首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical cross-linking as a probe of conformation has consistently shown that activators, including Ca(2+) ions, of the (alphabetagammadelta)(4) phosphorylase kinase holoenzyme (PhK) alter the interactions between its regulatory alpha and catalytic gamma subunits. The gamma subunit is also known to interact with the delta subunit, an endogenous molecule of calmodulin that mediates the activation of PhK by Ca(2+) ions. In this study, we have used two-hybrid screening and chemical cross-linking to dissect the regulatory quaternary interactions involving these subunits. The yeast two-hybrid system indicated that regions near the C termini of the gamma (residues 343-386) and alpha (residues 1060-1237) subunits interact. The association of this region of alpha with gamma was corroborated by the isolation of a cross-linked fragment of alpha containing residues 1015-1237 from an alpha-gamma dimer that had been formed within the PhK holoenzyme by formaldehyde, a nearly zero-length cross-linker. Because the region of gamma that we found to interact with alpha has previously been shown to contain a high affinity binding site for calmodulin (Dasgupta, M., Honeycutt, T., and Blumenthal, D. K. (1989) J. Biol. Chem. 264, 17156-17163), we tested the influence of Ca(2+) on the conformation of the alpha subunit and found that the region of alpha that interacts with gamma was, in fact, perturbed by Ca(2+). The results herein support the existence of a Ca(2+)-sensitive communication network among the delta, gamma, and alpha subunits, with the regulatory domain of gamma being the primary mediator. The similarity of such a Ca(2+)-dependent network to the interactions among troponin C, troponin I, and actin is discussed in light of the known structural and functional similarities between troponin I and the gamma subunit of PhK.  相似文献   

2.
Phosphorylase kinase is a key enzyme in regulating glycogenolytic flux in skeletal muscle in response to changing energy demands. In the present study, we sought to identify interacting proteins of phosphorylase kinase by yeast two-hybrid screening. Screening a rabbit skeletal muscle cDNA library with the exposed C-terminus of the alpha subunit (residues 1060-1237), we identified eight independent, yet overlapping, constructs of cdc42-interacting protein 4 (CIP4). Immunocytochemistry indicated that CIP4 colocalized with phosphorylase kinase in vivo, and the cognate binding domain on CIP4 was determined to lie between residues 398 and 545. While this region of CIP4 does contain a known src homology 3 domain, transient transfections and coimmunoprecipitation experiments showed that this domain is not responsible for the dimeric interaction. Based upon sequence analysis the association is inferred to be mediated by two proline-rich sequences in CIP4, residues 436-439 and 441-444, that bind to a cognate WW domain found between residues 1107 and 1129 of PhKalpha.  相似文献   

3.
Mammalian AMP-activated protein kinase is a serine/threonine protein kinase that acts as a sensor of cellular energy status. AMP-activated protein kinase is a heterotrimer of three different subunits, i.e. alpha, beta, and gamma, with alpha being the catalytic subunit and beta and gamma having regulatory roles. Although several studies have defined different domains in alpha and beta involved in the interaction with the other subunits of the complex, little is known about the regions of the gamma subunits involved in these interactions. To study this, we have made sequential deletions from the N termini of the gamma subunit isoforms and studied the interactions with alpha and beta subunits, both by two-hybrid analysis and by co-immunoprecipitation. Our results suggest that a conserved region of 20-25 amino acids in gamma1, gamma2, and gamma3, immediately N-terminal to the Bateman domains, is required for the formation of a functional, active alphabetagamma complex. This region is required for the interaction with the beta subunits. The interaction between the alpha and gamma subunits does not require this region and occurs instead within the Bateman domains of the gamma subunit, although the alpha-gamma interaction does appear to stabilize the beta-gamma interaction. In addition, sequential deletions from the C termini of the gamma subunits indicate that deletion of any of the CBS (cystathionine beta-synthase) motifs prevents the formation of a functional complex with the alpha and beta subunits.  相似文献   

