首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
四君子汤对免疫抑制小鼠肝脏细菌易位的影响   总被引:6,自引:1,他引:5  
目的观察四君子汤对免疫抑制小鼠免疫功能及肝脏细菌易位的影响,探讨神经-内分泌-代谢-微生态-免疫网络之间的关系。方法应用氢化可的松制备小鼠免疫功能抑制模型,造成肝脏细菌易位;观察四君子汤对小鼠吞噬细胞功能的影响和细菌易位的控制,同时设自然恢复组和正常对照组进行比较。结果氢化可的松灌喂3d后,小鼠吞噬细胞的吞噬功能明显下降,肝脏出现大量细菌易位;经四君子汤治疗6h后,小鼠吞噬细胞吞噬功能显著提高。肝脏细菌易位明显减少。结论四君子汤能有效地控制免疫抑制小鼠肝脏细菌易位。  相似文献   

2.
V V Sukhodolets 《Genetika》1986,22(6):901-913
The article deals primarily with literature data on the organization and evolution of bacterial genome. An account of the conception of "current" bacterial evolution consisting of periodical inclusions into a bacterial genome of genes having exogenous origin is given. A hypothesis is proposed that rare inversions going through the oriC or terC chromosomal regions could serve as reparative rearrangements providing balanced distribution of the DNA segments of different origin within the circular genome. It is asserted that the progress in the study of the model microorganism Escherichia coli K-12 as well as in genetical methods give rise to a new experimental challenge--the creation of a "rational" bacterial genome on the basis of E. coli cell. It is proposed that a "rational" bacterial genome could be devoid of many genes which provide the evolutionary formed ecological potential of the species and its capacity for rapid adaptation to new environment.  相似文献   

3.
The effects of substance or substance extracted from Str. faecium SF 68 on HSV-1 are evaluated. The "in vivo" assay show that bacterial extract introduced i.p. in mice simultaneously with HSV-1 brought about 100% of survival, but bacterial extract after virus challenge brought about complete mortality of mice. "In vitro" assays show that bacterial extract reduce significantly PFU number. It seemed that Str. faecium extract affected the virus at the stage of adsorption on the host cells.  相似文献   

