首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of the study of the Upper Great Lakes Connecting Channels sponsored by the U.S. Environmental Protection Agency, the U.S. Fish and Wildlife Service examined the occurrence of Hexagenia nymphs and visible oil in sediments at 250 stations throughout the St. Marys River and the St. Clair-Detroit River system from May 14 to June 11, 1985. The mean density of Hexagenia nymphs per square meter averaged 194 for the total study area, 224 in the St. Marys River, 117 in the St. Clair River, 279 in Lake St. Clair, and 94 in the Detroit River. The maximum density of nymphs ranged from 1,081 to 1,164 m-2 in the three rivers and was 3,099 m-2 in Lake St. Clair. A comparison of nymph density at 46 stations where oil was observed in sediments physically suitable for nymphs showed that densities were lower in oiled sediments (61 m-2) than in sediments without oil (224 m-2). Densities of nymphs were relatively high at only four stations where oil was observed in sediments. In general, oiled sediments and low densities of nymphs occurred together downstream from industrial and municipal discharges.Contribution number 736 of the National Fisheries Research Center-Great Lakes, U.S. Fish and Wildlife Service, 1451 Green Road, Ann Arbor, MI 48105.  相似文献   

2.
Pisidium moitessierianum Paladilhe, 1866, a small pea clam native to Europe, was identified for the first time from the lower Great Lakes basin based on an examination of historical collections of Pisidium performed by V. Sterki in 1894 and 1903 and new material collected during 1997 and 1998. During recent surveys, P. moitessierianum individuals were found in the St. Clair River delta, Lake St. Clair and western Lake Erie, but were not detected in the Detroit River or western Lake Ontario. Pisidium moitessierianum was collected on sand, silty sand and mud substrata from water depths ranging between 0.6 and 5.4 m. Populations occurred at an average density of 51 ind. m–2 and included juveniles and adults. All individuals were less than 2.0 mm in length. We examined the structure of the umbos and hinge, surface sculpture and shape of the shell, and the anatomy of gills, mantle and nephridia in populations from the lower Great Lakes and Ukrainian inland basins (Dnieper River and Lake Beloye). The results indicated that the Great Lakes' pea clams match European specimens of P. moitessierianum in these conchological and anatomical characteristics. As with other nonindigenous sphaeriids in the Great Lakes, P. moitessierianum was likely introduced through shipping activities into the Great Lakes, possibly as early as the 1890s.  相似文献   

3.
Burrowing-mayfly nymphs such as Hexagenia spp. have been used extensively in North America and Europe as a biomonitoring tool to indicate mesotrophic water quality, yet infestation by associated parasites has not been well documented. We performed laboratory analysis of archived samples of Hexagenia spp. nymphs collected in 1985 and 1986 to provide base-line data on the distribution (1985) and seasonal infestation (1986) of the trematode parasite Crepidostomum spp. in Hexagenia spp. nymphs in connecting rivers between Lakes Superior and Erie of the Laurentian Great Lakes. In May and June 1985, frequency of occurrence of metacercariae was widely distributed throughout the connecting rivers (63% of 203 stations with nymphs), except in areas where nymph densities were relatively low (i.e.,≤69 nymphs/m2). Distribution was probably underestimated in the present study because of low probability (mean = 31%, range = 0–57%) of detecting infestation in a small number of collected nymphs ( ≤10) at nymph densities ≤69/m2. In 1986, seasonal infestation between April and October occurred in 3.3% (627) of 18696 nymphs. Overall prevalence, mean intensity, and mean abundance of parasites at one station in the St. Marys River indicate parasite transmission occurred between June and September. This period of transmission is dependent on the life-cycle of the parasite. In addition, the life-cycle of Hexagenia spp. determines which annual cohort of nymphs is infested and therefore, the duration of infestation. Although, no impacts of infestation on Hexagenia spp. nymphs were observed in the present study, infestation intensities were high enough (≥25 metacercariae per nymph) at one station in the St. Marys River to potentially cause tissue damage in a high proportion (53%) of infested nymphs.  相似文献   

