首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na+,K(+)-ATPase has been observed to partially inhibit acidification of early endosomes by increasing membrane potential, whereas chloride channels have been observed to enhance acidification in endosomes and lysosomes. However, little theoretical analysis of the ways in which different pumps and channels may interact has been carried out. We therefore developed quantitative models of endosomal pH regulation based on thermodynamic considerations. We conclude that 1) both size and shape of endosomes will influence steady-state endosomal pH whenever membrane potential due to the pH gradient limits proton pumping, 2) steady-state pH values similar to those observed in early endosomes of living cells can occur in endosomes containing just H(+)-ATPases and Na+,K(+)-ATPases when low endosomal buffering capacities are present, and 3) inclusion of active chloride channels results in predicted pH values well below those observed in vivo. The results support the separation of endocytic compartments into two classes, those (such as early endosomes) whose acidification is limited by attainment of a certain membrane potential, and those (such as lysosomes) whose acidification is limited by the attainment of a certain pH. The theoretical framework and conclusions described are potentially applicable to other membrane-enclosed compartments that are acidified, such as elements of the Golgi apparatus.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR), which is aberrant in patients with cystic fibrosis, normally functions both as a chloride channel and as a pleiotropic regulator of other ion transporters. Here we show, by ratiometric imaging with luminally exposed pH-sensitive green fluorescent protein, that CFTR affects the pH of cellubrevin-labeled endosomal organelles resulting in hyperacidification of these compartments in cystic fibrosis lung epithelial cells. The excessive acidification of intracellular organelles was corrected with low concentrations of weak base. Studies with proton ATPase and sodium channel inhibitors showed that the increased acidification was dependent on proton pump activity and sodium transport. These observations implicate sodium efflux in the pH homeostasis of a subset of endocytic organelles and indicate that a dysfunctional CFTR in cystic fibrosis leads to organellar hyperacidification in lung epithelial cells because of a loss of CFTR inhibitory effects on sodium transport. Furthermore, recycling of transferrin receptor was altered in CFTR mutant cells, suggesting a previously unrecognized cellular defect in cystic fibrosis, which may have functional consequences for the receptors on the plasma membrane or within endosomal compartments.  相似文献   

3.
Acidification and ion permeabilities of highly purified rat liver endosomes   总被引:7,自引:0,他引:7  
While it is well established that acidic pH in endosomes plays a critical role in mediating the orderly traffic of receptors and ligands during endocytosis, little is known about the bioenergetics or regulation of endosome acidification. Using highly enriched fractions of rat liver endosomes prepared by free flow electrophoresis and sucrose density gradient centrifugation, we have analyzed the mechanism of ATP-dependent acidification and ion permeability properties of the endosomal membrane. This procedure permitted the isolation of endosome fractions which were up to 200-fold enriched as indicated by the increased specific activity of ATP-dependent proton transport. Acidification was monitored using hepatocyte and total liver endosomes selectively labeled with pH-sensitive markers of receptor-mediated endocytosis (fluorescein isothiocyanate asialoorosomucoid) or fluid-phase endocytosis (fluorescein isothiocyanate-dextran). In addition, changes in membrane potential accompanying ATP-dependent acidification were directly measured using the voltage-sensitive fluorescent dye Di-S-C3(5). Our results indicate that ATP-dependent acidification of liver endosomes is electrogenic, with proton transport being accompanied by the generation of an interior-positive membrane potential opposing further acidification. The membrane potential can be dissipated by the influx of permeant external anions or efflux of internal alkali cations. Replacement externally of permeable anions with less permeable anions (e.g. replacing Cl- with gluconate) diminished acidification, as did replacement internally of a more permeant cation K+ with less permeant species (such as Na+ or tetramethylammonium). ATP-dependent H+ transport was not coupled to any specific anion or cation, however. The endosomal membrane was found to be extremely permeable to protons, with protons able to leak out almost as fast as they are pumped in. Thus, the internal pH of endosomes is likely to reflect a dynamic equilibrium of protons regulated by the intrinsic ion permeabilities of the endosomal membrane, in addition to the activity of an ATP-driven proton pump.  相似文献   

