首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Process Biochemistry》1999,34(3):249-256
This work studies the surface interaction between Thiobacillus ferrooxidans and Thiobacillus thiooxidans with crystalline and plastic elemental sulphur. The interaction mechanisms were analysed by fractal geometry which describes textural modifications of the substrate caused by bacterial action. The results demonstrated that the bacteria are able to produce two different effects depending on the substrates. Only surface smoothing (decrease on fractal dimension values) was detected on crystalline sulphur (this effect being stronger with T. ferrooxidans than with T. thiooxidans), but, perforation of the bulk was also observed in plastic sulphur  相似文献   

2.
Bacterial leaching of a sulfide ore containing pyrite, chalcopyrite, and sphalerite was studied in shake flask experiments using Thiobacillus ferrooxidans and Thiobacillus thiooxidans strains isolated from mine sites. The Fe(2+)grown T. ferrooxidans isolates solubilized sphalerite preferentially over chalcopyrite leaching 7-10% Cu, 68-76% Zn, and 10-22% Fe from the ore in 18 days. The sulfur grown T. thiooxidans isolates leached Zn much more slowly and very little Fe, with a Cu-Zn extraction ratio twice the value obtained with T. ferrooxidans. The ore adapted T. ferrooxidans started solubilizing Cu and Zn without a lag period. The ore-adapted T. thiooxidans extracted Cu as well as T. ferrooxidans, but the extraction of Zn or Fe was still much slower in the low-phosphate medium, while in the high-phosphate medium it approached the value obtained with T. ferrooxidans. A high Cu-Zn extraction ratio of 0.34 was obtained with T. thiooxidans in the low phosphate medium. In the mixed-culture experiments with T. ferrooxidans and T. thiooxidans, the culture behaved as T. thiooxidans in the low-phosphate medium with a higher Cu-Zn extraction ratio and as T. ferrooxidans in the high-phosphate medium with a lower Cu-Zn extraction ratio. It is concluded that T. ferrooxidans and T. thiooxidans solubilize sulfide minerals by different mechanisms.  相似文献   

3.
Considerably larger quantities of cyanide are required to solubilize gold following the bio-oxidation of gold-bearing ores compared with oxidation by physical-chemical processes. A possible cause of this excessive cyanide consumption is the presence of the enzyme rhodanese. Rhodanese activities were determined for the bacteria most commonly encountered in bio-oxidation tanks. Activities of between 6.4 and 8.2 micromol SCN min(-1) mg protein(-1) were obtained for crude enzyme extracts of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Thiobacillus caldus, but no rhodanese activity was detected in Leptospirillum ferrooxidans. Rhodanese activities 2-2.5-fold higher were found in the total mixed cell mass from a bio-oxidation plant. T. ferrooxidans synthesized rhodanese irrespective of whether it was grown on iron or sulphur. With a PCR-based detection technique, only L. ferrooxidans and T. caldus cells were detected in the bio-oxidation tanks. As no rhodanese activity was associated with L. ferrooxidans, it was concluded that T. caldus was responsible for all of the rhodanese activity. Production of rhodanese by T. caldus in batch culture was growth phase-dependent and highest during early stationary phase. Although the sulphur-oxidizing bacteria were clearly able to convert cyanide to thiocyanate, it is unlikely that this rhodanese activity is responsible for the excessive cyanide wastage at the high pH values associated with the gold solubilization process.  相似文献   

4.
The contamination of soil and wastewaters with Cr(VI) is a major problem. It has been suggested that microbial methods for Cr(VI) reduction are better than chemical methods, as they do not add other ions or toxic chemicals to the environment. In this study an aerobic reduction of Cr(VI) to Cr(III) by employing mixed Pseudomonas cultures isolated from a marshy land has been reported. The role of chromium concentration, temperature, pH and additives on the microbial reduction of Cr(VI) has been investigated. NADH was found to enhance the rate of reduction of Cr(VI). Complete reduction of chromium(VI) has been possible even at chromium(VI) concentrations of 300 ppm. Ions like SO(4)(2-) and poly-phenols inhibited the metabolic activity relating to Cr(VI) reduction. Under optimal conditions 100 mg/L of Cr(VI) was completely reduced within 180 min.  相似文献   