4.
In 1985, sampling at 250 stations throughout the St. Marys, St. Clair, and Detroit rivers and Lake St. Clair — the connecting channels of the upper Great Lakes — revealed widespread metal contamination of the sediments. Concentrations of cadmium, chromium, copper, lead, mercury, nickel, and zinc each exceeded U.S. Environmental Protection Agency sediment pollution guidelines at one or more stations throughout the study area. Sediments were polluted more frequently by copper, nickel, zinc, and lead than by cadmium, chromium, or mercury. Sediments with the highest concentrations of metals were found (in descending order) in the Detroit River, the St. Marys River, the St. Clair River, and Lake St. Clair. Although metal contamination of sediments was most common and sediment concentrations of metals were generally highest near industrial areas, substantial contamination of sediments by metals was present in sediment deposition areas up to 60 km from any known source of pollution.Contribution 735 of the National Fisheries Research Center-Great Lakes, U.S. Fish and Wildlife Service, 1451 Green Road, Ann Arbor, MI 48105.  相似文献   

5.
Laurentian Great Lakes Lake Sturgeon (Acipenser fulvescens) are hosts to lamprey species, including native Silver Lamprey (Ichthyomyzon unicuspis) and invasive Sea Lamprey (Petromyzon marinus). Silver Lamprey coevolved with Lake Sturgeon and cause negligible mortality, but Sea Lamprey can negatively affect Lake Sturgeon populations. Sea Lamprey abundance in Lake Erie has been above targets set by resource managers, with the St. Clair – Detroit River System (SCDRS) suspected as a source of Sea Lamprey production into Lake Erie. This study summarizes lamprey marking on Lake Sturgeon captured during agency assessment surveys in the SCDRS since 1996 and provides insight on the potential for Sea Lamprey to negatively affect Lake Sturgeon in the SCDRS. Lamprey marks (any lamprey species) were noted on 48.2% of Lake Sturgeon (2.5 marks/fish) and 3.3% of Lake Sturgeon assumed to be susceptible to mortality by Sea Lamprey (<760 mm TL; 0.06 marks/fish). Silver Lamprey were the only lamprey species found attached to Lake Sturgeon and there was no difference between oral disc diameters of Silver Lamprey and marks measured on Lake Sturgeon in Lake St. Clair and the lower St. Clair River (p = .45). Based on logistic regression, probability of at least one lamprey mark increased with Lake Sturgeon total length and was highest in Lake St. Clair. The probability of observing at least one lamprey mark on a 760 mm Lake Sturgeon was 8.1% or less for each sampling location in the SCDRS aside from Lake St. Clair (28.1%). Results suggest that parasitism of Lake Sturgeon by Sea Lamprey in the SCDRS is rare, particularly for Lake Sturgeon <760 mm TL. Low incidence of lamprey marks on Lake Sturgeon assumed to be susceptible to mortality from Sea Lamprey parasitism and zero occurrence of Sea Lamprey being observed attached to a Lake Sturgeon suggest Sea Lamprey at their current abundance likely have little effect on the Lake Sturgeon population in the SCDRS. Caution should be taken when using mark size to assign marks to lamprey species as there is substantial overlap among species oral disc diameters, potentially inflating the perceived impact of Sea Lamprey on Lake Sturgeon in areas with native lampreys.  相似文献   

6.
The Eurasian freshwater tubenose goby Proterorhinus semilunaris (formerly Proterorhinus marmoratus) invaded the Laurentian Great Lakes in the 1990s, presumably via ballast water from transoceanic cargo ships. Tubenose gobies spread throughout Lake St. Clair, its tributaries, and the Detroit River system, and also are present in the Duluth-Superior harbor of Lake Superior. Using seines and bottom trawls, we collected 113 tubenose gobies between July 2007 and August 2009 at several locations in western Lake Erie. The number and range of sizes of specimens collected suggest that that tubenose gobies have become established and self-sustaining in the western basin of Lake Erie. Tubenose gobies reached maximum densities in sheltered areas with abundant macrophyte growth, which also is their common habitat in native northern Black Sea populations. The diet of tubenose gobies was almost exclusively invertebrates, suggesting dietary overlap with other benthic fishes, such as darters (Etheostoma spp. and Percina sp.), madtoms (Noturus spp.), and sculpins (Cottus spp.). A single mitochondrial DNA haplotype was identified, which is the most common haplotype found in the original colonization area in the Lake St. Clair region, suggesting a founder effect. Tubenose gobies, like round gobies Neogobius melanostomus, have early life stages that drift owing to vertical migration, which probably allowed them to spread from areas of colonization. The Lake St. Clair-Lake Erie corridor appears to have served as an avenue for them to spread to the western basin of Lake Erie, and abundance of shallow macrophyte-rich habitats may be a key factor facilitating their further expansion within Lake Erie and the remainder of the Laurentian Great Lakes.  相似文献   