4.
Externally added fibroblast growth factor-1 (FGF-1) is capable of crossing cellular membranes to reach the cytosol and the nucleus in a number of cell types. We have monitored the translocation of the growth factor by two methods: phosphorylation of FGF-1, and prenylation of an FGF-1 mutant that contains a C-terminal prenylation signal. Inhibition of endosomal acidification by ammonium chloride or monensin did not block the translocation of FGF-1, whereas bafilomycin A1, a specific inhibitor of vacuolar proton pumps, blocked translocation completely. A combination of ionophores expected to dissipate the vesicular membrane potential (valinomycin plus monensin) also fully inhibited the translocation. The inhibition of translocation by bafilomycin A1 was overcome in the presence of monensin or nigericin, while ouabain blocked translocation under these conditions. The data indicate that translocation of FGF-1 to cytosol occurs from the lumen of intracellular vesicles possessing vacuolar proton pumps, and that a vesicular membrane potential is required. Apparently, activation of vesicular Na+/K+-ATPase by monensin or nigericin generates a membrane potential that can support translocation when the proton pump is blocked.  相似文献   

5.
A precise pH gradient between organelles of the regulated secretory pathway is required for sorting and processing of prohormones. We studied pH regulation in live endocrine cells by targeting biotin-based pH indicators to cellular organelles expressing avidin-chimera proteins. In AtT-20 cells, we found that steady-state pH decreased from the endoplasmic reticulum (ER) (pH(ER) = 7.4 +/- 0.2, mean +/- S.D.) to Golgi (pH(G) = 6.2 +/- 0.4) to mature secretory granules (MSGs) (pH(MSG) = 5.5 +/- 0.4). Golgi and MSGs required active H(+) v-ATPases for acidification. ER, Golgi, and MSG steady-state pH values were also dependent upon the different H(+) leak rates across each membrane. However, neither steady-state pH(MSG) nor rates of passive H(+) leak were affected by Cl(-)-free solutions or valinomycin, indicating that MSG membrane potential was small and not a determinant of pH(MSG). Therefore, our data do not support earlier suggestions that organelle acidification is primarily regulated by Cl(-) conductances. Measurements of H(+) leak rates, buffer capacities, and estimates of surface areas and volumes of these organelles were applied to a mathematical model to determine the H(+) permeability (P(H+)) of each organelle membrane. We found that P(H+) decreased progressively from ER to Golgi to MSGs, and proper acidification of Golgi and MSGs required gradual decreases in P(H+) and successive increases in the active H(+) pump density.  相似文献   

6.
Despite the potential importance of retrieval-based targeting, few Golgi cisternae-localized proteins have been demonstrated to be targeted by retrieval, and the putative retrieval signals remain unknown. Golgi phosphoprotein of 130 kDa (GPP130) is a cis-Golgi protein that allows assay of retrieval-based targeting because it redistributes to endosomes upon treatment with agents that disrupt lumenal pH, and it undergoes endosome-to-Golgi retrieval upon drug removal. Analysis of chimeric molecules containing domains from GPP130 and the plasma membrane protein dipeptidylpeptidase IV indicated that GPP130 targeting information is contained entirely within its lumenal domain. Dissection of the lumenal domain indicated that a predicted coiled-coil stem domain adjacent to the transmembrane domain was both required and sufficient for pH-sensitive Golgi localization and endosome-to-Golgi retrieval. Further dissection of this stem domain revealed two noncontiguous stretches that each conferred Golgi localization separated by a stretch that conferred endosomal targeting. Importantly, in the absence of the endosomal determinant the Golgi targeting of constructs containing either or both of the Golgi determinants became insensitive to pH disruption by monensin. Because monensin blocks endosome-to-Golgi transport, the finding that the endosomal determinant confers monensin sensitivity suggests that the endosomal determinant causes GPP130 to traffic to endosomes from which it is normally retrieved. Thus, our observations identify Golgi and endosomal targeting determinants within a lumenal predicted coiled-coil domain that appear to act coordinately to mediate retrieval-based targeting of GPP130.  相似文献   