5.
The capacity of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans to reduce different concentrations of hexavalent chromium in shake flask cultures has been investigated. A. ferrooxidans reduces 100% of chromium (VI) at concentrations of 1, 2.5 and 5 ppm, but in the presence of 10 ppm only 42.9% of chromium (VI) was reduced after 11 days of incubation. A. thiooxidans showed a lower capacity to reduce this ion and total reduction of chromium (VI) was only obtained for concentrations of 1 and 2.5 ppm, whereas 64.7% and 30.5% was reached for 5 and 10 ppm, respectively, after 11 days. A continuous flow mode system was subsequently investigated, in which A. thiooxidans was immobilized on elemental sulphur and the acidic medium obtained was employed to solubilize chromium (III) and to reduce chromium (VI) present in a real electroplating waste [30% of chromium (III) and 0.1% of chromium (VI)]. The system enabled the reduction of 92.7% of hexavalent chromium and represents a promising way to treat this type of waste in the industry.  相似文献   

6.
Biogeochemical cycling of iron and sulphur in leaching environments   总被引:2,自引:0,他引:2  
Abstract: Bacterial dissimilatory reduction of iron and sulphur in extremely acidic environments is described. Evidence for reduction at two disused mine sites is presented, within stratified 'acid streamers' growths and in sediments from an acid mine drainage stream. A high proportion (approx. 40%) of mesophilic heterotrophic acidophiles were found to be capable of reducing ferric iron (soluble and insoluble forms) under microaerophilic and anoxic conditions. Mixed cultures of Thiobacillus ferrooxidans and Acidiphilium -like isolate SJH displayed cycling of iron in shake flask and fermenter cultures. Oxido-reduction of iron in mixed cultures was determined by oxygen concentration and availability of organic substrates. Some moderately thermophilic iron-oxidis- ing bacteria were also shown to be capable of reducing ferric iron under conditions of limiting oxygen when grown in glycerol/yeast extract or elemental sulphur media. Cycling of iron was observed in pure cultures of these acidophiles. Sulphate-reducing bacteria isolated from acid streamers could be grown in acidified glycerol/yeast extract media (as low as pH 2.9), but not in media used conventionally for their laboratory culture. An endospore-forming, non-motile rod resembling Desulfotomaculum has been isolated. This bacterium has a wide pH spectrum, and appears to be acid-tolerant rather than acidophilic.  相似文献   

7.
H Shen  Y T Wang 《Applied microbiology》1993,59(11):3771-3777
Chromium reduction by Escherichia coli ATCC 33456 quantitatively transferred hexavalent chromium, Cr(VI), to trivalent chromium, Cr(III). The reduced chromium was predominantly present in the external medium. Supernatant fluids of cell extract, obtained by centrifugation at 12,000 and 150,000 x g, showed almost the same Cr(VI) reduction activity, indicating that Cr(VI) reduction by E. coli ATCC 33456 was a largely soluble reductase activity. In studies with respiratory inhibitors, no inhibitory effects on aerobic and anaerobic Cr(VI) reduction were demonstrated by addition of cyanide, azide, and rotenone into both intact cell cultures and supernatant fluids of E. coli ATCC 33456. Although cytochromes b and d were identified in the membrane fraction of cell extracts, Cr(VI) was not reduced by the membrane fraction alone. The cytochrome difference spectra analysis also indicated that these cytochromes of the respiratory chain require the presence of the soluble Cr(VI) reductase to mediate electron transport to Cr(VI). Stimulation of Cr(VI) reduction by an uncoupler, 2,4-dinitrophenol, indicated that the respiratory-chain-linked electron transport to Cr(VI) was limited by the rate of dissipation of the proton motive force.  相似文献   

8.
A locally isolated gram negative strain of Brucella sp., identified by biochemical methods and 16SrRNA analysis, reduced chromate to 100%, 94.1%, 93.2%, 66.9% and 41.6% at concentrations of 50, 100, 150, 200 and 300mgl(-1), respectively at pH 7 and temperature 37 degrees C. Increasing concentrations of Cr(VI) in the medium lowered the growth rate but could not be directly correlated with the amount of Cr(VI) reduced. The strain also exhibited multiple heavy metal (Ni,Zn,Hg,Pb,Co) tolerance and resistance to various antibiotics. Assay with crude cell-free extracts demonstrated that the hexavalent chromium reduction was mainly associated with the soluble fraction of the cell. High Cr(VI) concentration resistance and high Cr(VI) reducing ability of the strain make it a suitable candidate for bioremediation.  相似文献   