4.
Phosphorylase kinase is a Ca2+-regulated, multisubunit enzyme that contains calmodulin as an integral subunit (termed the delta-subunit). Ca2+-dependent activity of the enzyme is thought to be regulated by direct interaction of the delta-subunit with the catalytic subunit (the gamma-subunit) in the holoenzyme complex. In order to systematically search for putative calmodulin (delta-subunit)-binding domain(s) in the gamma-subunit of phosphorylase kinase, a series of 18 overlapping peptides corresponding to the C terminus of the gamma-subunit was chemically synthesized using a tea bag method. The calmodulin-binding activity of each peptide was tested for its ability to inhibit Ca2+/calmodulin-dependent activation of myosin light chain kinase. Data were obtained indicating that two distinct regions in the gamma-subunit, one spanning residues 287-331 (termed domain-N) and the other residues 332-371 (domain-C), are capable of binding calmodulin with nanomolar affinity. Peptides from both of these two domains also inhibited calmodulin-dependent reactivation of denatured gamma-subunit. The interactions of peptides from both domain-N and domain-C with calmodulin were found to be Ca2+-dependent. Dixon plots obtained using mixtures of peptides from domain-N and domain-C indicate that these two domains can bind simultaneously to a single molecule of calmodulin. Multiple contacts between the gamma-subunit and calmodulin (delta-subunit), as indicated by our data, may help to explain why strongly denaturing conditions are required to dissociate these two subunits, whereas complexes of calmodulin with most other target enzymes can be readily dissociated by merely lowering Ca2+ to submicromolar concentrations. Comparison of the sequences of the two calmodulin-binding domains in the gamma-subunit of phosphorylase kinase with corresponding regions in troponin I indicates similarities that may have functional and evolutionary significance.  相似文献   

5.
Phosphorylase kinase (PhK), an (alphabetagammadelta)(4) complex, regulates glycogenolysis. Its activity, catalyzed by the gamma subunit, is tightly controlled by phosphorylation and activators acting through allosteric sites on its regulatory alpha, beta and delta subunits. Activation by phosphorylation is predominantly mediated by the regulatory beta subunit, which undergoes a conformational change that is structurally linked with the gamma subunit and that is characterized by the ability of a short chemical crosslinker to form beta-beta dimers. To determine potential regions of interaction of the beta and gamma subunits, we have used chemical crosslinking and two-hybrid screening. The beta and gamma subunits were crosslinked to each other in phosphorylated PhK, and crosslinked peptides from digests were identified by Fourier transform mass spectrometry, beginning with a search engine developed "in house" that generates a hypothetical list of crosslinked peptides. A conjugate between beta and gamma that was verified by MS/MS corresponded to crosslinking between K303 in the C-terminal regulatory domain of gamma (gammaCRD) and R18 in the N-terminal regulatory region of beta (beta1-31), which contains the phosphorylatable serines 11 and 26. A synthetic peptide corresponding to residues 1-22 of beta inhibited the crosslinking between beta and gamma, and was itself crosslinked to K303 of gamma. In two-hybrid screening, the beta1-31 region controlled beta subunit self-interactions, in that they were favored by truncation of this region or by mutation of the phosphorylatable serines 11 and 26, thus providing structural evidence for a phosphorylation-dependent subunit communication network in the PhK complex involving at least these two regulatory regions of the beta and gamma subunits. The sum of our results considered together with previous findings implicates the gammaCRD as being an allosteric activation switch in PhK that interacts with all three of the enzyme's regulatory subunits and is proximal to the active site cleft.  相似文献   

