plants in restored F(1) hybrids, remains a limitation.  相似文献   

9.
The genetics of fertility restoration of cms-C group cytoplasm of maize was studied using crosses involving stable maintainer lines and lines that restored full pollen fertility. Pollen fertility in the sources of cms-C sterile cytoplasms studied was restored by a single dominant restorer (Rf4) gene. The fertility restoration was sporophytic. Allelism tests among five restorer lines showed that they all apparently carried the same alleles (Rf4 Rf4). Similar tests also demonstrated that seven nonrestoring maintainer lines had apparently the same genotype (rf4 rf4), although a partial "late break" of fertility was observed at low levels in some maintainer crosses. Comparative studies among different cms-C sources (C, Bb, ES, PR and RB) indicated that similar inheritance of fertility restoration was involved. The data indicated that a single, dominant Rf gene is involved in the restoration of several C-group cytoplasms, at least in the lines studied here. This is the first single-gene, sporophytic restorer system described in maize to date.  相似文献   

10.
Application of AFLPs linked to pollen fertility restoration and non-performing genes evaluated in the C394-F2 hybrid was studied using a set of male sterile lines in the sterilising Pampa cytoplasm, several restorers and maintainer lines and, finally, two inbred lines backcrossed into cms-P, cms-R, cms-S and cms-C cytoplasms each. The set of male sterile lines based on the Pampa cytoplasm exhibited gradual variation in their ability to restore pollen fertility (starting from low and closing with high) in crosses with three unrelated restorers. Variations in the AFLPs between the analysed materials were observed, however, no clustering of the lines according to their sterile and fertile phenotypes was observed. The same markers, when applied to the population restorer (cv. Walet) that formed the C394-F2 cross permitted identification of plants with genotypes that could be recognized as restorers.  相似文献   

11.
Summary Mitochondrial DNA from four paired (fertile and male-sterile) lines and six isocytoplasmic strains of sorghum (Sorghum bicolor (L.) Moench) were fragmented by endonucleases and their electrophoretic patterns were examined. Cytoplasmic male sterile lines differed from their male-fertile counterparts consistently. Among the isocytoplasmic strains, KS 36A (S. verticilli-florum cytoplasm), KS 38A (S. conspicum cytoplasm), and KS 39A (S. niloticum cytoplasm) showed minor differences from the other strains. Results suggest that restriction endonuclease patterns are useful in detecting differences in mitochondrial genomes.This study was supported by a research grant from Kansas Grain Sorghum Commission, Kansas Board of Agriculture. Contribution 89-28-J from the Kansas Agricultural Experiment Station.  相似文献   

12.
A dominant genetic male sterility trait obtained through transformation in rapeseed (Brassica napus) was studied in the progenies of 11 transformed plants. The gene conferring the male sterility consists of a ribonuclease gene under the control of a tapetum-specific promoter. Two ribonuclease genes, RNase T1 and barnase, were used. The chimaeric ribonuclease gene was linked to the bialophos-resistance gene, which confers resistance to the herbicide phosphinotricine (PPT). The resistance to the herbicide was used as a dominant marker for the male sterility trait. The study presented here concerns three aspects of this engineered male sterility: genetics correlated with the segregation of the T-DNA in the progenies; expression of the male sterility in relation to the morphology and cytology of the androecium; and stability of the engineered male sterility under different culture conditions. Correct segregation, 50% male-sterile, PPT-resistant plants, and 50% male-fertile, susceptible plants were observed in the progeny of seven transformants. The most prominent morphological change in the male-sterile flowers was a noticeable reduction in the length of the stamen filament. The first disturbances of microsporogenesis were observed from the free microspore stage and were followed by a simultaneous degeneration of microspore and tapetal cell content. At anthesis, the sterile anthers contained only empty exines. In some cases, reversion to fertility of male-sterile plants has been observed. Both ribonuclease genes are susceptible to instability. Instability of the RNase T1-male sterility trait increased at temperatures higher than 25[deg] C. Our results do not allow us to confirm this observation for the barnase male-sterile plants. However, the male-sterile plants of the progeny of two independent RNase T1 transformants were stably male sterile under all conditions studied.  相似文献   

13.
The anther development of the S male-sterile cytoplasm and the fertile maintainer (N) cytoplasm versions of corn inbred W182BN and the restored S cytoplasm version of inbred NY821LERf was studied by light and electron microscopy and compared to pollen abortion in the C and T types of male-sterile cytoplasms. The S anthers did not deviate from the non-male sterile (N) anthers until a very late stage of pollen development. Tapetal cells developed and disappeared normally in the S version which differentiates this cytoplasm from the C and T types. Although some modified membranous structures were seen in a higher frequency in the large vacuole of the sterile S pollen than in the N and restored S counterparts, the mitochondria and other organelles in the S pollen appeared normal up to the time of pollen abortion. Pollen abortion in the S cytoplasm did not occur until the developing pollen was nearly mature. At this time the pollen grains disintegrated abruptly but other anther tissues appeared unaltered. The male sterility of S plants appeared to be determined by the pollen itself without external influence from the tapetum.  相似文献   

14.
The progeny of somatic hybrid Petunia plants derived from the fusion of a male-fertile line and a cytoplasmic male-sterile (cms) line were examined. Male-fertile progeny derived from three different male-sterile somatic hybrid plants did not exhibit the mitochondrial DNA (mtDNA) arrangement which has previously been correlated with cms in Petunia. The cms-associated mtDNA arrangement was present in the male-sterile predecessors of these fertile revertants. Thus, it is concluded that the loss of this mtDNA arrangement is associated with reversion to fertility in the progeny of the unstable somatic hybrid petunia plants.  相似文献   

