首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coordinated cell movements are crucial for vertebrate gastrulation and are controlled by multiple signals. Although many factors are shown to mediate non-canonical Wnt pathways to regulate cell polarity and intercalation during gastrulation, signaling molecules acting in other pathways are less investigated and the connections between various signals and cytoskeleton are not well understood. In this study, we show that the cytoplasmic tyrosine kinase Arg modulates gastrulation movements through control of actin remodeling. Arg is expressed in the dorsal mesoderm at the onset of gastrulation, and both gain- and loss-of-function of Arg disrupted axial development in Xenopus embryos. Arg controlled migration of anterior mesendoderm, influenced cell decision on individual versus collective migration, and modulated spreading and protrusive activities of anterior mesendodermal cells. Arg also regulated convergent extension of the trunk mesoderm by influencing cell intercalation behaviors. Arg modulated actin organization to control dynamic F-actin distribution at the cell-cell contact or in membrane protrusions. The functions of Arg required an intact tyrosine kinase domain but not the actin-binding motifs in its carboxyl terminus. Arg acted downstream of receptor tyrosine kinases to regulate phosphorylation of endogenous CrkII and paxillin, adaptor proteins involved in activation of Rho family GTPases and actin reorganization. Our data demonstrate that Arg is a crucial cytoplasmic signaling molecule that controls dynamic actin remodeling and mesodermal cell behaviors during Xenopus gastrulation.  相似文献   

2.
Diperoxovanadate (DPV), a potent inhibitor of protein tyrosine phosphatases and activator of tyrosine kinases, alters endothelial barrier function via signaling pathways that are incompletely understood. One potential pathway is Src kinase-mediated tyrosine phosphorylation of proteins such as cortactin that regulate endothelial cell (EC) cytoskeleton assembly. As DPV modulates endothelial cell signaling via protein tyrosine phosphorylation, we determined the role of DPV-induced intracellular free calcium concentration ([Ca2+]i) in activation of Src kinase, cytoskeletal remodeling, and barrier function in bovine pulmonary artery endothelial cells (BPAECs). DPV in a dose- and time-dependent fashion increased [Ca2+]i, which was partially blocked by the calcium channel blockers nifedipine and Gd3+. Treatment of cells with thapsigargin released Ca2+ from the endoplasmic reticulum, and subsequent addition of DPV caused no further change in [Ca2+]i. These data suggest that DPV-induced [Ca2+]i includes Ca release from the endoplasmic reticulum and Ca influx through store-operated calcium entry. Furthermore, DPV induced an increase in protein tyrosine phosphorylation, phosphorylation of Src and cortactin, actin remodeling, and altered transendothelial electrical resistance in BPAECs. These DPV-mediated effects were significantly attenuated by BAPTA (25 microM), a chelator of [Ca2+]i. Immunofluorescence studies reveal that the DPV-mediated colocalization of cortactin with peripheral actin was also prevented by BAPTA. Chelation of extracellular Ca2+ by EGTA had marginal effects on DPV-induced phosphorylation of Src and cortactin; actin stress fibers formation, however, affected EC barrier function. These data suggest that DPV-induced changes in [Ca2+]i regulate endothelial barrier function using signaling pathways that involve Src and cytoskeleton remodeling.  相似文献   

3.
The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway includes the adaptor protein CED-2 CrkII and the small GTPase CED-10 Rac, and acts to rearrange the cytoskeleton of the engulfing cell. The other pathway includes the receptor tyrosine kinase CED-1 and might recruit membranes to extend the surface of the engulfing cell. Although many components required for engulfment have been identified, little is known about inhibition of engulfment. The tyrosine kinase Abl regulates the actin cytoskeleton in mammals and Drosophila in multiple ways. For example, Abl inhibits cell migration via phosphorylation of CrkII. We tested whether ABL-1, the C. elegans ortholog of Abl, inhibits the CED-2 CrkII-dependent engulfment of apoptotic cells. Our genetic studies indicate that ABL-1 inhibits apoptotic cell engulfment, but not through CED-2 CrkII, and instead acts in parallel to the two known engulfment pathways. The CED-10 Rac pathway is also required for proper migration of the distal tip cells (DTCs) during the development of the C. elegans gonad. The loss of ABL-1 function partially restores normal DTC migration in the CED-10 Rac pathway mutants. We found that ABI-1 the C. elegans homolog of mammalian Abi (Abl interactor) proteins, is required for engulfment of apoptotic cells and proper DTC migration. Like Abl, Abi proteins are cytoskeletal regulators. ABI-1 acts in parallel to the two known engulfment pathways, likely downstream of ABL-1. ABL-1 and ABI-1 interact physically in vitro. We propose that ABL-1 opposes the engulfment of apoptotic cells by inhibiting ABI-1 via a pathway that is distinct from the two known engulfment pathways.  相似文献   