7.
Samples of fish larvae collected in 1983, 1984, and 1986 in two distributary channels of the St. Clair River delta were characteristically rich in species (a total of 48) and low in abundance (generally less than a mean of 5 100 m-3 of water filtered). Most species were residents of the delta; others apparently hatched in tributaries of the St. Clair River or in southern Lake Huron, and drifted into the delta. Highest species diversity was nearshore, although largest catches of larvae were of rainbow smelt, gizzard shad, and alewife, which were found mainly in mid-channel. Cyprinids (17 species) were better represented than other families.  相似文献   

8.
SYNOPSIS. North America's Great Lakes have recently been invadedby two genetically and morphologically distinct species of Dreissena.The zebra mussel (Dreissena polymorpha) became established inLake St. Clair of the Laurentian Great Lakes in 1986 and spreadthroughout eastern North America. The second dreissenid, termedthe quagga mussel, has been identified as Dreissena bugensisAndrusov, 1897. The quagga occurs in the Dnieper River drainageof Ukraine and now in the lower Great Lakes of North America.In the Dnieper River, populations of D. polymorpha have beenlargely replaced by D. bugensis; anecdotal evidence indicatesthat similar trends may be occurring in the lower LaurentianGreat Lakes. Dreissena bugensis occurs as deep as 130 m in theGreat Lakes, but in Ukraine is known from only 0–28 m.Dreissena bugensis is more abundant than D. polymorpha in deeperwaters in Dneiper River reservoirs. The conclusion that NorthAmerican quagga mussels have a lower thermal maximum than zebramussels is not supported by observations made of populationsin Ukraine. In the Dnieper River drainage, quagga mussels areless tolerant of salinity than zebra mussels, yet both dreissenidshave acclimated to salinities higher than North American populations;eventual colonization into estuarine and coastal areas of NorthAmerica cannot be ignored.  相似文献   

9.
The biology of Corbicula fluminea, the Asiatic clam, in the Vermilion River, Louisiana, as affected by sediment, dissolved oxygen (DO) levels, and sewage treatment plant (STP) effluents was investigated. A point source of high DO water to the Vermilion River established a gradient of DO that decreased as the river moved towards the Gulf of Mexico. Lowering DO levels were exacerbated by municipal sewage treatment plant discharges in the 20 km reach studied. Low dissolved oxygen was associated with reduced Corbicula density in the river and 30-day in-stream growth studies (weight and length) demonstrated that low DO inhibited growth. Generally, if DO was < 1.0 mg l–1 in sediment pore water and/or < 3.0 mg l–1 at the sediment-water interface, growth was significantly impaired (p < 0.05). Corbicula experienced substantial mortality near the STP discharges (up to 70% in 30 days) and laboratory toxicity tests with Ceriodaphnia dubia, a sensitive cladoceran, also strongly suggested discharges were chronically toxic at 6.25–25.0% effluent. Respiration experiments along with environmental measurements of DO, temperature, and STP discharge chemistry support a hypothesis that clam populations are adversely affected by the suite of environmental conditions present in the Vermilion River. Further, growth studies were consistent with observed population densities in situ.  相似文献   

10.
After an absence of 40 years, mayfly nymphs of the genus Hexagenia were found in sediments of western Lake Erie of the Laurentian Great Lakes in 1993 and, by 1997, were abundant enough to meet a mayfly‐density management goal (ca. 350 nymphs m—2) based on pollution‐abatement programs. We sampled nymphs in western Lake Erie and Lake St. Clair, located upstream of western Lake Erie, to determine the importance of seasonal abundance and life‐history characteristics of nymphs (e.g., emergence and recruitment) on density estimates relative to the mayfly‐density management goal. Two types of density patterns were observed: (1) densities were relatively high in spring and gradually decreased through late summer (observed in Lake Erie and Lake St. Clair in 1997 and Lake St. Clair in 1999) and (2) densities were relatively high in spring, gradually decreased to mid summer, abruptly decreased in mid summer, and then increased between summer and late fall (Lake Erie and Lake St. Clair in 1998 and Lake Erie in 1999). Length‐frequency distributions of nymphs and observations of adults indicate that the primary cause for the two density patterns was attributed to failed (first pattern) and successful (second pattern) reproduction and emergence of nymphs into adults in mid summer. Gradual declines in densities were attributed to mortality of nymphs. Our results indicate that caution should be used when evaluating progress of pollution‐abatement programs based on mayfly densities because recruitment success is variable both between and within years. Additionally, the interpretation of progress toward management goals, relative to the restoration of Hexagenia populations in the Great Lakes and possibly other water bodies throughout the world, is influenced by the number of years in which consequtive collections are made.  相似文献   