9.
Batch and continuous cultures of Pseudomonas fluorescens LB300 were shown to reduce hexavalent chromium, Cr(VI), aerobically at neutral pH (pH 7.0) with citrate as carbon and energy source. The product of Cr(VI) reduction was previously shown and confirmed in this work to be trivalent chromium, Cr(III), by quantitative reoxidation to Cr(VI) with KMnO4. In separate batch cultures (100 ml) containing initial Cr(VI) concentrations of 314.0, 200.0 and 112.5 mg Cr(VI) L–1, the organism reduced 61%, 69% and 99.7% of the Cr(VI), respectively. In a comparison of stationary and shaken cultures, the organism reduced 81% of Cr(VI) in 147 h in stationary culture and 80% in 122 h in shaken culture. In continuous culture, the organism lowered the influent Cr(VI) concentration by 28% with an 11.7-h residence time, by 39% with a 20.8-h residence time and by 57% with a 38.5-h residence time. A mass balance of chromium in a continuous culture at steady state showed an insignificant uptake of chromium by cells of P. fluorescens LB300. Correspondence to: P. C. DeLeo  相似文献   

10.
Enrichment mixed cultures tolerating relatively high concentrations of chromium and salt ions were isolated and their bioaccumulation properties improved by adaptation. Mixed cultures were enriched in Nutrient Broth media containing 25-300 mg l(-1) Cr(VI) and 0%, 2%, 4%, 6% (w/v) NaCl. Bioaccumulation of Cr(VI) was studied in a batch system as a function of initial pH (7, 8 and 9), Cr(VI) and NaCl concentrations. Increasing NaCl and Cr(VI) concentrations led to significant decreases in percentage uptake and dried weight of mixed cultures but increased maximum specific chromium uptake. The maximum specific chromium uptake value at pH 8 was 58.9 mg g(-1) for 316.1 mg l(-1) Cr(VI) in the absence of NaCl, while at pH 9 it was 130.1 mg g(-1) in media including 194.5 mg l(-1) Cr(VI) and 2% NaCl concentrations. At 4% NaCl, the maximum Cr(VI) uptake of 127.0 mg g(-1) for 221.1 mg l(-1) Cr(VI) occurred at pH 9, while at 6% NaCl the maximum Cr(VI) uptake of 114.9 mg g(-1) for 278.1 mg l(-1) Cr(VI) was found at pH 7.  相似文献   

11.
生物淋滤法去除污泥中的重金属   总被引:1,自引:1,他引:0  
本研究从剩余活性污泥中分离得到两株土著硫杆菌。对两株菌进行了分类鉴定。确立二者分别为嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans, A. f)和嗜酸性氧化硫硫杆菌(Acidithiobacillus thiooxidans, A. t)。将二者的单菌和混合菌分别接种于剩余活性污泥中, 进行了为期9 d的生物淋滤, 对淋滤过程中的pH变化、氧化还原电位(ORP)以及重金属含量进行了检测。结果表明, 生物淋滤9 d混合菌对于As、Cr、Cu、Ni和Zn的去除效果最好; 去除率分别达到了96.09%、93.47%、98.32%、97.88%和98.60%。对于Cd和Pb混合菌生物淋滤的去除率在第6天之后迅速下降, 但是A. t单菌淋滤保持较高的去除率。  相似文献   

12.
A range of autotrophic and heterotrophic enrichment cultures were established to determine the cultural bacterial diversity present in samples obtained from the acidic runoff of a chalcocite overburden heap and from laboratory-scale (1- to 4-liter) batch and continuous bioreactors which were being used for the commercial assessment of the bioleachability of zinc sulfide ore concentrates. Strains identified as Thiobacillus ferrooxidans, Thiobacillus thiooxidans, "Leptospirillum ferrooxidans," and Acidiphilium cryptum were isolated from both the natural site and the batch bioreactor, but only "L. ferrooxidans," a moderately thermophilic strain of T. thiooxidans, and a moderately thermophilic iron-oxidizing bacterium could be recovered from the continuous bioreactor running under steady-state conditions. Sequence analysis of the 16S rRNA genes of 33 representative strains revealed that all of the strains were closely related to strains which have been sequenced previously and also confirmed the phylogenetic diversity of bacteria present in bioleaching environments.  相似文献   