4.
In acidic forest soils, availability of inorganic nutrients is a tree-growth-limiting factor. A hypothesis to explain sustainable forest development proposes that tree roots select soil microbes involved in central biogeochemical processes, such as mineral weathering, that may contribute to nutrient mobilization and tree nutrition. Here we showed, by combining soil analyses with cultivation-dependent analyses of the culturable bacterial communities associated with the widespread mycorrhizal fungus Scleroderma citrinum, a significant enrichment of bacterial isolates with efficient mineral weathering potentials around the oak and beech mycorrhizal roots compared to bulk soil. Such a difference did not exist in the rhizosphere of Norway spruce. The mineral weathering ability of the bacterial isolates was assessed using a microplaque assay that measures the pH and the amount of iron released from biotite. Using this microplate assay, we demonstrated that the bacterial isolates harboring the most efficient mineral weathering potential belonged to the Burkholderia genus. Notably, previous work revealed that oak and beech harbored very similar pHs in the 5- to 10-cm horizon in both rhizosphere and bulk soil environments. In the spruce rhizosphere, in contrast, the pH was significantly lower than that in bulk soil. Because the production of protons is one of the main mechanisms responsible for mineral weathering, our results suggest that certain tree species have developed indirect strategies for mineral weathering in nutrient-poor soils, which lie in the selection of bacterial communities with efficient mineral weathering potentials.The mobilization of nutrients via the biotic and abiotic weathering of soil minerals is crucial to satisfying plant nutritional needs (2, 17), especially in acidic forest soils, which are mainly nonfertilized and nutrient poor. Besides the physicochemical weathering reactions, evidence is presently accumulating which indicates that certain soil bacterial strains increase mineral weathering and improve tree nutrition (5, 9, 32, 39-41).By way of their root exudates, plants alter the structure and activity of microbial communities (6, 25, 51) and selectively favor certain ones that are potentially beneficial to them (15, 16, 21, 45, 46). A hypothesis for sustainable forest development proposes that tree roots select from the soil efficient mineral weathering bacterial communities that may contribute to nutrient mobilization and tree growth (20). In this manner, recent studies (10, 46) have revealed that the oak-Scleroderma citrinum ectomycorrhizal symbiosis selects bacterial communities that are more efficient in mineral weathering than those of the surrounding soil, suggesting that the mycorrhizal symbiosis has an indirect effect on plant nutrition through its selective pressure on the functional diversity of the mycorrhizosphere bacterial communities.Distinct impacts of the tree species on the soil bacterial community structure have been previously reported (23, 38), suggesting that the composition and activity of soil bacterial communities depend on tree physiology and notably on its impact on the soil physicochemical properties and nutrient cycling (24, 26, 37). However, no study has ever addressed the question of the impact of tree species on the structure of forest soil bacterial communities involved in mineral weathering. This question regarding the impact of tree species on the functional diversity of the bacterial communities remains a major issue in forestry, especially in the context of today''s climate change, which will give rise to a shift in the spatial distribution of forest tree species.To appreciate the effect of tree species on mycorrhizosphere bacterial communities, we focused on a single but ubiquitous mycorrhizal fungus, S. citrinum, which forms mycorrhizae with different tree species. Since no functional genes have been identified to date, a cultivation-dependent analysis was developed in this study. A total of 155 bacterial isolates were randomly chosen among a collection of 400 bacterial isolates from the soil-Scleroderma citrinum mycorrhiza interface (ectomycorrhizosphere), the extramatrical mycelium (hyphosphere), and the surrounding soil (bulk soil) in 28-year-old stands of oak (Quercus sessiliflora Smith), beech (Fagus sylvatica L.), and Norway spruce (Picea abies Karst.). The mineral weathering potential of each bacterial isolate was evaluated by way of an in vitro microplate assay, putting in interaction a calibrated bacterial suspension and the biotite, a mineral widespread in soils (46). The bacterial isolates were genotypically characterized by amplifying and sequencing a portion of the 16S rRNA gene. Their mineral weathering efficiencies and the functional structure of the bacterial communities were compared with the physicochemical characteristics of the surrounding soil.  相似文献   

5.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

6.
Thiobacillus ferrooxidans has been cultivated on synthetic pyrite (FeS2) single crystals as the only energy source and the pyrite interface investigated with respect to characteristic morphological changes using scanning electron microscopy. Corrosion patterns of bacterial size were identified in different stages of development and correlated with bacterial activity. It appears that bacterial attack of the sulfide interface starts by secretion of organic substances around the contact area between the bacterial cell and the sulfide energy source. They might either be part of a pseudo capsule which shields the contact area or may form a sulfur absorbing and transporting organic film. Degradation of the sulfide occurs in the contact area below the bacterial cell leading to a corrosion pit which the bacterium may abandon after it has reached a depth of bacterial dimension. Electron spectroscopic (XPS) and X-ray fluorescence studies indicate a layer of organic substances covering the sulfide surface under bacterial leaching conditions, which is sufficiently thick for consideration in interfacial chemical mechanisms.  相似文献   

7.
Taxonomic compositions of epiphytic bacterial communities in water areas differing in levels of oil pollution were revealed. In total, 82 bacterial genera belonging to 16 classes and 11 phyla were detected. All detected representatives of epiphytic bacterial communities belonged to the phyla Actinobacteria, Bacteroidetes, Planctomycetes, Proteobacteria, Verrucomicrobia, Acidobacteria, Cyanobacteria, Firmicutes, and Fusobacteria and candidate division TM7. The ratio of the phyla in the communities varied depending on the levels of oil pollution. New data on taxonomic composition of uncultivated epiphytic bacterial communities of Fucus vesiculosus were obtained.  相似文献   

8.

Background

Gut microbiota interacts with the human gut in multiple ways. Microbiota composition is altered in inflamed gut conditions. Likewise, certain microbial fermentation products as well as the lipopolysaccharides of the outer membrane are examples of microbial products with opposing influences on gut epithelium inflammation status. This system of intricate interactions is known to play a core role in human gut inflammatory diseases. Here, we present and analyse a simplified model of bidirectional interaction between the microbiota and the host: in focus is butyrate as an example for a bacterial fermentation product with anti-inflammatory properties.

