共查询到20条相似文献,搜索用时 15 毫秒
1.
J. Thomas Brenna Norman Salem Andrew J. Sinclair Stephen C. Cunnane 《Prostaglandins, leukotrienes, and essential fatty acids》2009,80(2-3):85-91
Blood levels of polyunsaturated fatty acids (PUFA) are considered biomarkers of status. Alpha-linolenic acid, ALA, the plant omega-3, is the dietary precursor for the long-chain omega-3 PUFA eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA). Studies in normal healthy adults consuming western diets, which are rich in linoleic acid (LA), show that supplemental ALA raises EPA and DPA status in the blood and in breast milk. However, ALA or EPA dietary supplements have little effect on blood or breast milk DHA levels, whereas consumption of preformed DHA is effective in raising blood DHA levels. Addition of ALA to the diets of formula-fed infants does raise DHA, but no level of ALA tested raises DHA to levels achievable with preformed DHA at intakes similar to typical human milk DHA supply. The DHA status of infants and adults consuming preformed DHA in their diets is, on average, greater than that of people who do not consume DHA. With no other changes in diet, improvement of blood DHA status can be achieved with dietary supplements of preformed DHA, but not with supplementation of ALA, EPA, or other precursors. 相似文献
2.
《The Journal of nutritional biochemistry》2014,25(9):977-984
Nonalcoholic fatty liver disease is characterized by an abnormal accumulation of triacylglycerides in the liver in absence of significant alcohol consumption. Under these conditions, it has been observed an impaired bioavailability of hepatic n-3 long-chain polyunsaturated fatty acids (LCPUFAs). The aim of this study was to test the reversion of the prosteatotic and proinflammatory effects of high-fat diet (HFD) in the mouse liver by changing to normocaloric diet and n-3 LCPUFA supplementation. Male C57BL/6J mice were given either control diet (CD) or HFD for 12 weeks. Control and HFD groups were divided into subgroups that continue with CD or subjected to CD plus n-3 LCPUFA for 8 additional weeks. After this time, blood and liver samples were taken and metabolic, morphologic, oxidative stress, inflammatory and signaling parameters were analyzed. The dietary change from HFD to a normocaloric diet with n-3 LCPUFA supplementation significantly reduced insulin resistance and liver steatosis when compared to switching HFD to normocaloric diet alone. In addition, HFD-induced increases in adiposity, adipocyte enlargement and liver oxidative stress and inflammatory cytokine expression were suppressed by n-3 LCPUFA to control values. Importantly, n-3 LCPUFA supplementation abolish HFD-induced enhancement in hepatic SREBP-1c/PPAR-α ratios, suggesting a change in the metabolic status of the liver from a lipogenic condition to one favoring fatty acid oxidation and steatosis attenuation. These findings may provide the rational basis for the use of normocaloric diets supplemented with n-3 LCPUFA in patients with liver steatosis. 相似文献
3.
Type 2 diabetes is characterized by insulin resistance, hyperinsulinemia and hepatic overproduction of glucose and lipids. Insulin increases lipogenic enzyme expression by activating Akt and aPKC which activate SREBP-1c; this pathway is hyperactivated in insulin-resistant states. Insulin suppresses gluconeogenic enzyme expression by Akt-dependent phosphorylation/inactivation of FoxO1 and PGC-1α; this pathway is impaired in insulin-resistant states by aPKC excess, which displaces Akt from scaffolding-protein WD40/ProF, where Akt phosphorylates/inhibits FoxO1. But how PGC-1α and FoxO1 are coordinated in insulin action and resistance is uncertain. Here, in normal mice, we found, along with Akt and aPKC, insulin increased PGC-1α association with WD40/ProF by an aPKC-dependent mechanism. However, in insulin-resistant high-fat-fed mice, like FoxO1, PGC-1α phosphorylation was impaired by aPKC-mediated displacement of Akt from WD40/ProF, as aPKC inhibition diminished its association with WD40/ProF, and simultaneously restored Akt association with WD40/ProF and phosphorylation/inhibition of both PGC-1α and FoxO1. Moreover, in high-fat-fed mice, in addition to activity, PGC-1α expression was increased, not only by FoxO1 activation, but also, as found in human hepatocytes, by a mechanism requiring aPKC and SREBP-1c, which also increased expression and activity of PKC-ι. In high-fat-fed mice, inhibition of hepatic aPKC, not only restored Akt association with WD40/ProF and FoxO1/PGC-1α phosphorylation, but also diminished expression of SREBP-1c, PGC-1α, PKC-ι and gluconeogenic and lipogenic enzymes, and corrected glucose intolerance and hyperlipidemia. Conclusion: Insulin suppression of gluconeogenic enzyme expression is facilitated by coordinated inactivation of FoxO1 and PGC-1α by WD40/ProF-associated Akt; but this coordination also increases vulnerability to aPKC hyperactivity, which is abetted by SREBP-1c-induced increases in PGC-1α and PKC-ι. 相似文献
4.