13.
A variety of microorganisms can exist in acid mine drainage (AMD) environments, although their contribution to AMD problems is unclear. Environmental strains of Thiobacillus ferrooxidans and Thiobacillus acidophilus were purified by repeated plating and single-colony isolation on iron salts and tetrathionate media, respectively. Thiobacillus thiooxidans was enriched on sulfur-containing media. For the isolation of Leptospirillum ferrooxidans, iron salts and pyrite media were inoculated with environmental samples. However, L. ferrooxidans was never recovered on solid media. Denatured chromosomal DNAs from type and (or) isolated strains of T. ferrooxidans, T. acidophilus, T. thiooxidans, and L. ferrooxidans were spotted on a master filter for their detection in a variety of samples by reverse sample genome probing (RSGP). Analysis of enrichments of environmental samples by RSGP indicated that ferrous sulfate medium enriched T. ferrooxidans strains, whereas all thiobacilli grew in sulfur medium, T. thiooxidans strains being dominant. Enrichment in glucose medium followed by transfer to tetrathionate medium resulted in the selection of T. acidophilus strains. DNA was also extracted directly (without enrichment) from cells recovered from AMD water or sediments, and was analyzed by RSGP to describe the communities present. Strains showing homology with T. ferrooxidans and T. acidophilus were found to be major community components. Strains showing homology with T. thiooxidans were a minor community component, whereas strains showing homology with L. ferrooxidans were not detected.  相似文献   

14.
Microbial reduction is a promising strategy for chromium remediation, but the effects of competing electron acceptors are still poorly understood. We investigated chromate (Cr(VI)) reduction in batch cultures of Shewanella oneidensis MR-1 under aerobic and denitrifying conditions and in the absence of an additional electron acceptor. Growth and Cr(VI) removal patterns suggested a cometabolic reduction; in the absence of nitrate or oxygen, MR-1 reduced Cr(VI), but without any increase in viable cell counts and rates gradually decreased when cells were respiked. Only a small fraction (1.6%) of the electrons from lactate were transferred to Cr(VI). The 48-h transformation capacity (Tc) was 0.78 mg (15 micromoles) Cr(VI) reduced. [mg protein](-1) for high levels of Cr(VI) added as a single spike. For low levels of Cr(VI) added sequentially, Tc increased to 3.33 mg (64 micromoles) Cr(VI) reduced. [mg protein](-1), indicating that it is limited by toxicity at higher concentrations. During denitrification and aerobic growth, MR-1 reduced Cr(VI), with much faster rates under denitrifying conditions. Cr(VI) had no effect on nitrate reduction at 6 microM, was strongly inhibitory at 45 microM, and stopped nitrate reduction above 200 microM. Cr(VI) had no effect on aerobic growth at 60 microM, but severely inhibited growth above 150 microM. A factor that likely plays a role in Cr(VI) toxicity is intracellular reduced chromium. Transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) of denitrifying cells exposed to Cr(VI) showed reduced chromium precipitates both extracellularly on the cell surface and, for the first time, as electron-dense round globules inside cells.  相似文献   

15.
A bacterium (strain TJ330) capable of using carbon disulphide (CS2) as its sole energy source in an acidic environment was isolated from a peat biofilter used in experiments to remove CS2 and hydrogen sulphide (H2S) from air. Its physiology and taxonomy are described here. The strain oxidized CS2, H2S and elemental sulphur to sulphate chemolithotrophically. The rate of sulphate production was highest at pH 2. The maximum growth rate constant (micromax) using CS2 as a substrate was 3.9 x 10(-2) h(-1) (generation time 18 h) and the Monod constant (Ks) was 0.97-2.6 micromol l(-1) CS2 (74-198 microg l(-1)), corresponding to an equilibrium with 15-40 ppm CS2 in the headspace. The optimum growth temperature using elemental sulphur as a substrate was 28 degrees C. The strain bears morphological and physiological similarities to Thiobacillus thiooxidans, but the latter is incapable of oxidizing CS2. The strain TJ330 (DSM 8985) showed only 44.2 + 11.8% DNA homology with the type strain T. thiooxidans ATCC 19377, while its homology with T. ferrooxidans ATCC 23270 was 17.1 + 3.4%. The strain TJ 330 represents a high-affinity bacterium which can effectively remove low CS2 concentrations in an acid environment. These properties can be utilized in biotechnological purification applications.  相似文献   

16.
Chromium(VI) was reduced by Thiobacillus ferrooxidans grown with elemental sulphur as the sole energy source. Chromium(VI) reduction (as high as 2000 M), was due to the presence of sulphite and thiosulphate, among others with high reducing power which was generated during the sulphur oxidation by the bacteria. Therefore, Thiobacillus ferrooxidans could be used to treat chromium(VI)-containing industrial effluents.  相似文献   