4.
Endocytosis of the Fc receptor Fc gammaRIIA depends on a functional ubiquitin conjugation system, and the receptor becomes ubiquitylated upon ligand binding. Phosphorylation of tyrosines in Fc gammaRIIA by Src family kinases is thought to be the initiating event in its signaling. However, although the Src family kinase inhibitor PP1 inhibited both ligand-induced phosphorylation of Fc gammaRIIA and phagocytosis in ts20 cells expressing Fc gammaRIIA, it did not inhibit receptor ubiquitylation or endocytosis of soluble ligands. Conversely, genistein and the proteasomal inhibitor MG132 did not inhibit receptor phosphorylation but strongly inhibited both receptor ubiquitylation and endocytosis. A region of the receptor lying within the immunoreceptor tyrosine-based activation motif was found to be necessary for both ubiquitylation and endocytosis. Ubiquitylation occurs at the plasma membrane before internalization. Endocytosis of Fc gammaRIIA is dependent on clathrin but independent of the adaptor protein AP-2. These findings point to a novel mechanism for ubiquitylation and endocytosis of this immunoreceptor.  相似文献   

5.
Ligand-induced PDGF-type beta receptor (PDGFbeta-R) autophosphorylation is profoundly suppressed in cells transformed by activated p21(Ras). We report here that the integrity of the actin cytoskeleton is a critical regulator of PDGFbeta-R function in the presence of p21(Ras). Morphological reversion of Balb cells expressing a constitutively activated p21(Ras), with re-formation of actin stress fibers and cytoskeletal architecture, rendering them phenotypically similar to untransformed fibroblasts, allowed recovery of ligand-dependent PDGFbeta-R autophosphorylation. Conversely, disruption of the actin cytoskeleton in Balb/c-3T3 cells obliterated the normal ligand-induced phosphorylation of the PDGFbeta-R. The Rho family GTPases Rac and Rho are activated by p21(Ras) and are critical mediators of cell motility and morphology via their influence on the actin cytoskeleton. Transient expression of wild-type or constitutively active mutant forms of RhoA suppressed ligand-dependent PDGFbeta-R autophosphorylation and downstream signal transduction. These studies demonstrate the necessary role of Rho in the inhibition of PDGFbeta-R autophosphorylation in cells containing activated p21(Ras) and also demonstrate the importance of cell context and the integrity of the actin cytoskeleton in the regulation of PDGFbeta-R ligand-induced autophosphorylation.  相似文献   

6.
The regulation of small artery contractility by vasoconstrictors is important for vascular function, and actin cytoskeleton remodeling is required for contraction. p38 MAPK and tyrosine kinases are implicated in actin polymerization and contraction through heat shock protein 27 (Hsp27) and the cytoskeletal protein paxillin, respectively. We evaluated the roles of downstream targets of p38 MAPK and tyrosine kinases in cytoskeletal reorganization and contraction and whether the two signaling pathways regulate contraction independent of each other. We identified the expression of the paxillin homologue hydrogen peroxide-inducible clone-5 (Hic-5) and showed its activation by norepinephrine (NE) in a Src-dependent manner. Furthermore, we demonstrated a NE-induced interaction of proline-rich tyrosine kinase-2 (PYK2) but not Src or p125 focal adhesion kinase with Hic-5. This interaction was Src dependent, suggesting that Hic-5 was a substrate for PYK2 downstream from Src. The activation of Hic-5 induced its relocalization to the cytosol. The parallel activation of Hsp27 by NE was p38 MAPK dependent and led to its dissociation from actin filaments and translocation from membrane to cytosol and increased actin polymerization. Both Hsp27 and Hic-5 activation resulted in their association within the same time frame as NE-induced contraction, and the inhibition of either p38 MAPK or Src inhibited the interaction between Hsp27 and Hic-5 and the contractile response. Furthermore, combined p38 MAPK and Src inhibition had no greater effect on contraction than individual inhibition, suggesting that the two pathways act through a common mechanism. These data show that NE-induced activation and the association of Hsp27 and Hic-5 are required for the reorganization of the actin cytoskeleton and force development in small arteries.  相似文献   