Results

We build a dynamical model based on an existing model of inflammatory regulation in gut epithelial cells. Our model introduces both butyrate as a bacterial product which counteracts inflammation, as well as bacterial LPS as a pro-inflammatory bacterial product. Moreover, we propose an extension of this model that also includes a feedback interaction towards bacterial composition. The analysis of these dynamical models shows robust bi-stability driven by butyrate concentrations in the gut. The extended model hints towards a further possible enforcement of the observed bi-stability via alteration of gut bacterial composition. A theoretical perspective on the stability of the described switch-like character is discussed.

Conclusions

Interpreting the results of this qualitative model allows formulating hypotheses about the switch-like character of inflammatory regulation in the gut epithelium, involving bacterial products as constitutive parts of the system. We also speculate about possible explanations for observed bimodal distributions in bacterial compositions in the human gut. The switch-like behaviour of the system proved to be mostly independent of parameter choices. Further implications of the qualitative character of our modeling approach for the robustness of the proposed hypotheses are discussed, as well as the pronounced role of butyrate compared to other inflammatory regulators, especially LPS, NF- κB and cytokines.
  相似文献   

9.
Two bacterial strains Pseudomonas acidovorans No 26 and Pseudomonas sp. No 4 grown in Conn and yeast extract-glucose media, or in the media enriched with tyrosine, were found to produce dark brown pigment. It was shown that in the bacterial cultures numerous phenolic and quinone-type compounds were formed and transformed to humic-like polymers. Formation of humic-like substances started in the bacterial cells and was accompanied by the presence of phenyloxidases in the bacterial cultures. The bacterial "humic acids" were obtained from the supernatants in amounts varing from 0.05 to 0.865 mg/1 mg of dry weight of cells and from the cells in amounts of 0.02 to 0.165 mg/1 mg of dry weight of cells, depending on the medium used and time of incubation. The IR spectra of the bacterial "humic acids" appeared to be very similar to IR spectrum of the synthetic humic acids (Fluka A.G.) and contained the same chemical groups as the soil humic acids. The culture medium after growth of the strain No 26 was fractionated into "fulvic, hymatomelanic and humic acid" fractions. The hydrolysates from the obtained fractions contained amino acids and uronic acids. The amino acid composition appeared to be very similar to that of soil humic acids.  相似文献   

10.
The gut bacterial community of wood-feeding beetles has been examined for its role on plant digestion and biocontrol method development. Monochamus alternatus and Psacothea hilaris, both belonging to the subfamily Lamiinae, are woodfeeding beetles found in eastern Asia and Europe and generally considered as destructive pests for pine and mulberry trees, respectively. However, limited reports exist on the gut bacterial communities in these species. Here, we characterized gut bacterial community compositions in larva and imago of each insect species reared with host tree logs and artificial diets as food sources. High-throughput 454 pyrosequencing of bacterial 16S rRNA gene revealed 225 operational taxonomic units (OTUs) based on a 97% sequences similarity cutoff from 138,279 sequence reads, the majority of which were derived from Proteobacteria (48.2%), Firmicutes (45.5%), and Actinobacteria (5.2%). The OTU network analysis revealed 7 modules with densely connected OTUs in specific gut samples, in which the distributions of Lactococcus-, Kluyvera-, Serratia-, and Enterococcus-related OTUs were distinct between diet types or developmental stages of the host insects. The gut bacterial communities were separated on a detrended correspondence analysis (DCA) plot and by c-means fuzzy clustering analysis, according to diet type. The results from this study suggest that diet was the main determinant for gut bacterial community composition in the two beetles.  相似文献   