7.
The lumen of endosomal organelles becomes increasingly acidic when going from the cell surface to lysosomes. Luminal pH thereby regulates important processes such as the release of internalized ligands from their receptor or the activation of lysosomal enzymes. The main player in endosomal acidification is the vacuolar ATPase (V-ATPase), a multi-subunit transmembrane complex that pumps protons from the cytoplasm to the lumen of organelles, or to the outside of the cell. The active V-ATPase is composed of two multi-subunit domains, the transmembrane V(0) and the cytoplasmic V(1). Here we found that the ratio of membrane associated V(1)/Vo varies along the endocytic pathway, the relative abundance of V(1) being higher on late endosomes than on early endosomes, providing an explanation for the higher acidity of late endosomes. We also found that all membrane-bound V-ATPase subunits were associated with detergent resistant membranes (DRM) isolated from late endosomes, raising the possibility that association with lipid-raft like domains also plays a role in regulating the activity of the proton pump. In support of this, we found that treatment of cells with U18666A, a drug that leads to the accumulation of cholesterol in late endosomes, affected acidification of late endosome. Altogether our findings indicate that the activity of the vATPase in the endocytic pathway is regulated both by reversible association/dissociation and the interaction with specific lipid environments.  相似文献   

8.
The choice of the stalk cell differentiation pathway in Dictyostelium is promoted by an endogenous substance, DIF-1, which is 1-(3,5-dichloro-2,6-dihydroxy-4-methoxyphenyl)-1-hexanone. It is also favoured by weak acids and two inhibitors of the plasma membrane proton pumps of fungi and plants, diethylstilbestrol (DES) and zearalenone, and antagonised by ammonia and other weak bases, which promote spore differentiation. These observations led to the proposal that the choice of differentiation pathway is regulated by intracellular pH. They also prompted the conjecture that DIF-1 itself is a plasma membrane proton pump inhibitor. We report here experiments showing that DIF-1 is not a plasma membrane proton pump inhibitor. We demonstrate that diethylstilbestrol and zearalenone do inhibit the plasma membrane proton pump of Dictyostelium and we show that there is an excellent qualitative and quantitative correlation between the inhibitory activity of these agents, and of a number of other substances, and their ability to divert differentiation from the spore to the stalk pathway. We conclude that inhibition of the plasma membrane proton pump does shift the choice of differentiation pathway in Dictyostelium towards the stalk pathway, but that DIF does not act by this route, and we propose a model for the actions of DIF and plasma membrane proton pump inhibitors in which the differentiation pathway is controlled by the pH of intracellular vesicles rather than by intracellular pH itself. The model invokes a DIF- and proton-activated vesicular chloride channel whose opening permits acidification of the vesicles and lowers cytosolic Ca++ concentration.  相似文献   

9.
Chloride concentration ([Cl-]) was measured in defined organellar compartments using fluorescently labeled transferrin, alpha2-macroglobulin, and cholera toxin B-subunit conjugated with Cl--sensitive and -insensitive dyes. In pulse-chase experiments, [Cl-] in Tf-labeled early/recycling endosomes in J774 cells was 20 mM just after internalization, increasing to 41 mM over approximately 10 min in parallel to a drop in pH from 6.91 to 6.05. The low [Cl-] just after internalization (compared with 137 mM solution [Cl-]) was prevented by reducing the interior-negative Donnan potential. [Cl-] in alpha2-macroglobulin-labeled endosomes, which enter a late compartment, increased from 28 to 58 mM at 1-45 min after internalization, whereas pH decreased from 6.85 to 5.20. Cl- accumulation was prevented by bafilomycin but restored by valinomycin. A Cl- channel inhibitor slowed endosomal acidification and Cl- accumulation by approximately 2.5-fold. [Cl-] was 49 mM and pH was 6.42 in cholera toxin B subunit-labeled Golgi complex in Vero cells; Golgi compartment Cl- accumulation and acidification were reversed by bafilomycin. Our experiments provide evidence that Cl- is the principal counter ion accompanying endosomal and Golgi compartment acidification, and that an interior-negative Donnan potential is responsible for low endosomal [Cl-] early after internalization. We propose that reduced [Cl-] and volume in early endosomes permits endosomal acidification and [Cl-] accumulation without lysis.  相似文献   

