首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Nucleotide binding and phosphorylation in microtubule assembly in vitro.   总被引:4,自引:0,他引:4  
Two non-hydrolyzable analogs of GTP, guanylyl-β,γ-methylene diphosphonate and guanylyl imidodiphosphate, have been found to induce rapid and efficient microtubule assembly in vitro by binding at the exchangeable site (E-site) on tubulin. Characterization of microtubule polymerization by several criteria, including polymerization kinetics, nucleotide binding to depolymerized and polymerized microtubules, and microtubule stability, reveals strong similarities between microtubule assembly induced by GTP and non-hydrolyzable GTP analogs. Nucleoside triphosphates which bind weakly or not at all to tubulin, such as ATP, UTP and CTP, are shown to induce microtubule assembly by means of a nucleoside diphosphate kinase (NDP-kinase, EC 2.7.4.6.) activity which is not intrinsic to tubulin. The NDP-kinase mediates microtubule polymerization by phosphorylating tubulin-bound GDP in situ at the E-site. Although hydrolysis of exchangeably bound GTP occurs, it is found to be uncoupled from the polymerization reaction. The non-exchangeable nucleotide binding site on tubulin (N-site) is not directly involved in microtubule assembly in vitro. The N-site is shown to contain almost exclusively GTP which is not hydrolyzed during microtubule assembly. A scheme is presented in which GTP acts as an allosteric effector at the E-site during microtubule assembly in vitro.  相似文献   

2.
Tubulin strictly requires GTP for its polymerization. Nevertheless, microtubule assembly can be observed in the presence of ATP as the only nucleotide triphosphate, due to the nucleoside diphosphate kinase (NDP kinase) present in microtubule preparations, and which phosphorylates the GDP into GTP. We have purified this enzyme from pig brain to homogeneity, and shown that its relative mass is close to 100 000 in its native state, and 17 000 under denaturing conditions. Therefore it is probably a hexamer, as previously shown for the enzyme from other sources, and also presents a microheterogeneity, with the major isoforms between pI 5.0 and 6.0. The enzyme is transiently phosphorylated during catalysis, as expected within a ping-pong bi-bi mechanism. The effect of the NDP kinase on pure tubulin polymerization was studied: in the presence of NDP kinase, the lag time observed in the kinetics of microtubule assembly was shorter and the final extent of assembly was unchanged. The effect of the enzyme was observed at enzyme concentrations 900-fold lower than tubulin concentration, which shows that the NDP kinase acts catalytically. Kinetic data show that the catalytic effect of the NDP kinase is faster than the rate of nucleotide exchange on tubulin under the same conditions. This result demonstrates that the tubulin-GDP complex itself is a substrate for the enzyme, which may indicate that the GDP bound to tubulin at the E site is exposed on the surface of dimeric tubulin.  相似文献   

3.
8-Azidoguanosine 5'-triphosphate (8-N3GTP) was used in a photoactivatable probe to examine the role of GTP in microtubule assembly. 8-N3GTP was able to substitute for GTP in the promotion of tubulin polymerization and was hydrolyzed at 37 degrees C in the presence or absence of colchicine or calcium. Photolysis of the analog in the presence of microtubular protein resulted in its covalent incorporation onto a GTP-specific site of the beta monomer. The efficiency of this incorporation was different when 8-N3GDP (which does not affect polymerization) was used in place of 8-N3GTP, implying a different orientation of the nucleoside diphosphate within the receptor site. During microtubule assembly, 8-N3GTP was hydrolyzed in situ at the tubulin-GTP exchangeable site in a process that was dependent upon polymerization. The use of [beta, gamma-32P]8-N3GTP and [gamma-32P]8-N3GTP indicated that this hydrolysis occurred concurrently with polymerization and that only nucleoside diphosphate remained bound to the polymerized tubulin.  相似文献   