6.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

7.
Cyclic-AMP-dependent protein kinase catalyses the activation of phosphorylase kinase and the phosphorylation of two serine residues on the alpha subunit and beta subunit of phosphorylase kinase [Cohen, P., Watson, D.C. and Dixon, G.H. (1975)]. The dephosphorylation of phosphorylase kinase has been shown to be catalysed by two distinct enzymes, termed alpha-phosphorylase kinase phosphatase and beta-phosphorylase kinase phosphatase. These two enzymes show essentially absolute specificity towards the alpha and beta subunits respectively. The two phosphatases copurified through ethanol fractionation, DEAE-cellulose chromatography and ammonium sulphate precipitation, but were separated from each other by a gel filtration on Sephadex G-200. alpha-Phosphorylase kinase phosphatase was purified 500-fold from the ethanol precipitation step, and beta-phosphorylase kinase phosphatase 320-fold. The molecular weights estimated by gel filtration were 170--180 000 for alpha-phosphorylase kinase phosphatase and 75--80 000 for beta-phosphorylase kinase phosphatase. Since the activity of phosphorylase kinase correlates with the state of phosphorylation of the beta subunit (Cohen, P. (1974)), beta-phosphorylase kinase phosphatase is the enzyme which reverses the activation of phosphorylase kinase. alpha-Phosphorylase kinase phosphatase is an enzyme activity that has not been recognised previously. Since the role of the alpha-subunit phosphorylation is to stimulate the rate of dephosphorylation of the beta subunit (Cohen, P. (1974)), alpha-phosphorylase kinase phosphatase can be regarded as the enzyme which inhibits the reversal of the activation of phosphorylase kinase. The implications of these findings for the hormonal control of phosphorylase kinase activity by multisite phosphorylation are discussed.  相似文献   

8.
We have previously reported that rabbit skeletal muscle phosphorylase kinase is phosphorylated by glycogen synthase (casein) kinase-1 (CK-1) primarily on the beta subunit (beta = 1 mol of PO4; alpha = 0.2 mol of PO4) when the reaction was carried out in beta-glycerophosphate. The resultant enzyme activation was 16-fold (Singh, T. J., Akatsuka, A., and Huang, K.-P. (1982) J. Biol. Chem. 257, 13379-13384). In the present study we found that in Tris-Cl buffer CK-1 catalyzes the incorporation of greater than 2 mol of PO4/monomer into each of the alpha and beta subunits. Phosphorylase kinase activation resulting from the higher level of phosphorylation remained 16-fold. 32P-Labeled tryptic peptides from the alpha and beta subunits were analyzed by isoelectric focusing. Cyclic AMP-dependent protein kinase (A-kinase) phosphorylates a single major site in each of the alpha and beta subunits at 1.5 mM Mg2+. In addition to these two sites, A-kinase phosphorylates at least three other sites in the alpha subunit at 10 mM Mg2+. CK-1 also catalyzes the phosphorylation of multiple sites in both the alpha and beta subunits. Of the two major sites phosphorylated by CK-1 in the beta subunit, one of these sites is also recognized by A-kinase. At least three sites are phosphorylated by CK-1 in the alpha subunit. One of these sites is recognized by CK-1 only after a prior phosphorylation of phosphorylase kinase by A-kinase at a single site in each of the alpha and beta subunits at 1.5 mM Mg2+. The roles of the different phosphorylation sites in phosphorylase kinase activation are discussed.  相似文献   

9.
The subunits of phosphorylase kinase are separated and isolated in high yield by gel filtration chromatography in pH 3.3 phosphate buffer containing 8 M urea. Three protein peaks are obtained: the alpha and beta subunits coelute in the first, whereas the gamma and delta subunits are separate peaks. Upon dilution of the denaturant, catalytic activity reappears, associated only with the gamma subunit. As has been previously observed (Kee, S.M., and Graves, D.J. (1986) J. Biol. Chem. 261, 4732-4737), addition of calmodulin dramatically stimulates the reactivation of gamma. Inclusion of increasing amounts of the alpha/beta subunit mixture in the renaturation progressively decreases the activity of the renatured gamma or gamma-calmodulin. This inhibition by alpha/beta is likely due to specific interactions with the gamma subunit because the inhibition is less at pH 8.2 than at pH 6.8 and less when equivalent amounts of phosphorylated alpha/beta subunits are used (both alkaline pH and phosphorylation are known to stimulate the activity of the holoenzyme). These results suggest that the role of either the alpha or beta subunits, or perhaps both, in the nonactivated (alpha 2 beta 2 gamma 2 delta 2)2 complex of phosphorylase kinase is to suppress the activity of the gamma subunit and that activation of the enzyme, by phosphorylation for instance, is due to deinhibition caused by release of this quaternary constraint by alpha and/or beta upon gamma.  相似文献   