7.
Phosphorylation of actin-binding proteins plays a pivotal role in the remodeling of the actin cytoskeleton to regulate cell migration. Palladin is an actin-binding protein that is phosphorylated by growth factor stimulation; however, the identity of the involved protein kinases remains elusive. In this study, we report that palladin is a novel substrate of extracellular signal-regulated kinase (ERK). Suppression of ERK activation by a chemical inhibitor reduced palladin phosphorylation, and expression of active MEK alone was sufficient for phosphorylation. In addition, an in vitro kinase assay demonstrated direct palladin phosphorylation by ERK. We found that Ser77 and Ser197 are essential residues for phosphorylation. Although the phosphorylation of these residues was not required for actin cytoskeletal organization, we found that expression of non-phosphorylated palladin enhanced cell migration. Finally, we show that phosphorylation inhibits the palladin association with Abl tyrosine kinase. Taken together, our results indicate that palladin phosphorylation by ERK has an anti-migratory function, possibly by modulating interactions with molecules that regulate cell migration.  相似文献   

8.
Phagocytosis of IgG-opsonized pathogens by Fcgamma receptors requires extensive remodeling of the actin cytoskeleton, a process regulated by the small GTPase Rac. Vav was thought to be the guanine nucleotide exchange factor responsible for the activation of Rac, but recent evidence indicates that Fcgamma receptor-mediated phagocytosis is unaffected in macrophages lacking all three isoforms of Vav. We therefore tested whether another GEF, DOCK180, participates in Fcgamma receptor-initiated phagocytosis. DOCK180 associates with the adaptor protein Crk, which mediates recruitment of the GEF to sites of tyrosine phosphorylation. CrkII and DOCK180 were found to accumulate at the phagocytic cup. Knockdown of Crk or DOCK180 in murine macrophages using small interfering RNA inhibited phagocytosis of IgG-opsonized particles. Moreover, transfection of dominant negative CrkII prevented both recruitment of DOCK180 and the activation of Rac at the phagocytic cup. This is the first report of a role for either Crk or DOCK180 in Fcgamma receptor-mediated phagocytosis. The Crk-DOCK180 complex is involved in the clearance of apoptotic cells, which unlike the ingestion of IgG-opsonized particles, is an anti-inflammatory process. The finding that CrkII-DOCK180 is also responsible, at least in part, for the effects of Fcgamma receptors implies that additional, parallel pathways must account for the associated pro-inflammatory effect.  相似文献   

9.
Cortactin is an F-actin binding protein that activates actin-related protein 2/3 complex and is localized within lamellipodia. Cortactin is a substrate for Src and other protein tyrosine kinases involved in cell motility, where its phosphorylation on tyrosines 421, 466, and 482 in the carboxy terminus is required for cell movement and metastasis. In spite of the importance of cortactin tyrosine phosphorylation in cell motility, little is known regarding the structural, spatial, or signaling requirements regulating cortactin tyrosine phosphorylation. Herein, we report that phosphorylation of cortactin tyrosine residues in the carboxy terminus requires the aminoterminal domain and Rac1-mediated localization to the cell periphery. Phosphorylation-specific antibodies directed against tyrosine 421 and 466 were produced to study the regulation and localization of tyrosine phosphorylated cortactin. Phosphorylation of cortactin tyrosine 421 and 466 was elevated in response to Src, epidermal growth factor receptor and Rac1 activation, and tyrosine 421 phosphorylated cortactin localized with F-actin in lamellipodia and podosomes. Cortactin tyrosine phosphorylation is progressive, with tyrosine 421 phosphorylation required for phosphorylation of tyrosine 466. These results indicate that cortactin tyrosine phosphorylation requires Rac1-induced cortactin targeting to cortical actin networks, where it is tyrosine phosphorylated in hierarchical manner that is closely coordinated with its ability to regulate actin dynamics.  相似文献   