4.
Glycerol-induced tubulin polymerization supported by non-guanine nucleotides was examined. The electrophoretically homogeneous tubulin was devoid of nucleoside diphosphate kinase activity and 95% saturated with exchangeable GDP and nonexchangeable GTP. All purine ribonucleoside 5'-triphosphates were active but no polymerization occurred with CTP or UTP. All polymerization reactions, as a function of nucleotide concentration, were similar: above a minimum (threshold) concentration, as the amount of nucleotide increased the reaction became progressively more rapid and extensive with a progressively shorter nucleation period. Threshold concentrations of ATP, XTP, ITP and GTP were 0.6 mM, 0.3 mM, 30 microM and 7 microM, respectively. Most ribose- and polyphosphate-modified ATP analogs also supported polymerization at high concentrations, but the activity of these analogs relative to ATP was very similar to the activity of cognate GTP analogs relative to GTP. Polymerization with ATP was associated with an ATPase reaction. ATP hydrolysis was potently inhibited by GDP and GTP and altered by antimitotic drugs in parallel with the effects of these agents on GTP hydrolysis. Substantial amounts of [8-14C]GDP bound in the exchangeable site of tubulin were displaced during polymerization with GTP or ATP, but much higher concentrations of ATP were required for equivalent displacement of the tubulin-bound GDP. Polymerization with GTP or ATP was inhibited in a qualitatively similar manner by GDP, with increasing concentrations of GDP causing a progressive prolongation of the nucleation period and reduction in reaction rate and extent. However, complete inhibition of polymerization required that GDP:GTP much greater than 1, but that GDP:ATP much less than 1. Inhibition appeared to be primarily competitive, since with higher triphosphate concentrations higher GDP concentrations were required for comparable inhibition. We conclude that ATP effects on tubulin polymerization are mediated through a feeble interaction at the exchangeable GTP site.  相似文献   

5.
C M Lin  E Hamel 《Biochemistry》1987,26(22):7173-7182
We previously reported that direct incorporation of GDP (i.e., without an initial hydrolysis of GTP) into microtubules occurs throughout an assembly cycle in a constant proportion. The exact proportion varied with reaction conditions, becoming greater under all conditions in which tubulin-GDP increased relative to tubulin-GTP (low Mg2+ and GTP concentrations, high tubulin concentrations, and in the presence of exogenous GDP). These findings led us to explore further interrelationships of tubulin-GDP and tubulin-GTP in microtubule assembly. We have now determined the minimum amount of tubulin-GTP required for the initiation of microtubule assembly and the relative efficiency with which tubulin-GDP participates in microtubule elongation. When GTP, GDP, and tubulin concentrations were varied at a constant Mg2+ concentration (0.2 mM), initiation of assembly required that 35% of the nucleotide-bearing tubulin be in the form of tubulin-GTP, and incorporation of tubulin-GDP into microtubules during elongation was only 60% as efficient as would be predicted on the basis of its proportional concentration in the reaction mixtures. Very different results were obtained when the Mg2+ concentration was varied. Even though Mg2+ enhances the binding of GTP to tubulin (the equilibrium constant for the exchange of GTP for GDP was 0.2 in the absence of exogenous Mg2+, 3 with 0.2 mM Mg2+, 5 with 0.5 mM Mg2+, and 11 with 2 and 4 mM Mg2+), as Mg2+ was increased the proportion of tubulin-GTP required for the initiation of microtubule assembly rose greatly, and the direct incorporation of tubulin-GDP into microtubules during elongation became progressively more efficient. In the absence of exogenous Mg2+, only 20% tubulin-GTP was required for initiation, and tubulin-GDP was directly incorporated into microtubules half as efficiently as would be predicted on the basis of its concentration in the reaction mixture. At the highest Mg2+ concentration examined (4 mM), 80% tubulin-GTP was required for initiation of assembly, and tubulin-GDP was incorporated into microtubules as efficiently as tubulin-GTP.  相似文献   

6.
J K Batra  C M Lin  E Hamel 《Biochemistry》1987,26(18):5925-5931
Pursuing the observation of Carlier and Pantaloni [Carlier, M.-F., & Pantaloni, D. (1982) Biochemistry 21, 1215-1224] that adenosine 5'-(beta, gamma-imidotriphosphate) (pNHppA) strongly inhibited tubulin-independent phosphatases in microtubule protein preparations, we observed with a number of commercial preparations of pNHppA that a major proportion of the terminal phosphate of [gamma-32P]GTP added to microtubule protein preparations was rapidly converted into ATP. Initially postulating degradation of pNHppA to AMP followed by stepwise conversion of AMP to ATP, we isolated two nucleoside monophosphate kinase activities from microtubule protein capable of generating ATP from AMP + GTP. The amounts of these enzymes in microtubule protein preparations, however, are probably too low to account for rapid ATP formation. Instead, ATP formation most likely is caused by nucleoside diphosphate kinase acting on ADP contaminating commercial pNHppA preparations. Such ADP contamination was demonstrated by high-performance liquid chromatography, with the amount of ATP formed with different pNHppA preparations proportional to the amount of ADP contamination. Repurification of commercial pNHppA until it was free of contaminating ADP also resulted in the elimination of ATP formation. The repurified pNHppA potently inhibited GTP hydrolysis in microtubule protein preparations. In addition, especially when supplemented with equimolar Mg2+, the repurified pNHppA strongly inhibited GTP hydrolysis and microtubule assembly in reaction mixtures containing purified tubulin and heat-treated microtubule-associated proteins (which contain negligible amounts of tubulin-independent phosphatase activity). We conclude that studies of microtubule-dependent GTP hydrolysis which make use of pNHppA must be interpreted with extreme caution.  相似文献   