11.
The relationship between fecundity and adult body weight in Homeotherms   总被引:3,自引:0,他引:3  
Summary Bythotrephes cederstroemii Schoedler, a predatory freshwater zooplankter (Crustacea: Cladocera), was first found in the Laurentian Great Lakes in December 1984. The first individuals were from Lake Huron, followed in 1985 with records from Lakes Erie and Ontario. By late August, 1986 the species had spread to southern Lake Michigan (43°N). Bythotrephes has not previously been reported from North America, but has been restricted to a northern and central Palearctic distribution. Its dramatic and widespread rise in abundance in Lake Michigan was greatest in offshore regions. Bythotrephes appears to be invading aggressively, but avoiding habitats presently occupied by glacio-marine relict species that became established in deep oligotrophic North American lakes after the Wisconsin glaciation. Because it is a voracious predator its invasion may lead to alterations in the native zooplankton fauna of the Great Lakes. It offers the chance to study how invading plankton species join an existing community. Judging from its persistence and success in deep European lakes, Bythotrephes may now become a permanent member of zooplankton communities in the Nearctic.  相似文献   

12.
Fish larvae were sampled in 1986 in the St. Clair River, and adjacent waters. Species richness (9 taxa as larvae; 4 others as juveniles) and abundance was lowest in the river, where many larvae (e.g., burbot, rainbow smelt, and yellow perch) were in transit from Lake Huron. The most abundant, and localized, species was gizzard shad, which reached a peak mean density of 4600 larvae 100 m-3 in an agricultural canal. Adjacent waters contribute greatly to the fish communities of the river and adjoining Lakes Huron and Erie, especially in terms of the number and quantity of forage species.  相似文献   

13.
G.L. Mackie 《Hydrobiologia》1991,219(1):251-268
The zebra mussel, Dreissena polymorpha, is a new exotic species that was introduced into the Great Lakes as early as the fall of 1985. It differs markedly from native species of bivalves in its: (i) shell form; (ii) mode of life; (iii) reproductive potential; (iv) larval life cycle; (v) population dynamics; (vi) distribution, (vii) dispersal mechanisms; (viii) physiology; (ix) potential impact on the ecosystem; and (x) impact on society and the economy. In body form, it has an anterior umbone, a flat ventral surface with permanent aperature for the byssal apparatus and a shape that together make the animal well adapted for life on a hard surface. The shell has a zebra-stripe pattern, a heteromyarian muscle condition and lacks hinge teeth which make it easily identifiable from native bivalves. The zebra mussel is strongly byssate and has an epifaunal mode of life not seen in native bivalves. The species is dioecious and has external fertilization, the eggs developing into pelagic veligers which remains planktonic for approximately 4 weeks. Gametogenesis begins in late winter to early spring, veligers appear in the water column in late May to early June and disappear in mid to late October in Lake St. Clair. Adults live for about 2 years and have very rapid growth rates. Maximum shell lengths average 2.3 to 2.5 cm. Standing crops as high as 200 000 m-2 are present in the 1-m depths of the Ontario shores. Infestations may be interfering with the normal metabolism of native unionid clams and there is potential of the unionid clam populations being reduced or even eliminated from Lake St. Clair.  相似文献   