10.
Tamoxifen has been reported to inhibit acidification of cytoplasmic organelles in mammalian cells. Here, the mechanism of this inhibition is investigated using in vitro assays on isolated organelles and liposomes. Tamoxifen inhibited ATP-dependent acidification in organelles from a variety of sources, including isolated microsomes from mammalian cells, vacuoles from Saccharomyces cerevisiae, and inverted membrane vesicles from Escherichia coli. Tamoxifen increased the ATPase activity of the vacuolar proton ATPase but decreased the membrane potential (Vm) generated by this proton pump, suggesting that tamoxifen may act by increasing proton permeability. In liposomes, tamoxifen increased the rate of pH dissipation. Studies comparing the effect of tamoxifen on pH gradients using different salt conditions and with other known ionophores suggest that tamoxifen affects transmembrane pH through two independent mechanisms. First, as a lipophilic weak base, it partitions into acidic vesicles, resulting in rapid neutralization. Second, it mediates coupled, electroneutral transport of proton or hydroxide with chloride. An understanding of the biochemical mechanism(s) for the effects of tamoxifen that are independent of the estrogen receptor could contribute to predicting side effects of tamoxifen and in designing screens to select for estrogen-receptor antagonists without these side effects.  相似文献   

11.
ClC-5 chloride channel deficiency causes proteinuria, hypercalciuria, and nephrolithiasis (Dent's disease). Impaired endosomal acidification in proximal tubule caused by reduced chloride conductance is a proposed mechanism; however, functional analysis of ClC-5 in oocytes predicts low ClC-5 chloride conductance in endosomes because of their acid interior pH and positive potential. Here, endosomal pH and chloride concentration were measured in proximal tubule cell cultures from wildtype vs. ClC-5 deficient mice using fluorescent sensors coupled to transferrin (early/recycling endosomes) or alpha(2)-macroglobulin (late endosomes). Initial pH in transferrin-labeled endosomes was approximately 7.2, decreasing at 15 min to 6.0 vs. 6.5 in wildtype vs. ClC-5 deficient cells, respectively; corresponding endosomal chloride concentration increased from approximately 16 mM to 47 vs. 36 mM. In contrast, acidification and chloride accumulation were not impaired in late endosomes or Golgi. Our results provide direct evidence for ClC-5 involvement in acidification of early endosomes in proximal tubule by a chloride shunt mechanism.  相似文献   

12.
V-ATPases (vacuolar H+-ATPases) are a specific class of multi-subunit pumps that play an essential role in the generation of proton gradients across eukaryotic endomembranes. Another simpler proton pump that co-localizes with the V-ATPase occurs in plants and many protists: the single-subunit H+-PPase [H+-translocating PPase (inorganic pyrophosphatase)]. Little is known about the relative contribution of these two proteins to the acidification of intracellular compartments. In the present study, we show that the expression of a chimaeric derivative of the Arabidopsis thaliana H+-PPase AVP1, which is preferentially targeted to internal membranes of yeast, alleviates the phenotypes associated with V-ATPase deficiency. Phenotypic complementation was achieved both with a yeast strain with its V-ATPase specifically inhibited by bafilomycin A1 and with a vma1-null mutant lacking a catalytic V-ATPase subunit. Cell staining with vital fluorescent dyes showed that AVP1 recovered vacuole acidification and normalized the endocytic pathway of the vma mutant. Biochemical and immunochemical studies further demonstrated that a significant fraction of heterologous H+-PPase is located at the vacuolar membrane. These results raise the question of the occurrence of distinct proton pumps in certain single-membrane organelles, such as plant vacuoles, by proving yeast V-ATPase activity dispensability and the capability of H+-PPase to generate, by itself, physiologically suitable internal pH gradients. Also, they suggest new ways of engineering macrolide drug tolerance and outline an experimental system for testing alternative roles for fungal and animal V-ATPases, other than the mere acidification of subcellular organelles.  相似文献   

13.
Plant proton pumps   总被引:4,自引:0,他引:4  
Chemiosmotic circuits of plant cells are driven by proton (H(+)) gradients that mediate secondary active transport of compounds across plasma and endosomal membranes. Furthermore, regulation of endosomal acidification is critical for endocytic and secretory pathways. For plants to react to their constantly changing environments and at the same time maintain optimal metabolic conditions, the expression, activity and interplay of the pumps generating these H(+) gradients have to be tightly regulated. In this review, we will highlight results on the regulation, localization and physiological roles of these H(+)- pumps, namely the plasma membrane H(+)-ATPase, the vacuolar H(+)-ATPase and the vacuolar H(+)-PPase.  相似文献   