7.
K Islam  R G Burns 《FEBS letters》1984,178(2):264-270
Chick brain microtubule protein can be assembled in vitro with ATP, although the extent of assembly is less than that with GTP. The ATP-induced assembly is not the result of generation of GTP by the co-purifying nucleoside diphosphate kinase. Neither an observed increase in the critical concentration nor the phosphorylation of MAP2 can account for the decreased extent of assembly. However, whereas microtubules are formed with both ATP and GTP, incubation with ATP yields additional filaments and polymorphic aggregates. The results demonstrate that of the total protein which can be assembled into microtubules by GTP, about 25-35% is assembled into other structural forms in the presence of ATP.  相似文献   

8.
The kinetics of microtubule assembly were investigated by monitoring changes in turbidity which result from the scattering of incident light by the polymer. These studies indicated that assembly occurred by a pathway involving a nucleation phase, followed by an elongation phase as evidenced by a lag in the polymerization kinetics, followed by a psuedo-first-order exponential increase in turbidity. Analytical ultracentrifugation of solutions polymerized to equilibrium showed that 6 S tubulin was the only species detectable in equilibrium with microtubules. Investigation of the elongation reaction in mixtures of 6 S tubulin and microtubule fragments demonstrated that: (1) the net rate of assembly was the sum of the rates of polymerization and depolymerization; (2) the rate of polymerization was proportional to the product of the microtubule number concentration and the 6 S tubulin concentration; and (3) the rate of depolymerization was proportional to the number concentration of microtubules. These results demonstrate that microtubule assembly occurs by a condensation polymerization mechanism consisting of distinct nucleation and elongation steps. Microtubules are initiated in a series of protein association reactions in a pathway that has not been fully elucidated. Elongation proceeds by the consecutive association of 6 S tubulin subunits onto the ends of existing microtubules. Similarly, depolymerization occurs by dissociation of 6 S subunits from the ends of microtubules. The rate constants measured for polymerization and depolymerization at 30 °C were 4 × 106m?1 s?1 and 7 s?1, respectively.  相似文献   

9.
E Hamel  J K Batra  C M Lin 《Biochemistry》1986,25(22):7054-7062
Using highly purified calf brain tubulin bearing [8-14C]guanosine 5'-diphosphate (GDP) in the exchangeable nucleotide site and heat-treated microtubule-associated proteins (both components containing negligible amounts of nucleoside diphosphate kinase and nonspecific phosphatase activities), we have found that a significant proportion of exchangeable-site GDP in microtubules can be incorporated directly during guanosine 5'-triphosphate (GTP) dependent polymerization of tubulin, without an initial exchange of GDP for GTP and subsequent GTP hydrolysis during assembly. The precise amount of GDP incorporated directly into microtubules is highly dependent on specific reaction conditions, being favored by high tubulin concentrations, low GTP and Mg2+ concentrations, and exogenous GDP in the reaction mixture. Minimum effects were observed with changes in reaction pH or temperature, changes in concentration of microtubule-associated proteins, alteration of the sulfonate buffer, or the presence of a calcium chelator in the reaction mixture. Under conditions most favorable for direct GDP incorporation, about one-third of the GDP in microtubules is incorporated directly (without GTP hydrolysis) and two-thirds is incorporated hydrolytically (as a consequence of GTP hydrolysis). Direct incorporation of GDP occurs in a constant proportion throughout elongation, and the amount of direct incorporation probably reflects the rapid equilibration of GDP and GTP at the exchangeable site that occurs before the onset of assembly.  相似文献   