14.
1. We analysed changes in energy reserves (lipid and glycogen) and length–weight relationships of burrowing mayflies (Hexagenia spp.) in 1997–99 to compare an established population in Lake St Clair with a recovering population in western Lake Erie of the Laurentian Great Lakes. In addition, we measured changes in water temperature and potential food in both water columns and sediments. 2. Although overall mean values of lipid and glycogen levels of Hexagenia nymphs from Lake St Clair and western Lake Erie were not significantly different, there were differences in seasonal patterns between the two lakes. In Lake St Clair, levels were highest in early spring, declined throughout the year, and reached their lowest levels in fall during all 3 years of study. In contrast, levels in western Lake Erie were lower in spring, increased to a maximum in summer, then declined in fall. Seasonal patterns in length–weight relationships were similar to those for lipid and glycogen. 3. Total lipid as a percentage of dry weight did not increase with developmental stage of nymphs until just prior to metamorphosis and emergence from water. However, the major reserve lipid, triacylglycerols, increased systematically with development stage. In the final stage of development, triacylglycerols declined, probably as a result of energy consumption and its conversion to other biochemical components for metamorphosis and reproduction. 4. Indicators of potential food (algal fluorescence in the water column and chlorophyll a and chlorophyll a/phaeophytin ratio in sediments) suggest that Hexagenia in Lake St Clair have a food source that is benthic based, especially in early spring, whereas in western Lake Erie nymphs have a food source that is water column based and settles to the lake bottom during late spring and summer.  相似文献   

15.
Several USA state, federal, and Canadian agencies study lake sturgeon (Acipenser fulvescens) within the St Clair River and Lake St Clair, collectively referred to hereafter as the St Clair River (SCR) system. Previously, there has been no set standard for determining condition for SCR system lake sturgeon. Condition measures the variation from the expected weight for length as an indicator of fatness, general well‐being, gonad development, etc. The aim of this project was to determine the length–weight relationship of lake sturgeon caught from the SCR system, from which a relative condition factor (Kn) equation could be derived. Total length (TL, mm) and weight (W, kg) were measured for 1074 lake sturgeon (101 males and 16 females were identifiable) collected by setline and bottom trawl from the SCR system in May–September, 1997–2002. Analysis of covariance found no difference in the length–weight relationship between sampling gear or sex. Least‐squares regression of log10W × log10TL produced the overall equation logW = 3.365logTL ? 9.320. Using the exponential form of the slope and y‐intercept, relative condition factor for lake sturgeon from the SCR system can be calculated as Kn = W/[(4.786 × 10?10)(TL3.365)]. Equations for males and females were also developed. Overall, body condition was significantly correlated with both age and girth; no significant difference in Kn by sex was found. In general, the SCR lake sturgeon population was near the upper ends of growth and condition ranges listed in the literature, comparable with those populations that are at similar latitudes. Although condition factors should be interpreted with caution, proper use of a standard equation provides a non‐lethal measure of overall fish health that can be used by biologists and managers in ongoing efforts to restore lake sturgeon throughout the Great Lakes.  相似文献   

16.
Lake St. Clair is the smallest lake in the Laurentian Great Lakes system. MODIS satellite imagery suggests that high algal biomass events have occurred annually along the southern shore during late summer. In this study, we evaluated these events and tested the hypothesis that summer bloom material derived from Lake St. Clair may enter Lake Erie via the Detroit River and represent an overlooked source of potentially toxic Microcystis biomass to the western basin of Lake Erie. We conducted a seasonally and spatially resolved study carried out in the summer of 2013. Our goals were to: 1) track the development of the 2013 summer south-east shore bloom 2) conduct a spatial survey to characterize the extent of toxicity, taxonomic diversity of the total phytoplankton population and the phylogenetic diversity of potential MC-producing cyanobacteria (Microcystis, Planktothrix and Anabaena) during a high biomass event, and 3) compare the strains of potential MC-producers in Lake St. Clair with strains from Lake Erie and Lake Ontario. Our results demonstrated a clear predominance of cyanobacteria during a late August bloom event, primarily dominated by Microcystis, which we traced along the Lake St. Clair coastline downstream to the Detroit River''s outflow at Lake Erie. Microcystin levels exceeded the Province of Ontario Drinking Water Quality Standard (1.5 µg L−1) for safe drinking water at most sites, reaching up to five times this level in some areas. Microcystis was the predominant microcystin producer, and all toxic Microcystis strains found in Lake St. Clair were genetically similar to toxic Microcystis strains found in lakes Erie and Ontario. These findings suggest extensive genetic connectivity among the three systems.  相似文献   