10.
Chlamydia trachomatis attachment to cells induces the secretion of the elementary body-associated protein TARP (Translocated Actin Recruiting Protein). TARP crosses the plasma membrane where it is immediately phosphorylated at tyrosine residues by unknown host kinases. The Rac GTPase is also activated, resulting in WAVE2 and Arp2/3-dependent recruitment of actin to the sites of chlamydia attachment. We show that TARP participates directly in chlamydial invasion activating the Rac-dependent signaling cascade to recruit actin. TARP functions by binding two distinct Rac guanine nucleotide exchange factors (GEFs), Sos1 and Vav2, in a phosphotyrosine-dependent manner. The tyrosine phosphorylation profile of the sequence YEPISTENIYESI within TARP, as well as the transient activation of the phosphatidylinositol 3-kinase (PI3-K), appears to determine which GEF is utilized to activate Rac. The first and second tyrosine residues, when phosphorylated, are utilized by the Sos1/Abi1/Eps8 and Vav2, respectively, with the latter requiring the lipid phosphatidylinositol 3,4,5-triphosphate. Depletion of these critical signaling molecules by siRNA resulted in inhibition of chlamydial invasion to varying degrees, owing to a possible functional redundancy of the two pathways. Collectively, these data implicate TARP in signaling to the actin cytoskeleton remodeling machinery, demonstrating a mechanism by which C.trachomatis invades non-phagocytic cells.  相似文献   

11.
M-CSF is known to induce cytoskeletal reorganization in macrophages and osteoclasts by activation of phosphatidylinositol 3-kinase (PI3K) and c-Src, but the detailed mechanisms remain unclear. We find, unexpectedly, that tyrosine (Tyr) to phenylalanine (Phe) mutation of Tyr-721, the PI3K binding site in the M-CSF receptor c-Fms, fails to suppress cytoskeletal remodeling or actin ring formation. In contrast, mutation of c-Fms Tyr-559 to Phe blocks M-CSF-induced cytoskeletal reorganization by inhibiting formation of a Src Family Kinase SFK.c-Cbl.PI3K complex and the downstream activation of Vav3 and Rac, two key mediators of actin remodeling. Using an add-back approach in which specific Tyr residues are reinserted into c-Fms inactivated by the absence of all seven functionally important Tyr residues, we find that Tyr-559 is necessary but not sufficient to transduce M-CSF-dependent cytoskeletal reorganization. Furthermore, this same add-back approach identifies important roles for Tyr-697 and Tyr-721 in collaborating with Tyr-559 to recruit a multimeric signaling complex that can transduce signals from c-Fms to the actin cytoskeleton.  相似文献   

12.
13.
Alpha-1-syntrophin (SNTA1) and Rac1 are part of a signaling pathway via the dystrophin glycoprotein complex (DGC). Both SNTA1 and Rac1 proteins are over-expressed in various carcinomas. It is through the DGC signaling pathway that SNTA1 has been shown to act as a link between the extra cellular matrix, the internal cell signaling apparatus and the actin cytoskeleton. SNTA1 is involved in the modulation of the actin cytoskeleton and actin reorganization. Rac1 also controls actin cytoskeletal organization in the cell. In this study, we present the interplay between f-actin, SNTA1 and Rac1. We analyzed the effect of actin depolymerization on SNTA1 tyrosine phosphorylation and Rac1 activity using actin depolymerizing drugs, cytochalasin D and latrunculin A. Our results indicate a marked decrease in the tyrosine phosphorylation of SNTA1 upon actin depolymerization. Results suggest that actin depolymerization mediated loss of SNTA1 phosphorylation leads to loss of interaction between SNTA1 and Rac1, with a concomitant loss of Rac1 activation. The loss of SNTA1tyrosine phosphorylation and Rac1 activity by actin depolymerization results in increased apoptosis, decreased cell migration and decreased reactive oxygen species (ROS) levels in breast carcinoma cells. Collectively, our results present a possible role of f-actin in the SNTA1-Rac1 signaling pathway and implications of actin depolymerization on cell migration, ROS production and apoptosis.  相似文献   