10.
Two tubulin variants, isolated from chicken brain and erythrocytes and known to have different peptide maps and electrophoretic properties, are demonstrated to exhibit different assembly properties in vitro: 1) erythrocyte tubulin assembles with greater efficiency (lower critical concentration, greater elongation rate) but exhibits a lower nucleation rate than brain tubulin, and 2) erythrocyte tubulin readily forms oligomers whose presence significantly retards the rate of elongation, suggesting that tubulin oligomers may also be important for determining the rate of assembly and the length of microtubules in erythrocytes. Erythrocyte tubulin isolated by cycles of in vitro assembly-disassembly is also demonstrated to contain a 67-kDa tau factor that greatly enhances microtubule nucleation but has little effect on elongation rates or critical concentration. Immunofluorescence microscopy with tau antibody indicates that tau is specifically associated with marginal band microtubules, suggesting that it may be important for determining microtubule function in vivo.  相似文献   

11.
Colchicine.tubulin complex (CD) inhibits microtubule assembly. We examined this inhibition under conditions where spontaneous nucleation was suppressed and assembly was restricted to an elongation polymerization. We found that CD inhibited assembly by a mechanism which preserved the ability of microtubule ends to add tubulin. This observation is inconsistent with the end-poisoning model which recently was proposed as a general mechanism for assembly inhibition by CD. Our data are consistent with the following model: (a) microtubules formed in the presence of CD are CD-tubulin copolymers; (b) these copolymers can have appreciable numbers of incorporated CDs which are, most likely, randomly distributed in the copolymers; (c) CD-tubulin copolymers have assembly-competent ends with association and dissociation rate constants which decrease as the CD/tubulin ratio in the copolymers, (CD/T)MT, increases; and (d) the critical tubulin concentrations required for microtubule assembly increase in the presence of CD, indicating that copolymer affinity for tubulin decreases as (CD/T)MT increases.  相似文献   

12.
S Roychowdhury  F Gaskin 《Biochemistry》1986,25(24):7847-7853
Two conflicting interpretations on the role of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) in microtubule protein and tubulin assembly have been previously reported. One study finds that GTP gamma S promotes assembly while another study reports that GTP gamma S is a potent inhibitor of microtubule assembly. We have examined the potential role of Mg2+ to learn if the conflicting interpretations are due to a metal effect. Turbidity, electron microscopy, and nucleotide binding and hydrolysis were used to analyze the effect of the Mg2+ concentration on GTP gamma S-induced assembly of microtubule protein (tubulin + microtubule-associated proteins) in the presence of buffer +/- 30% glycerol and in buffer with GTP added before or after GTP gamma S. GTP gamma S substantially lowers the Mg2+ concentration required to induce cross-linked or clustered rings of tubulin. These cross-linked rings do not assemble well into microtubules, and GTP only partially restores microtubule assembly. However, taxol will promote GTP gamma S-induced cross-linked rings of microtubule protein to assemble into microtubules. The effect of GTP gamma S on microtubule protein assembly in the presence of Zn2+ with and without added Mg2+ suggests that GTP gamma S also effects the formation of Zn2+-induced sheet aggregates. Purified tubulin was used in assembly experiments with Mg2+, Zn2+, and taxol to better understand GTP gamma S interactions with tubulin. The optimal Mg2+ concentration for assembly of tubulin is lower with GTP gamma S than with GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Current models of microtubule assembly from pure tubulin involve a nucleation phase followed by microtubule elongation at a constant polymer number. Both the rate of microtubule nucleation and elongation are thought to be tightly influenced by the free GTP-tubulin concentration, in a law of mass action-dependent manner. However, these basic hypotheses have remained largely untested due to a lack of data reporting actual measurements of the microtubule length and number concentration during microtubule assembly.Here, we performed simultaneous measurements of the polymeric tubulin concentration, of the free GTP-tubulin concentration, and of the microtubule length and number concentration in both polymerizing and depolymerizing conditions. In agreement with previous work we find that the microtubule nucleation rate is strongly dependent on the initial GTP-tubulin concentration. But we find that microtubule nucleation persists during microtubule elongation. At any given initial tubulin-GTP concentration, the microtubule nucleation rate remains constant during polymer assembly, despite the wide variation in free GTP-tubulin concentration. We also find a remarkable constancy of the rate of microtubule elongation during assembly. Apparently, the rate of microtubule elongation is intrinsic to the polymers, insensitive to large variations of the free GTP-tubulin concentration. Finally we observe that when, following assembly, microtubules depolymerize below the free GTP-tubulin critical concentration, the rate-limiting factor for disassembly is the frequency of microtubule catastrophe. At all time-points during disassembly, the microtubule catastrophe frequency is independent of the free GTP-tubulin concentration but, as the microtubule nucleation rate, is strongly dependent on the initial free GTP-tubulin concentration. We conclude that the dynamics of both microtubule assembly and disassembly depend largely on factors other than the free GTP-tubulin concentration. We propose that intrinsic structural factors and endogenous regulators, whose concentration varies with the initial conditions, are also major determinants of these dynamics.  相似文献   