15.
In order to understand the molecular characteristics of the Chinese radish, the mitochondrial DNA structure and sequence were analyzed in Chinese wild radish and cultivated varieties. A total of four male-sterile lines, four maintainer lines, 17 cultivars, and a single Chinese wild radish were used, along with 25 male-sterile individuals and 159 fertile plants. We found that the cytoplasm of Chinese radishes could be classified into two types: the normal type and the Ogura type. The Ogura-type cytoplasm was detected in 25 male-sterile plants. The 159 fertile plants had normal cytoplasm. Both the Ogura cytoplasm and the normal cytoplasm were detected in the male-sterile ??RA??. The orf138 gene in mitochondrial DNA was detected in cultivated Chinese radish cultivars but not in the wild radish. The Chinese radish orf138 nucleotide sequence was determined in four male-sterile lines and displayed complete homology to the known orf138 type A nucleotide sequence. Three types of mitochondrial orfB (type 1, type 2 and type 3) were found in Chinese radishes. Type 1 was only present in the male-sterile lines. Chinese cultivated radishes were divided into type 2 and type 3, while the Chinese wild radish only had type 3 cytoplasm.  相似文献   

16.
A male-sterile (MS) radish (Raphanus sativus L.) was found in an accession collected from Uzbekistan. Unlike Ogura MS radishes in which no pollen grain is typically visible during anthesis, a small number of pollen grains stuck together in the dehiscing anthers was observed in the newly identified MS radish. Fluorescein diacetate tests and scanning electron micrographs showed that pollen grains in the new MS radish were severely deformed and non-viable. Cytological examination of pollen development stages showed a clear difference in the defective stage from that seen in Ogura male-sterility. Reciprocal cross-pollination with diverse male-fertile lines indicated that pollen grains of the new MS radish were completely sterile, and the female organs were fully fertile. When the new MS radish and Ogura MS lines were cross-pollinated with a set of eight breeding lines, all F1 progeny originating from crosses with the new MS radish were male-sterile. In contrast, most of the F1 progeny resulting from crosses with Ogura MS lines were male-fertile. These results demonstrated that factors associated with induction of the newly identified male-sterility are different from those of Ogura male-sterility. The lack of restorer lines for the newly identified male-sterility led us to predict that it might be a complete cytoplasmic male-sterility without restorer-of-fertility genes in nuclear genomes. However, cross-pollination with more diverse radish germplasm identified one accession introduced from Russia that could completely restore fertility, proving the existence of restorer-of-fertility gene(s) for the new male-sterility. Meanwhile, the PCR amplification profile of molecular markers for the classification of radish mitochondrial genome types revealed that the new MS radish contained a novel mitotype.  相似文献   

17.
利用8条核基因组ISSR引物和7对叶绿体基因组SSR引物(cpSSR),对9对红麻UG93细胞质雄性不育系/保持系及5个恢复系的细胞核、细胞质遗传多样性进行分析.结果表明:各材料的核基因组遗传相似系数在0.333~1.000之间,其中保持系间、保持系和恢复系间、恢复系间的平均相似系数分别为0.583、0.689和0.8...  相似文献   

18.
The trait of cytoplasmic male sterility, expressed in plants bearing the 447 cytoplasm of Vicia faba, is uniquely and positively correlated with the presence of a linear double-stranded RNA molecule (dsRNA) 16.7 kb in size. Restriction enzyme digestion profiles of mitochondrial DNA isolated from fertile and cytoplasmic malesterile (CMS) lines do show a limited number of specific differences in fragment intensities and mobilities. However, mitochondria isolated from the progeny of the cross CMS × Restorer line contain DNA with an identical restriction profile as the male-sterile parent: moreover, subsequent generations are completely and permanently fertile, even upon segregation of the nuclear restoration gene. Southern hybridizations, using cDNA clones as probes, reveal homology between the CMS-associated dsRNA and the nuclear genome of both sterile and fertile lines. The regions cloned, representing approximately 22% of the total dsRNA sequence, show no homology to organelle DNA. We have not been able to stably transmit the dsRNA to fertile lines of V. faba or any other plant species, using a variety of standard virological techniques.  相似文献   

19.
Summary Fusion of two cytoplasmic male-sterile cultivars of Nicotiana tabacum, one with N. bigelovii cytoplasm and one with N. undulata cytoplasm, resulted in the restoration of male fertility in cybrid plants. All male-fertile cybrids exhibited fused corollas, which is characteristic for the cultivar with N. undulata cytoplasm, while their stamen structures varied from cybrid to cybrid, some producing stamens with anthers fused to petal-like appendages and one producing stamens of a normal appearance for N. tabacum. Restriction enzyme digestion and agarose gel electrophoresis of mitochondrial DNA showed that mitochondrial DNA of the fertile cybrids was more similar to the male-sterile cultivar with the cytoplasm of N. undulata than to the cultivar with N. bigelovii cytoplasm. Some restriction fragments were unique to the male-fertile cybrids. Comparisons between stamen structure and mitochondrial DNA for eight fertile progeny from one cybrid plant led to the identification of several restriction fragments that appeared at enhanced levels in connection with normal stamen development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号