14.
We investigated the involvement of ClC-3 chloride channels in endosomal acidification by measurement of endosomal pH and chloride concentration [Cl-] in control versus ClC-3-deficient hepatocytes and in control versus ClC-3-transfected Chinese hamster ovary cells. Endosomes were labeled with pH or [Cl-]-sensing fluorescent transferrin (Tf), which targets to early/recycling endosomes, or alpha2-macroglobulin (alpha2M), which targets to late endosomes. In pulse label-chase experiments, [Cl-] was 19 mM just after internalization in alpha2M-labeled endosomes in primary cultures of hepatocytes from wild-type mice, increasing to 58 mM over 45 min, whereas pH decreased from 7.1 to 5.4. Endosomal acidification and [Cl-] accumulation were significantly impaired in hepatocytes from ClC-3 knock-out mice, with [Cl-] increasing from 16 to 43 mM and pH decreasing from 7.1 to 6.0. Acidification and Cl- accumulation were blocked by bafilomycin. In Tf-labeled endosomes, [Cl-] was 46 mM in wild-type versus 35 mM in ClC-3-deficient hepatocytes at 15 min after internalization, with corresponding pH of 6.1 versus 6.5. Approximately 4-fold increased Cl- conductance was found in alpha2M-labeled endosomes isolated from hepatocytes of wild-type versus ClC-3 null mice. In contrast, Golgi acidification was not impaired in ClC-3-deficient hepatocytes. In transfected Chinese hamster ovary cells expressing ClC-3A, endosomal acidification and [Cl-] accumulation were enhanced. [Cl-] in alpha2M-labeled endosomes was 42 mM (control) versus 53 mM (ClC-3A) at 45 min, with corresponding pH 5.8 versus 5.2; [Cl-] in Tf-labeled endosomes at 15 min was 37 mM (control) versus 49 mM (ClC-3A) with pH 6.3 versus 5.9. Our results provide direct evidence for involvement of ClC-3 in endosomal acidification by Cl- shunting of the interior-positive membrane potential created by the vacuolar H+ pump.  相似文献   

15.
The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH −1.5) and Arabidopsis thaliana root cells (ΔpH −2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H+ ATPase–dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.  相似文献   

16.
Organellar acidification by the electrogenic vacuolar proton-ATPase is coupled to anion uptake and cation efflux to preserve electroneutrality. The defective organellar pH regulation, caused by impaired counterion conductance of the mutant cystic fibrosis transmembrane conductance regulator (CFTR), remains highly controversial in epithelia and macrophages. Restricting the pH-sensitive probe to CFTR-containing vesicles, the counterion and proton permeability, and the luminal pH of endosomes were measured in various cells, including genetically matched CF and non-CF human respiratory epithelia, as well as cftr+/+ and cftr−/− mouse alveolar macrophages. Passive proton and relative counterion permeabilities, determinants of endosomal, lysosomal, and phagosomal pH-regulation, were probed with FITC-conjugated transferrin, dextran, and Pseudomonas aeruginosa, respectively. Although CFTR function could be documented in recycling endosomes and immature phagosomes, neither channel activation nor inhibition influenced the pH in any of these organelles. CFTR heterologous overexpression also failed to alter endocytic organellar pH. We propose that the relatively large CFTR-independent counterion and small passive proton permeability ensure efficient shunting of the proton-ATPase–generated membrane potential. These results have implications in the regulation of organelle acidification in general and demonstrate that perturbations of the endolysosomal organelles pH homeostasis cannot be linked to the etiology of the CF lung disease.  相似文献   