10.
The yeast two-hybrid screen has been used to identify potential regions of interaction of the largest regulatory subunit, , of phosphorylase kinase (PhK) with two fragments of its protein substrate, glycogen phosphorylase b (Phb). One fragment, corresponding to residues 17-484 (PhbN"), contained the regulatory domain of the protein, but in missing the first 16 residues was devoid of the sole phosphorylation site of Phb, Ser14; the second fragment corresponded to residues 485-843 (PhbC) and contained the catalytic domain of Phb. Truncation fragments of the subunit were screened for interactions against these two substrate fragments. PhbC was not found to interact with any constructs; however, PhbN" interacted with a region of (residues 864-1014) that is near the phosphorylatable region of that subunit. PhbN" was also screened for interactions against a variety of fragments of the catalytic subunit of PhK; however, no interactions were detected, even with fulllength . Our results support the idea that amino acid residues proximal to the convertible serine of Phb are important for its specific interaction with the catalytic subunit of PhK, but that regions distinct from the convertible serine residue of Phb and from the catalytic domain of PhK may also be involved in the interaction of these two proteins.  相似文献   

11.
Phosphorylase kinase is a glycogenolytic enzyme in several animal tissues. Within the last few years all four subunits of the enzyme have been cloned. The beta, gamma, and delta subunits are known to be autosomal. We have mapped the alpha subunit of phosphorylase kinase, recently cloned by Zander et al. (1988), in an interspecific mouse pedigree and localized it on the X chromosome, where it maps between the X-linked zinc finger protein and phosphoglycerate kinase genes, close to the latter. In man and mouse several X-linked disorders of this enzyme have been described. Although the X-linked phosphorylase kinase deficiency in mice may be caused by a mutation in the structural gene for the alpha subunit, mapped here, the existence of a separate regulatory locus, important in the normal expression or function of the enzyme in muscle, still remains a possibility.  相似文献   

12.
This study reports on the divalent metal ion specificity for phosphorylase kinase autophosphorylation and, in particular, provides a comparison between the efficacy of Mg2+ and Mn2+ in this role. As well as requiring Ca2+ plus divalent metal ion-ATP2- as substrate, both phosphorylase kinase autoactivation and phosphorylase conversion are additionally modulated by divalent cations. However, these reactions are affected differently by different ions. Phosphorylase kinase-catalyzed phosphorylase conversion is maximally enhanced by a 4- to 10-fold lower concentration of Mg2+ than is autocatalysis and, whereas both reactions are stimulated by Mg2+, autophosphorylation is activated by Mn2+, Co2+, and Ni2+ while phosphorylase a formation is inhibited. This difference may be due to an effect of free Mn2+ on phosphorylase rather than the inability of phosphorylase kinase to use MnATP as a substrate when catalyzing phosphorylase conversion since Mn2+, when added at a level which minimally decreases [MgATP], greatly inhibits phosphorylase phosphorylation. The interactions of Mn2+ with phosphorylase kinase are different from those of Mg2+. Not only are the effects of these ions on phosphorylase activation opposite, but they also provoke different patterns of subunit phosphorylation during phosphorylase kinase autocatalysis. With Mn2+, the time lag of phosphorylation of both the alpha and beta subunits of phosphorylase kinase in autocatalysis is diminished in comparison to what is observed with Mg2+, and the beta subunit is only phosphorylated to a maximum of 1 mol/mol of subunit. With both Mg2+ and Mn2+ the alpha subunit is phosphorylated to a level in excess of 3 mol/mol, a level similar to that obtained for beta subunit phosphorylation in the presence of Mg2+. The support of autophosphorylation by both Co2+ and Ni2+ has characteristics similar to those observed with Mn2+. Although Mn2+ stimulation of autophosphorylation occurs at levels much higher than normal physiological levels, the possible potential of phosphorylase kinase autophosphorylation as a control mechanism is illustrated by the 80- to 100-fold activation that occurs in the presence of Mn2+, a level far in excess of the enzyme activity change normally seen with covalent modification. Autophosphorylation of phosphorylase kinase demonstrates a Km for Mg X ATP2- of 27.7 microM and a Ka for Mg2+ of 3.1 mM. The reaction mechanism of autophosphorylation is intramolecular. This latter observation may indicate that phosphorylase kinase autocatalysis could be of potential physiological relevance and could occur with equal facility in cells containing either constitutively high or low levels of this enzyme.  相似文献   