11.
The dependence of the functional characteristics of bacterioplankton from the loess of Lake Khanka on the pore size of filtering materials was investigated. Soluble organic matter (SOM), bacteria, and bacterial consumers adsorbed on particles suspended in the lake water were found to filter differently depending on the pore size of the filtering material. Filters with pore size 4.5 m (filters II) retained up to 20% of SOM and 20–30% of bacterial cells. Filters III with pore size 2.87 m retained almost 50% of SOM and about 40% of bacteria. The double layer of gauze no. 72 (referred to as filter I) with pores size 40 m was unable to completely retain bacterial consumers. In the case of filtrates I and II, the generation time of bacterioplankton decreased with its increasing average daily concentration. In the case of filtrate III, the generation time of bacterioplankton was minimum and did not depend on its concentration. Oxygen consumption rates per one bacterial cell and per unit biomass in filtrates increased with decreasing pore size of the filters through which they had passed. The bacterial biomass and oxygen consumption rate increased exponentially in filtrates III and logarithmically in filtrates I.  相似文献   

12.
The cultural bacterial strains of two sediment samples, i.e., 260 strains, were submitted to numerical taxonomy to determine ecological profiles. From these profiles several calculations of bacterial diversity were done with increasing number of strains (between 10 and 130). Studying 20–30 strains was sufficient to obtain a diversity of bacterial community.Number of tests could be reduced from 62 to 30 without any influence on bacterial diversity. Similarity between studied tests was shown by using numerical taxonomy.  相似文献   

13.
The bacterial generic composition of biofilms was investigated by determining colony-forming units on 1/2 PYG (peptone, yeast extract, and glucose medium) agar plates. The biofilms developed on the upper and lower surfaces of artificial substrata submerged in river water at Unazawa in the Tamagawa River in Tokyo, Japan. Greater variation in the number and generic composition in platable colonies was obtained on the upper surface of an artificial substratum than on the lower surface. This variation corresponded to the variation in algal biomass. Accompanying the growth of the algae, specific bacteria commensal with the algae proliferated on the upper surface. The biofilm exfoliated when the surface density of chlorophyll was 11.2 g·cm–2. When the biofilm exfoliated, the bacterial community accompanying the algae also exfoliated, and the bacterial composition altered. The bacterial composition after exfoliation resembled that observed on the lower surface. The generic composition on the upper surface soon after it was initially submerged resembled that observed in the river water. The bacterial generic composition on the lower surface of the artificial substrata did not change greatly throughout the investigation because of the constant environmental conditions. The difference between the bacterial generic composition on the upper and lower surfaces was due to the fact that bacteria commensal with algae proliferated on the upper surface but not on the lower.  相似文献   

14.
The influence of culture method (free-floating cells in liquid nutrient broth or bacteria attached to agar surface on solid agarized medium of the same formulation) and bacterial age on the composition of free lipids in Yersinia pseudotuber-culosis (O:Ib serovar, strain KS 3058) grown in the cold (5°C) has been investigated. The specific growth rate of the bacteria on solid medium was about threefold less than that in liquid medium. The qualitative composition of phospholipids and fatty acids only slightly depended on the bacterial culture method. At the same time, the colonially growing cultures contained somewhat more total lipids, they synthesized more phospholipids, in the linear growth phase they contained more lysophosphatides, and they had higher fatty acid unsaturation index and higher pathogenic potential than their planktonic counterparts grown in otherwise identical conditions. The bacterial growth phase influenced the amount of 3-hydroxytetrade-canoic acid and, indirectly, that of lipopolysaccharide. The dynamics of changes in the amount of this acid with bacterial age was opposite in the surface and broth cultures.  相似文献   