17.
《The Journal of cell biology》1994,125(5):1047-1056
Yolk platelets constitute an embryonic endocytic compartment that stores maternally synthesized nutrients. The pH of Xenopus yolk platelets, measured by photometry on whole oocytes which had endocytosed FITC-vitellogenin, was found to be acidic (around pH 5.6). Experiments on digitonin-permeabilized oocytes showed that acidification was due to the activity of an NEM- and bafilomycin A1- sensitive vacuolar proton-ATPase. Proton pumping required chloride, but was not influenced by potassium or sodium. Passive proton leakage was slow, probably due to the buffer capacity of the yolk, and was dependent on the presence of cytoplasmic monovalent cations. In particular, sodium could drive proton efflux through an amiloride- sensitive Na+/H+ exchanger. 8-Bromo-cyclic-AMP was found to increase acidification, suggesting that pH can be regulated by intracellular second messengers. The moderately acidic pH does not promote degradation of the yolk platelets, which in oocytes are stable for weeks, but it is likely to be required to maintain the integrity of these organelles. Furthermore, the pH gradient created by the proton pump, when coupled with the Na+/H+ exchanger, is probably responsible for the accumulation and storage of sodium into the yolk platelets during oogenesis.  相似文献   

18.
Intracellular pH homeostasis is a prerequisite for biological processes and requires the action of proton pumps. The vacuolar H(+)-ATPase (V-ATPase) is involved in regulating pH in endomembrane compartments of all eukaryotic cells. In plants, there is an additional endomembrane proton pump, H(+)-pyrophosphatase (H(+)-PPase). However, the relative roles of the two types of pumps in endomembrane acidification and energization of secondary active transport are unclear. Here, we show that a strong T-DNA insertion allele of VHA-A, the single copy gene encoding the catalytic subunit of the Arabidopsis V-ATPase, causes complete male and partial female gametophytic lethality. Severe changes in the morphology of Golgi stacks and Golgi-derived vesicles in male gametophytes are the first visible symptoms of cell degeneration leading to a failure to develop mature pollen. Similar effects on Golgi morphology were observed in pollen tubes when growth was blocked by Concanamycin A, a specific V-ATPase inhibitor. Taken together, our results suggests that V-ATPase function is essential for Golgi organization and development of the male gametophyte.  相似文献   

19.
The ionic nature of endosomes varies considerably in character along the endocytic pathway. Counter-ion flux across the limiting membrane of endosomes has long been considered essential for full acidification and normal endosome/lysosomal function. The proximal functions of luminal ions, however, have been difficult to assess. The recent development of transgenic mice carrying mutations in the intracellular chloride channels (ClCs) has provided a tool to uncouple Cl(-) influx from endosomal acidification. Intriguingly, many of the defects of the endo-lysomal system attributed to aberrant pH persist in the Cl(-)-deficient mice implying a direct regulatory role for Cl(-) influx in endosome function. These observations may begin to explain the abundance of endosomal ion transporters, including ClCs, sodium-proton exchangers, two-pore channels and mucolipins, that have been localized to endo-lysosomes, and the extensive changes in luminal ion composition therein. In this review, we summarize what is known regarding the mediators of endosomal ion flux, and discuss the implications of changing ionic content on endo-lysosomal function.  相似文献   

20.
The preparative isolation of mitochondria from Chinese hamster ovary cells   总被引:1,自引:0,他引:1  
A "hybrid" discontinuous gradient consisting of 6% Percoll overlaid on metrizamide separated mitochondria from other organelles in a Chinese hamster ovary cell postnuclear supernatant in a single 15-min centrifugation. The mitochondrial preparation contained about 25% of the mitochondrial marker, cytochrome-c oxidase, in a form that was about 90% latent. Based on the postnuclear supernatant, cytochrome-c oxidase activity was enriched approximately 45-fold. Trace amounts of lysosomal, rough endoplasmic reticular, Golgi, peroxisomal, plasma membrane, and cytosolic markers were found in the preparation. Electron microscopy revealed that the preparation consisted almost exclusively of mitochondria with only minor amounts of contaminating organelles. Analysis of the mitochondrial preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the mitochondrial preparation had a unique protein profile compared to the postnuclear supernatant and other gradient interfaces. Separation of the mitochondria into membrane and lumenal (matrix) fractions by treatment with 100 mM Na2CO3, pH 11.5, also indicated that the mitochondria were intact; they were rich in lumenal proteins. The data indicate that the mitochondria represent maximally about 2.2% of Chinese hamster ovary cell postnuclear supernatant protein. These isolated mitochondria should prove useful for problems in molecular cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号