13.
Immunological and microanalytical methods were used to investigate the two isozymes of phosphorylase kinase, enzyme w and enzyme r, in psoas major and tibialis anterior muscles. Peptide mapping experiments indicated that the alpha subunit of enzyme w and alpha' subunit of enzyme r were structurally very similar. Both subunits were completely immunoprecipitated from muscle extracts with an antibody specific for the beta subunit of the kinase, indicating that alpha and alpha' subunits are completely assembled with beta subunits in adult muscle fibers. The relative amounts of enzymes w and r in single fibers were determined from amounts of alpha and alpha' subunits, which were detected by immunoblotting. Phosphorylase kinase and phosphorylase activities were measured in the same fibers, as well as in individual fibers from diaphragm and soleus muscles. Slow oxidative fibers were found to contain low levels of enzyme r, but almost no enzyme w. Considerably more enzyme r was present in fast oxidative-glycolytic fibers. Fast glycolytic fibers contained the most enzyme w, and the highest levels of enzyme r were found in a subgroup of such fibers. Interestingly, more than half of the fast glycolytic fibers analyzed contained both isozymes. In these fibers phosphorylase was positively correlated with enzyme w, but negatively correlated with enzyme r. Total kinase activity ranged 30-fold from the highest in one of the psoas fibers to the lowest in one of the soleus fibers and was closely correlated with the phosphorylase levels. In psoas and soleus fibers, calculated absolute maximal rates for phosphorylase b to a conversion varied almost 2,500-fold.  相似文献   

14.
The flexor digitorum brevis skeletal muscle, a nearly homogeneous fast-twitch oxidative glycolytic fiber type, has been examined for its suitability to explore the regulation of phosphorylase kinase by multisite phosphorylation. A characterization of the adrenergic response of glycogenolytic enzymes, together with the previous data on contractile properties (Carlsen, R. C., Larson, D. B., and Walsh, D. A. (1985) Can. J. Physiol. Pharm. 63, 958-965), has demonstrated that this muscle is stably maintained for the several hours necessary for phosphorylation studies. The phosphorylase kinase in this muscle is primarily the alpha' isozyme, suggesting that the alpha versus alpha' isozyme distribution in muscle is related more to oxidative capacity than to fiber contractile characteristics. Using this muscle system, beta-adrenergic activation of phosphorylase kinase was observed to occur with concomitant phosphorylation of both the alpha' and beta subunits, with the total in the alpha' subunit being approximately 3-fold greater. Similarly, deactivation, following initial adrenergic activation, occurred concomitantly with the dephosphorylation of the two subunits. These results are compatible with the conclusions drawn from previous studies of the isolated enzyme and of the enzyme in perfused rat cardiac muscle, that both alpha' (or alpha) and beta subunit phosphorylation regulate phosphorylase kinase activity.  相似文献   