14.
We have determined the binding affinity for binding of the four purine nucleoside triphosphates GTP, ITP, XTP, and ATP to E-site nucleotide- and nucleoside diphosphate kinase-depleted tubulin. The relative binding affinities are 3000 for GTP, 10 for ITP, 2 for XTP, and 1 for ATP. Thus, the 2-exocyclic amino group in GTP is important in determining the nucleotide specificity of tubulin and may interact with a hydrogen bond acceptor group in the protein. The 6-oxo group also makes a contribution to the high affinity for GTP. NMR ROESY experiments indicate that the four nucleotides have different average conformations in solution. ATP and XTP are characterized by a high anti conformation, ITP by a medium anti conformation, and GTP by a low anti conformation. Possibly, the preferred solution conformation contributes to the differences in affinities. When the tubulin E-site is saturated with nucleotide, there appears to be little difference in the ability of the four nucleotides to stimulate assembly. The critical protein concentration is essentially identical in reactions using the four nucleotides. All four of the nucleotides were hydrolyzed during the assembly reaction, and the NDPs were incorporated into the microtubule. We also examined the binding of two gamma-phosphoryl-modified GTP photoaffinity analogues, p(3)-1, 4-azidoanilido-GTP and p(3)-1,3-acetylanilido-GTP. These analogues are inhibitors of the assembly reaction and bind to tubulin with affinities that are 15- and 50-fold lower, respectively, than the affinty for GTP. The affinity of GTP is less sensitive to substitutions at the gamma-phosphoryl position that to changes in the purine ring.  相似文献   

15.
Microtubules are capable of performing synchronized oscillations of assembly and disassembly which has been explained by reaction mechanisms involving tubulin subunits, oligomers, microtubules, and GTP. Here we address the question of how microtubule nucleation or their number concentration affects the oscillations. Assembly itself requires a critical protein concentration (Cc), but oscillations require in addition a critical microtubule number concentration (CMT). In spontaneous assembly this can be achieved with protein concentrations Cos well above the critical concentration Cc because this enhances the efficiency of nucleation. Seeding with microtubules can either generate oscillations or suppress them, depending on how the seeds alter the effective microtubule number concentration. The relative influence of microtubule number and total protein concentrations can be varied by the rate at which assembly conditions are induced (e.g. by a temperature rise): Fast T-jumps induce oscillations because of efficient nucleation, slow ones do not. Oscillations become damped for several reasons. One is the consumption of GTP, the second is a decrease in microtubule number, and the third is that the ratio of microtubules in the two phases (growth-competent and shrinkage-competent) approach a steady state value. This ratio can be perturbed, and the oscillations restarted, by a cold shock, addition of seeds, addition of GTP, or fragmentation. Each of these is equivalent to a change in the effective microtubule number concentration.  相似文献   

16.
The microtubule-associated protein TOGp, which belongs to a widely distributed protein family from yeasts to humans, is highly expressed in human tumors and brain tissue. From purified components we have determined the effect of TOGp on thermally induced tubulin association in vitro in the presence of 1 mm GTP and 3.4 m glycerol. Physicochemical parameters describing the mechanism of tubulin polymerization were deduced from the kinetic curves by application of the classical theoretical models of tubulin assembly. We have calculated from the polymerization time curves a range of parameters characteristic of nucleation, elongation, or steady state phase. In addition, the tubulin subunits turnover at microtubule ends was deduced from tubulin GTPase activity. For comparison, parallel experiments were conducted with colchicine and taxol, two drugs active on microtubules and with tau, a structural microtubule-associated protein from brain tissue. TOGp, which decreases the nucleus size and the tenth time of the reaction (the time required to produce 10% of the final amount of polymer), shortens the nucleation phase of microtubule assembly. In addition, TOGp favors microtubule formation by increasing the apparent first order rate constant of elongation. Moreover, TOGp increases the total amount of polymer by decreasing the tubulin critical concentration and by inhibiting depolymerization during the steady state of the reaction.  相似文献   