15.
Soils harbor enormously diverse bacterial populations, and soil bacterial communities can vary greatly in composition across space. However, our understanding of the specific changes in soil bacterial community structure that occur across larger spatial scales is limited because most previous work has focused on either surveying a relatively small number of soils in detail or analyzing a larger number of soils with techniques that provide little detail about the phylogenetic structure of the bacterial communities. Here we used a bar-coded pyrosequencing technique to characterize bacterial communities in 88 soils from across North and South America, obtaining an average of 1,501 sequences per soil. We found that overall bacterial community composition, as measured by pairwise UniFrac distances, was significantly correlated with differences in soil pH (r = 0.79), largely driven by changes in the relative abundances of Acidobacteria, Actinobacteria, and Bacteroidetes across the range of soil pHs. In addition, soil pH explains a significant portion of the variability associated with observed changes in the phylogenetic structure within each dominant lineage. The overall phylogenetic diversity of the bacterial communities was also correlated with soil pH (R2 = 0.50), with peak diversity in soils with near-neutral pHs. Together, these results suggest that the structure of soil bacterial communities is predictable, to some degree, across larger spatial scales, and the effect of soil pH on bacterial community composition is evident at even relatively coarse levels of taxonomic resolution.The biogeographical patterns exhibited by microbial communities have been examined in a wide range of environments, and studies focusing on microbial biogeography continue to be published at a rapid pace. We know that microbial community diversity and composition can vary considerably across space, and this variation is theorized to be linked to changes in a number of biotic or abiotic factors (22, 36, 41). There are numerous overarching reasons for this interest in understanding microbial biogeography. For example, comparing microbial patterns to those commonly observed in plant and animal taxa is of intense theoretical interest (22, 25). From a more practical standpoint, studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of microbial taxa, particularly those difficult-to-culture taxa that often dominate in natural environments. However, perhaps the most important rationale for studying microbial biogeography is the most basic one: microbes are diverse, ubiquitous, and abundant, yet their biogeographical patterns and the factors driving these spatial patterns often remain poorly understood.No single biogeographical pattern is shared by all microorganisms, just as there is no single biogeographical pattern followed by all “macrobial” (i.e., plant and animal) communities (31). The specific biogeographical patterns exhibited by microorganisms are variable and highly dependent on a number of factors, including the taxonomic group in question (29), the degree of phylogenetic resolution at which the communities are examined (e.g., Pseudomonas) (7), and the spatial scale of the study (40). However, some common patterns emerge if we specifically examine the biogeography of soil microorganisms. In particular, the structure and diversity of soil bacterial communities have been found to be closely related to soil environmental characteristics (5, 37, 47), and soil pH is often correlated with the observed biogeographical patterns (19, 24). However, due to the paucity of detailed and comprehensive studies of soil bacterial biogeography, particularly across larger spatial scales, our understanding of soil microbial biogeography remains incomplete.Previous studies of soil bacterial biogeography have focused on either surveying a few soils in detail or surveying a larger number of soils by techniques that offer less detailed phylogenetic information. For example, a few recent studies used pyrosequencing or Sanger sequencing-based techniques to deeply survey the diversity and composition of the bacterial communities within a single soil or a few soils (1, 14, 20, 39, 42). Such studies are valuable in that they provide our best assessments of overall bacterial diversity and community structure and the relative abundances of specific bacterial taxa within soils. However, because such studies often examine only a limited number of soils, they do not allow for robust assessment of biogeographical patterns and the factors that may drive these patterns. Other studies have examined bacterial communities across a larger number of soils, using more limited techniques, such as fingerprinting methods that offer little specific phylogenetic information on bacterial community structure or techniques that describe communities at very coarse levels of taxonomic resolution (18, 19). A comprehensive assessment of the biogeographical patterns exhibited by soil bacterial communities requires both depth (individual communities surveyed at a reasonable level of phylogenetic detail) and breadth (examining a sufficiently large number of samples to assess spatial patterns). With the recent development of the bar-coded pyrosequencing technique (23), we need not sacrifice depth for breadth, or vice versa. This was demonstrated in several recent studies (2, 12, 17, 28) that used bar-coded pyrosequencing to simultaneously analyze relatively large numbers of individual samples, surveying the bacterial community in each sample to an extent that would be difficult (or prohibitively expensive) using standard cloning and Sanger sequencing techniques.Here we apply the bar-coded pyrosequencing technique to examine the structure and diversity of bacterial communities in 88 soils collected from across North and South America. This work expands on a previous fingerprinting-based survey of bacterial communities across a similar set of soils (19), using the pyrosequencing technique to extend the analyses and to answer the following questions. Which taxa are most abundant in soil? How does the phylogenetic structure of bacterial communities vary across the continental scale? Which environmental factors best predict bacterial community structure and diversity? Are some soil bacterial phyla more diverse than others?  相似文献   

16.

Background

Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral.

Methodology/Principal Findings

Denaturing Gradient Gel Electrophoresis (DGGE) of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by “White Syndrome” (WS) underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome.