15.
16.
In a yeast two-hybrid screen of mouse brain cDNA library, using the N-terminal region of human type V adenylyl cyclase (hACV) as bait, we identified G protein beta2 subunit as an interacting partner. Additional yeast two-hybrid assays showed that the Gbeta(1) subunit also interacts with the N-terminal segments of hACV and human type VI adenylyl cyclase (hACVI). In vitro adenylyl cyclase (AC) activity assays using membranes of Sf9 cells expressing hACV or hACVI showed that Gbetagamma subunits enhance the activity of these enzymes provided either Galpha(s) or forskolin is present. Deletion of residues 77-151, but not 1-76, in the N-terminal region of hACVI obliterated the ability of Gbetagamma subunits to conditionally stimulate the enzyme. Likewise, activities of the recombinant, engineered, soluble forms of ACV and ACVI, which lack the N termini, were not enhanced by Gbetagamma subunits. Transfection of the C terminus of G protein receptor kinase 2 to sequester endogenous Gbetagamma subunits attenuated the ability of isoproterenol to increase cAMP accumulation in COS-7 cells overexpressing hACVI even when G(i) was inactivated by pertussis toxin. Therefore, we conclude that the N termini of human hACV and hACVI are necessary for interactions with, and regulation by, Gbetagamma subunits both in vitro and in intact cells. Moreover, Gbetagamma subunits derived from a source(s) other than G(i) are necessary for the full activation of hACVI by isoproterenol in intact cells.  相似文献   

17.
Phosphorylase kinase activity is renatured and detected in situ following electrophoresis of the denatured holoenzyme in a sodium dodecyl sulfate-polyacrylamide gel containing phosphorylase b that has been included in the gel polymerization according to the method of R. L. Geahlen et al. [(1986) Anal. Biochem. 153, 151-158]. Among the enzyme's four subunits, only gamma is catalytically active. When extract of rabbit muscle is electrophoresed and renatured in a similar manner, the phosphorylase-conversion activity is also associated only with a protein band that comigrates with the gamma subunit of phosphorylase kinase. This suggests that the gamma subunit of phosphorylase kinase may be the sole activity in rabbit muscle responsible for the phosphorylation of phosphorylase b. In an alternative method for the renaturation of activity from conventional sodium dodecyl sulfate-polyacrylamide gels, the subunits of the enzyme are visualized using 2.5 M KCl, excised from the gel, and eluted by diffusion into buffer containing sodium dodecyl sulfate, which is subsequently removed by acetone precipitation of the eluted subunits. Catalytic activity is recovered when the acetone precipitate of the extracted gamma subunit is dissolved in 6 M guanidine hydrochloride and diluted 50-fold into an activity assay. Inclusion of eluted alpha and beta subunits in the assay inhibits the activity of the gamma subunit, which supports our previous finding that the alpha and/or beta subunits suppress the activity of the catalytic gamma subunit [H. K. Paudel and G. M. Carlson (1987) J. Biol. Chem. 262, 11912-11915].  相似文献   

18.
Glycogen phosphorylase, a dimer of identical subunits, is activated by phosphorylase kinase-catalyzed phosphorylation of one serine residue in each subunit. In this paper, the effect of the phosphorylation of one subunit on the phosphorylation of the other subunit was examined. The three forms of phosphorylase, phosphorylase b (nonphosphorylated), phosphorylase ab (one subunit phosphorylated), and phosphorylase a (both subunits phosphorylated), were separated by anion-exchange high-performance liquid chromatography (HPLC). Purified phosphorylase ab was found to be stable under the conditions of the phosphorylase kinase assay. Initial rate kinetics showed that phosphorylase kinase had a lower KM for phosphorylase ab (3.9 +/- 0.24 microM) than for phosphorylase b (14.9 +/- 2.6 microM). Using the HPLC separation as a simultaneous assay for the three forms of phosphorylase during the phosphorylase kinase reaction, it was found that the pseudo-first-order rate constant for the second phosphorylation step (k2) was 3.7 times greater than that for the first step (k1). The activator AMP reduced the ratio k2/k1 from 3.7 without AMP to 1.4. When the monomeric gamma delta complex of phosphorylase kinase subunits was used as the enzyme, the ratio k2/k1 was 2.1, compared to 3.7 with the multimeric holophosphorylase kinase. One explanation for these data is that phosphorylation of one subunit of phosphorylase b causes conformational changes that make the other subunit a better substrate for the kinase. In this context, the effect of AMP is to reduce the conformational differences between phosphorylases b and ab, and the gamma delta complex is less sensitive to the conformational differences between the two forms of phosphorylase.  相似文献   