17.
The potential of a Cu/Ni mining slag to act as a substrate for the growth of the bacteria Thiobacillus ferrooxidans, Thiobacillus thiooxidants, and Thiobacillus thioparus was examined. As well, slag and seepage samples were screened for the presence of the Thiobacillus species. For the 28 samples employed in the environmental recovery studies, T. ferrooxidans was recovered in 25 samples, T. thiooxidans in 19 samples, and T. thioparus in 27 samples. For T. ferrooxidans, the development of a colour change in the medium corresponded with the presence of motile bacilli as detected microscopically. For T. thiooxidans and T. thioparus, a decrease in culture pH of greater than 0.2 units usually corresponded with the presence of motile bacilli. The potential for growth on slag was determined by adding slag samples to media (devoid of an electron donor) appropriate for the growth of the three Thiobacillus species. All pulverized slag samples supported the growth of the three species.  相似文献   

18.
Extensive bacterial growth was observed when copper sulfide ores were leached with 0.6 N sulfuric acid. The bacterial population developed in this condition was examined by characterization of the spacer regions between the 16S and 23S rRNA genetic loci obtained after PCR amplification of the DNA extracted from the leached ore. The spacers observed had the sizes found in strains of "Leptospirillum ferrooxidans" and Thiobacillus thiooxidans, except for a larger one, approximately 560 bp long, that was not observed in any of the strains examined, including those of Thiobacillus ferrooxidans. The bacteria with this last spacer were selected after culturing in mineral and elemental sulfur media containing 0.7 N sulfuric acid. The spacer and the 16S ribosomal DNA of this isolate were sequenced and compared with those in species commonly found in bioleaching processes. Though the nucleotide sequence of the spacer showed an extensive heterologous region with T. thiooxidans, the sequence of its 16S rDNA gene indicated a close relationship (99.85%) with this species. These results indicate that a population comprised of bacterial strains closely related to T. thiooxidans and of another strain, possibly related to "L. ferrooxidans," can develop during leaching at high sulfuric acid concentration. Iron oxidation in this condition is attributable to "L. ferrooxidans" and not T. ferrooxidans, based on the presence of spacers with the "L. ferrooxidans" size range and the absence of spacers characteristic of T. ferrooxidans.  相似文献   

19.
Hexavalent chromium reduction and accumulation by Acinetobacter AB1 isolated from Fez tanneries effluents were tested. The effects of some environmental factors such as pH, temperature, and exposure time on Cr(VI) reduction and resistance were investigated. We found that this strain was able to resist to concentrations as high as 400 mg/l of Cr(VI). Moreover, pH 10 and the temperature 30°C constitute favourable conditions to the growth and reduction of Acinetobacter AB1. Complete reduction of Cr(VI) was observed at low initial Cr(VI) concentrations of 50 mg/l after 72 h of incubation. Furthermore, Transmission electron microscope (TEM) analysis showed morphological changes in AB1 strain due 48H exposure to 100 mg/l chromate concentration and revealed circular electron dense (dark black point) inclusion within the cell cytoplasm suggesting chromium deposition within the cells.  相似文献   

20.
Microbial enzymatic reduction of a toxic form of chromium [Cr(VI)] has been considered as an effective method for bioremediation of this metal. This study reports on the in vitro reduction of Cr(VI) using cell-free extracts from a Cr(VI) reducing Bacillus firmus KUCr1 strain. Chromium reductase was found to be constitutive and its activity was observed both in soluble cell fractions (S12 and S150 and membrane cell fraction (P150). The reductase activity of S12 fraction was found to be optimal at 40 microM Cr(VI) with enzyme concentration equivalent to 0.493 mg protein/ml. Enzyme activity was dependent on NADH or NADPH as electron donor; optimal temperature and pH for better enzyme activity were 70 degrees C and 5.6, respectively. The Km value of the reductase was 58.33 microM chromate having a V(max) of 11.42 microM/min/mg protein. The metabolic inhibitor like sodium azide inhibited reductase activity of membrane fraction of the cell-free extract. Metal ions like Cu2+, Co2+, Ni2+ and As3+ stimulated the enzyme but others, such as Ag+, Hg2+, Zn2+, Mn2+, Cd2+ and Pb2+, inhibited Cr(VI) reductase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号