14.
Ligand-induced desensitization of the epidermal growth factor receptor (EGFR) is controlled by c-Cbl, a ubiquitin ligase that binds multiple signaling proteins, including the Grb2 adaptor. Consistent with a negative role for c-Cbl, here we report that defective Tyr1045 of EGFR, an inducible c-Cbl docking site, enhances the mitogenic response to EGF. Signaling potentiation is due to accelerated recycling of the mutant receptor and a concomitant defect in ligand-induced ubiquitylation and endocytosis of EGFR. Kinetic as well as morphological analyses of the internalization-defective mutant receptor imply that c-Cbl-mediated ubiquitylation sorts EGFR to endocytosis and to subsequent degradation in lysosomes. Unexpectedly, however, the mutant receptor displayed significant residual ligand-induced ubiquitylation, especially in the presence of an overexpressed c-Cbl. The underlying mechanism seems to involve recruitment of a Grb2 c-Cbl complex to Grb2-specific docking sites of EGFR, and concurrent acceleration of receptor ubiquitylation and desensitization. Thus, in addition to its well-characterized role in mediating positive signals, Grb2 can terminate signal transduction by accelerating c-Cbl-dependent sorting of active tyrosine kinases to destruction.  相似文献   

15.
Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40-60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and mu-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of "endocytic evasion," modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function in response to cellular demands and cross talk with other signaling receptors.  相似文献   

16.
Microtubules (MT) play a vital role in many cellular functions, but their role in peripheral actin cytoskeletal dynamics which is essential for control of endothelial barrier and monolayer integrity is less understood. We have previously described the enhancement of lung endothelial cell (EC) barrier by hepatocyte growth factor (HGF) which was associated with Rac1-mediated remodeling of actin cytoskeleton. This study investigated involvement of MT-dependent mechanisms in the HGF-induced enhancement of EC barrier. HGF-induced Rac1 activation was accompanied by phosphorylation of stathmin, a regulator of MT dynamics. HGF also stimulated MT peripheral growth monitored by time lapse imaging and tracking analysis of EB-1-decorated MT growing tips, and increased the pool of acetylated tubulin. These effects were abolished by EC pretreatment with HGF receptor inhibitor, downregulation of Rac1 pathway, or by expression of a stathmin-S63A phosphorylation deficient mutant. Expression of stathmin-S63A abolished the HGF protective effects against thrombin-induced activation of RhoA cascade, permeability increase, and EC barrier dysfunction. These results demonstrate a novel MT-dependent mechanism of HGF-induced EC barrier regulation via Rac1/PAK1/stathmin-dependent control of MT dynamics.  相似文献   

17.
Neuregulin-1 (NRG1) plays an important role in neural development, synapse formation, and synaptic plasticity by activating ErbB receptor tyrosine kinases. Although ligand-induced endocytosis has been shown to be important for many receptor tyrosine kinases, whether NRG1 signaling depends on ErbB endocytosis remains controversial. Here, we provide evidence that ErbB4, a prominent ErbB protein in the brain, becomes internalized in NRG1-stimulated neurons. The induced ErbB4 endocytosis requires its kinase activity. Remarkably, inhibition of ErbB endocytosis attenuates NRG1-induced activation of Erk and Akt in neurons. These observations indicate a role of ErbB endocytosis in NRG1 signaling in neurons.  相似文献   