19.
The pyridine nucleotide transhydrogenase (PNT) of Escherichia coli consists of two different subunits (alpha and beta) and assembles as a tetramer (alpha 2 beta 2) in the inner membrane. The pnt genes from E. coli have been cloned on a multicopy plasmid resulting in high level expression of the enzyme activity. We have studied the influence of the different segments of the polypeptide chains of the alpha and beta subunits on the assembly and function of the enzyme by constructing a series of deletion mutants for both of the subunits. Our results show that the assembly of the beta subunit is contingent upon the insertion of the alpha subunit into the membrane, while the alpha subunit can assemble independently of the beta subunit. All deletions constructed for the cytosolic portion of the alpha subunit gave no incorporation of the alpha subunit and, as a consequence, of the beta subunit, also. Of the four membrane-spanning regions of the alpha subunit, the last two were indispensable, while the deletion of the first two still allowed the association of alpha as well as of the beta subunit with the membrane. However, the enzyme was not functional. The two subunits were also loosely associated as mild detergent treatment released them from the membrane in contrast with the wild-type enzyme. Deletions within the beta subunit had little effect on the assembly of the alpha subunit, although less was incorporated. All deletions involving the cytosolic portion of the beta subunit resulted in loss of incorporation into the membrane. Of the eight membrane-spanning regions of the beta subunit, the deletion of regions 2-3, 2-4, 2-6, and 2-7 yielded significant association of both the subunits with the membrane. However, none of these mutants assembled a functional enzyme, and again the two subunits were loosely associated with the membrane. Based on the stringent requirement of the cytosolic portions of alpha and beta subunits for assembly, a model is proposed that suggests interactions between these two regions must occur prior to assembly.  相似文献   

20.
The isolated glycogen particle provides a means to examine the regulation of glycogen metabolism with the components organized in a functional cellular complex. With this system, we have studied the control of phosphorylase kinase activation by Ca2+ and cAMP. Contrary to a previous report (Heilmeyer, L. M. G., Jr., Meyer, F., Haschke, R. H., and Fisher, E. H. (1980) J. Biol. Chem. 245, 6649-6656), phosphorylase kinase became activated during incubation of the glycogen particle with MgATP2- and Ca2+. Part of this activation could be attributed to the action of the cAMP-dependent protein kinase; however, it was not possible to quantitatively correlate activation with phosphorylation in the presence of Ca2+ and Mg2+ due to a large, but uncertain, contribution of synergistic activation caused by these ions. This latter activation had properties similar to those described by King and Carlson (King, M. M., and Carlson, G. M. (1980) Arch. Biochem. Biophys. 209, 517-523) with the purified enzyme, and its occurrence also explains why phosphorylase kinase activation in the glycogen particle was not observed previously. The cAMP-dependent activation of phosphorylase kinase in the glycogen particle has been characterized. It occurred in a similar manner when either the cAMP-dependent protein kinase or cAMP was added, thus indicating that the phosphorylation sites of phosphorylase kinase complexed in the glycogen particle were accessible to endogenous or exogenous enzyme. In the glycogen particle, both the alpha and beta subunits were phosphorylated by the cAMP-dependent protein kinase, but the alpha subunit dephosphorylation appeared to be preferentially regulated by Ca2+. The activity of phosphorylase kinase in the glycogen particle is regulated by the phosphorylation of both the alpha and beta subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号