Conclusions/Significance

This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine invertebrate associates. Finally, the results did not support the contention that a single bacterial pathogen may be the causative agent of WS Acroporids on the GBR.  相似文献   

17.
This research was conducted to distinguish between the separate effects of the Phanerochaete chrysosporium inoculation and sample property heterogeneity induced by different inoculation regimes on the indigenous bacterial communities during agricultural waste composting. P. chrysosporium was inoculated during different phases. The bacterial community abundance and structure were determined by quantitative PCR and denaturing gradient gel electrophoresis analysis, respectively. Results indicated a significant stimulatory effect of P. chrysosporium inoculation on the bacterial community abundance. The bacterial community abundance significantly coincided with pile temperature, ammonium, and nitrate (P?<?0.006). Variance partition analysis showed that the P. chrysosporium inoculation directly explained 20.5 % (P?=?0.048) of the variation in the bacterial communities, whereas the sample property changes induced by different inoculation regimes indirectly explained up to 35.1 % (P?=?0.002). The bacterial community structure was significantly related to pile temperature, water-soluble carbon (WSC), and C/N ratio when P. chrysosporium were inoculated. The C/N ratio solely explained 7.9 % (P?=?0.03) of the variation in community structure, whereas pile temperature and WSC explained 7.7 % (P?=?0.026) and 7.5 % (P?=?0.034) of the variation, respectively. P. chrysosporium inoculation affected the indigenous bacterial communities most probably indirectly through increasing pile temperature, enhancing the substrate utilizability, and changing other physico-chemical factors.  相似文献   

18.
Summary UV-inducible SOS processes associated with W reactivation of phage lambda were studied for their effect on repair of lambda prophage integrated in the bacterial chromosome. For this purpose, lambda cI857 ind red-lysogens were used. These lysogens, although non-inducible by UV light, can be induced by raising the temperature from 30° to 42°. If the W reactivation processes are involved in repair of the bacterial DNA, when the lysogens are incubated at 30° after UV exposure W reactivation should be fully expressed and should also exert an effect on the bacterial chromosome and the prophage inside it. When heat-induction is delayed until the time at which W reactivation reaches its maximum, a considerable increase in phage survival might then be expected. The results presented in this report show, however, that the delayed induction had only a small effect on the survival of prophage in the wild-type strain (possibly attributable to excision repair) and no detectable effect on prophage in a uvrA strain. From these results we conclude that W reactivation is largely irrelevant to the repair of UV-damaged bacterial DNA.  相似文献   

19.

Background

The Ahringer C. elegans RNAi feeding library prepared by cloning genomic DNA fragments has been widely used in genome-wide analysis of gene function. However, the library has not been thoroughly validated by direct sequencing, and there are potential errors, including: 1) mis-annotation (the clone with the retired gene name should be remapped to the actual target gene); 2) nonspecific PCR amplification; 3) cross-RNAi; 4) mis-operation such as sample loading error, etc.

Results

Here we performed a reliability analysis on the Ahringer C. elegans RNAi feeding library, which contains 16,256 bacterial strains, using a bioinformatics approach. Results demonstrated that most (98.3%) of the bacterial strains in the library are reliable. However, we also found that 2,851 (17.54%) bacterial strains need to be re-annotated even they are reliable. Most of these bacterial strains are the clones having the retired gene names. Besides, 28 strains are grouped into unreliable category and 226 strains are marginal because of probably expressing unrelated double-stranded RNAs (dsRNAs). The accuracy of the prediction was further confirmed by direct sequencing analysis of 496 bacterial strains. Finally, a freely accessible database named CelRNAi (http://biocompute.bmi.ac.cn/CelRNAi/) was developed as a valuable complement resource for the feeding RNAi library by providing the predicted information on all bacterial strains. Moreover, submission of the direct sequencing result or any other annotations for the bacterial strains to the database are allowed and will be integrated into the CelRNAi database to improve the accuracy of the library. In addition, we provide five candidate primer sets for each of the unreliable and marginal bacterial strains for users to construct an alternative vector for their own RNAi studies.

Conclusions

Because of the potential unreliability of the Ahringer C. elegans RNAi feeding library, we strongly suggest the user examine the reliability information of the bacterial strains in the CelRNAi database before performing RNAi experiments, as well as the post-RNAi experiment analysis.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号