18.
We studied actin cytoskeletal remodeling and the role of leukotrienes and tyrosine phosphorylation in the response of endothelial cells to different types of cyclic mechanical stretching. Human aortic endothelial cells were grown on deformable silicone membranes subjected to either cyclic one-directional (strip) stretching (10%, 0.5 Hz), or biaxial stretching. After 1 min of either type of stretching, actin cytoskeletons of the stretched cells were already disrupted. After stretching for 10 and 30 min, the percentage of the stretched cells that had disrupted actin cytoskeletons were significantly increased, compared with control cells without stretching. Also, at these two time points, biaxial stretching consistently produced higher frequencies of actin cytoskeleton disruption. At 3 h, strip stretching caused the formation of stress fiber bundles, which were oriented nearly perpendicular to the stretching direction. With biaxial stretching, however, actin cytoskeletons in many stretched cells were remodeled into three-dimensional actin structures protruding outside the substrate plane, within which cyclic stretching was applied. In both stretching conditions, actin filaments were formed in the direction without substrate deformation. Moreover, substantially inhibiting either leukotriene production with nordihydroguaiaretic acid or tyrosine phosphorylation with tyrphostin A25 did not block the actin cytoskeletal remodeling. However, inhibiting both leukotriene production and tyrosine phosphorylation completely blocked the actin cytoskeletal remodeling. Thus, the study showed that the remodeling of actin cytoskeletons of the stretched endothelial cells include rapid disruption first and then re-formation. The resulting pattern of the actin cytoskeleton after remodeling depends on the type of cyclic stretching applied, but under either type of cyclic stretching, the actin filaments are formed in the direction without substrate deformation. Finally, leukotrienes and tyrosine phosphorylation are necessary for actin cytoskeletal remodeling of the endothelial cells in response to mechanical stretching.  相似文献   

19.
Cadherin engagement inhibits RhoA via p190RhoGAP   总被引:9,自引:0,他引:9  
Cadherins are transmembrane receptors that mediate cell-cell adhesion in epithelial cells. A number of changes occur during cadherin-mediated junction formation, one of which is a rearrangement of the actin cytoskeleton. Key regulators of actin cytoskeletal dynamics in cells are the Rho family of GTPases. We have demonstrated in previous studies that cadherin signaling suppresses RhoA activity and activates Rac1. The signaling events downstream of cadherins that modulate the activity of Rho family proteins remain unknown. Here we have identified a pathway by which RhoA becomes inactivated by cadherins. To determine whether cadherins regulate RhoA through activation of a GTPase-activating protein (GAP) for RhoA, we used constitutively active RhoA to isolate activated GAPs. Using this assay, we have identified the RhoA-specific GAP, p190RhoGAP, downstream from engaged cadherins. We found that cadherin engagement induced tyrosine phosphorylation of p190RhoGAP and increased its binding to p120RasGAP. The increased precipitation of p190RhoGAP with 63LRhoA was blocked by addition of PP2 suggesting that Src family kinases are required downstream from cadherin signaling. The inhibition of RhoA activity by cadherins was antagonized by expression of a dominant negative p190RhoGAP. Taken together, these data demonstrate that p190RhoGAP activity is critical for RhoA inactivation by cadherins.  相似文献   

20.
The family of p21-activated kinases (PAKs) have been implicated in the rearrangement of actin cytoskeleton by acting downstream of the small GTPases Rac and Cdc42. Here we report that even though Cdc42/Rac1 or Akt are not activated, phosphatidylinositol-3 (PI-3) kinase activation induces PAK1 kinase activity. Indeed, we demonstrate that PI-3 kinase associates with the N-terminal regulatory domain of PAK1 (amino acids 67-150) leading to PAK1 activation. The association of the PI-3 kinase with the Cdc42/Rac1 binding-deficient PAK1(H83,86L) confirms that the small GTPases are not involved in the PI-3 kinase-PAK1 interaction. Furthermore, PAK1 was activated in cells expressing the dominant-negative forms of Cdc42 or Rac1. Additionally, we show that PAK1 phosphorylates actin, resulting in the dissolution of stress fibers and redistribution of microfilaments. The phosphorylation of actin was inhibited by the kinase-dead PAK1(K299R) or the PAK1 autoinhibitory domain (PAK1(83-149)), indicating that PAK1 was responsible for actin phosphorylation. We conclude that the association of PI-3 kinase with PAK1 regulates PAK1 kinase activity through a Cdc42/Rac1-independent mechanism leading to actin phosphorylation and cytoskeletal reorganization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号