17.
R. M. Dermott 《Hydrobiologia》1991,219(1):171-185
The benthic community of the St. Clair River is impacted by the petrochemical complex near Sarnia, Ontario. Larvae of the common chironomid Procladius spp. and dominant Chironomini from various sections of the river were examined to determine if the incidence of morphological deformities in their mouth parts reflected the degree of chemical pollution. Procladius had a much greater (14%) incidence of deformed ligula downstream of the industrial section near Sarnia, than occurred in Lake St. Clair (3%), or at the mouth of Bear Creek, which drains agricultural land east of the St. Clair delta (7%). The incidence of deformed ligula at a control site in Lake Superior was 4 percent. The incidence of deformities in Procladius larvae was lower than that in Chironomus larvae from the same site, but greater than that in other chironomid genera.  相似文献   

18.
Loss of functional habitat in riverine systems is a global fisheries issue. Few studies, however, describe the decision‐making approach taken to abate loss of fish spawning habitat. Numerous habitat restoration efforts are underway and documentation of successful restoration techniques for spawning habitat of desirable fish species in large rivers connecting the Laurentian Great Lakes are reported here. In 2003, to compensate for the loss of fish spawning habitat in the St. Clair and Detroit Rivers that connect the Great Lakes Huron and Erie, an international partnership of state, federal, and academic scientists began restoring fish spawning habitat in both of these rivers. Using an adaptive management approach, we created 1,100 m2 of productive fish spawning habitat near Belle Isle in the Detroit River in 2004; 3,300 m2 of fish spawning habitat near Fighting Island in the Detroit River in 2008; and 4,000 m2 of fish spawning habitat in the Middle Channel of the St. Clair River in 2012. Here, we describe the adaptive‐feedback management approach that we used to guide our decision making during all phases of spawning habitat restoration, including problem identification, team building, hypothesis development, strategy development, prioritization of physical and biological imperatives, project implementation, habitat construction, monitoring of fish use of the constructed spawning habitats, and communication of research results. Numerous scientific and economic lessons learned from 10 years of planning, building, and assessing fish use of these three fish spawning habitat restoration projects are summarized in this article.  相似文献   

19.
Nitellopsis obtusa, a macroalga (Characeae) native to Europe and Asia, was found in U.S. waters of the St. Clair-Detroit River system in 1983, thus extending the range of this taxon into the Laurentian Great Lakes about 850 km from the St. Lawrence River where it was first discovered in North America in 1978. Its occurrence only in water frequented by commercial shipping vessels suggests that it is distributed via this mechanism. In the St. Clair-Detroit River system, N. obtusa was collected with a Ponar grab at four locations, and with a grapnel at one additional location. It was the ninth most frequently found macrophyte and it was most abundant at Belle Isle in the Detroit River, where the mean dry-weight biomass in Ponar samples was 0 g m-2 in June, 37 g m-2 in August, and 32 g m−2 in September. Maximum biomass of this taxon in one Ponar grab at this location was 289 g m-2 in September. The alga occurred primarily in water of relatively low current velocity (11.3 cm s−1) and in association with Vallisneria americana, Myriophyllum spicatum, Potamogeton richardsonii, Najas flexilis, and Elodea canadensis. Contribution 654, Great Lakes Fishery Laboratory, Ann Arbor, MI 48105, USA Contribution 654, Great Lakes Fishery Laboratory, Ann Arbor, MI 48105, USA  相似文献   

20.
Ballast water moved by transoceanic vessels has been recognized globally as a predominant vector for the introduction of aquatic nonindigenous species (NIS). In contrast, domestic ships operating within confined geographic areas have been viewed as low risk for invasions, and are exempt from regulation in consequence. We examined if the St. Lawrence River could serve as a source of NIS for the Laurentian Great Lakes by surveying ballast water carried by domestic vessels and comparing biological composition in predominant St. Lawrence River—Great Lakes port-pairs in order to determine the likelihood that NIS could be transported to, and survive in, the Great Lakes. Thirteen potential invaders were sampled from ballast water, while 26 taxa sampled from St. Lawrence River ports are not reported from the Great Lakes. The majority of NIS recorded in samples are marine species with low potential for survival in the Great Lakes, however two euryhaline species (copepod Oithona similis, and amphipod Gammarus palustris) and two taxa reported from brackish waters (copepod Microsetella norvegica and decapod Cancer irroratus) may pose a risk for invasion. In addition, four marine NIS were collected in freshwater samples indicating that at least a subset of marine species have potential as new invaders to the Great Lakes. Based on results from this study, the ports of Montreal, Sorel, Tracy and Trois Rivières appear to pose the highest risk for new ballast-mediated NIS from the St. Lawrence River to the Great Lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号