17.
We have re-examined the effect of varying GDP concentrations on the kinetics of GTP-induced assembly of microtubules from microtubule protein, and on the elongation of pre-existing microtubules subjected to a temperature jump relaxation from 21.5 to 37 degrees C. The assembly kinetics follow a simple model for assembly which involves a fast equilibrium of tubulin-GTP and tubulin-GDP coupled to the elongation process due to tubulin-GTP. The initial rate of the relaxation process is found to be dependent upon the GTP/GDP ratio, in confirmation of the results of Engelborghs and Van Houtte (Biophys. Chem. 14 (1981) 195). As an alternative to the interpretation previously advanced by them, involving modification of the reactivity of microtubule ENDs by GDP, we show that this result is consistent with the above model with one reasonable modification, namely, that the ratio of the affinities of tubulin for GTP and GDP should vary with temperature. The analysis shows that a decrease in this ratio of approx. 2-fold at 37 degrees C accounts for the observed effects. We conclude that more complex mechanisms involving consideration of modification of the reactivity of microtubule ENDs by GDP are not required to explain these results. This finding has important implications for current models of GDP-induced microtubule disassembly.  相似文献   

18.
A quantitative analysis of microtubule elongation   总被引:15,自引:9,他引:6       下载免费PDF全文
Methods have been developed for differentially inhibiting microtubule nucleation and elongation in vitro. By use of polyanions, assembly- competent tubulin solutions of several milligrams/milliliter can be prepared which do not exhibit appreciable spontaneous assembly during the time-course of an experiment. Microtubule elongation can be initiated by the addition of known numbers of microtubule fragments. A detailed analysis of the resulting process demonstrates that: (a) rings are not obligatory intermediates in the nucleation sequence, and neither rings nor protofilament sheets are obligatory intermediates in the elongation reaction. (b) The end of an elongating microtubule often has a short region of open protofilament sheet or "C-microtubule" similar to that observed in vivo. (c) The development of turbidity follows a simple exponential approach to an equilibrium value. (d) The final equilibrium values are independent of the number of added nucleating fragments, while the initial growth rates and half-times to reach equilibrium are dependent on the number of added nuclei. (e) The final lengths of the microtubules at equilibrium are inversely proportional to the number of added fragments. (f) The equilibrium constants are independent of microtubule length. (g) The number of assembly and disassembly sites per microtubule is not a function of microtubule length. (h) The forward rate constants, the final polymer concentrations, and growth rates of microtubules are dependent upon the concentration of polyanion present. These results are strongly supportive of the idea that microtubule assembly is a "condensation- polymerization" and provide basic information on the kinetics and length distributions of the elongation in vitro.  相似文献   

19.
Chicken erythrocyte tubulin containing a unique beta tubulin variant polymerizes with greater efficiency (lower critical concentration) but at a slower rate than chicken brain tubulin. In a previous study we demonstrated that the low net rate of assembly is partly due to the presence of large oligomers and rings which reduce the initial rate of subunit elongation on microtubule seeds (Murphy, D.B., and Wallis, K.T. (1985) J. Biol. Chem. 260, 12293-12301). In this study we show that erythrocyte tubulin oligomers also retard the rate of microtubule nucleation and the net rate of self-assembly. The inhibitory effect is most likely to be due to the increased stability of erythrocyte tubulin oligomers, including a novel polymer of coiled rings that forms during the rapid phase of microtubule polymerization. The slow rate of dissociation of rings and coils into dimers and small oligomers appears to limit both the nucleation and elongation steps in the self-assembly of erythrocyte microtubules.  相似文献   

20.
Microtubule assembly from purified tubulin preparations involves both microtubule nucleation and elongation. Whereas elongation is well documented, microtubule nucleation remains poorly understood because of difficulties in isolating molecular intermediates between tubulin dimers and microtubules. Based on kinetic studies, we have previously proposed that the basic building blocks of microtubule nuclei are persistent tubulin oligomers, present at the onset of tubulin assembly. Here we have tested this model directly by isolating nucleation-competent cross-linked tubulin oligomers. We show that such oligomers are composed of 10-15 laterally associated tubulin dimers. In the presence of added free tubulin dimers, several oligomers combine to form microtubule nuclei competent for elongation. We provide evidence that these nuclei have heterogeneous structures, indicating unexpected flexibility in nucleation pathways. Our results suggest that microtubule nucleation in purified tubulin solution is mechanistically similar to that templated by gamma-tubulin ring complexes with the exception that in the absence of gamma-tubulin complexes the production of productive microtubule seeds from tubulin oligomers involves trial and error and a selection process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号