5.
Kristin A. Marks Phillip M. Marvyn Juan J. Aristizabal Henao Ryan M. Bradley Ken D. Stark Robin E. Duncan 《Genes & nutrition》2015,10(6)
We investigated the effect of short-term fasting on coordinate changes in the fatty acid composition of adipose triacylglycerol (TAG), serum non-esterified fatty acids (NEFA), liver TAG, and serum TAG and phospholipids in mice fed ad libitum or fasted for 16 h overnight. In contrast to previous reports under conditions of maximal lipolysis, adipose tissue TAG was not preferentially depleted of n-3 PUFA or any specific fatty acids, nor were there any striking changes in the serum NEFA composition. Short-term fasting did, however, increase the hepatic proportion of n-3 PUFA, and almost all individual species of n-3 PUFA showed relative and absolute increases. The relative proportion of n-6 PUFA in liver TAG also increased but to a lesser extent, resulting in a significant decrease in the n-6:n-3 PUFA ratio (from 14.3 ± 2.54 to 9.6 ± 1.20), while the proportion of MUFA decreased significantly and SFA proportion did not change. Examination of genes involved in PUFA synthesis suggested that hepatic changes in the elongation and desaturation of precursor lipids could not explain this effect. Rather, an increase in the expression of fatty acid transporters specific for 22:6n-3 and other long-chain n-3 and n-6 PUFA likely mediated the observed hepatic enrichment. Analysis of serum phospholipids indicated a specific increase in the concentration of 22:6n-3 and 16:0, suggesting increased specific synthesis of DHA-enriched phospholipid by the liver for recirculation. Given the importance of blood phospholipid in distributing DHA to neural tissue, these findings have implications for understanding the adipose–liver–brain axis in n-3 PUFA metabolism.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-015-0490-2) contains supplementary material, which is available to authorized users. 相似文献6.
Can associations between free fatty acid levels and metabolic parameters determine insulin resistance development in obese Zucker rats? 总被引:10,自引:0,他引:10
Elevated levels of serum free fatty acids (FFA) may be the metabolic alteration in obesity that leads to insulin resistance (IR) and type 2 diabetes mellitus (DM). The obese Zucker rat (ZR) is a genetic model of juvenile-onset obesity and type 2 DM. Compared with its lean sibling, the obese ZR is hyperinsulinemic, hypertriglyceridemic, and, beginning at about 6 months, hyperglycemic. The obese ZR demonstrates also IR, hyperphagia, increased lipogenesis, adipocyte hypertrophy and hyperplasia, and increased serum FFA levels. This study was designed to determine if serum FFA levels in lean and obese ZRs correlate with metabolic parameters associated with altered energy metabolism and IR. We hypothesized that serum FFA levels correlate with such serum parameters such as insulin, glucose, triglyceride, and total cholesterol, as well as such tissue parameters as retroperitoneal, perirenal, and epididymal fat pad weights and liver total lipid content. Twenty lean and 20 obese ZR were age/weight matched. For 14 days each rat had ad libitum access to a single bowl diet that was 50% fat, 30% carbohydrate, and 20% protein. Body weights and caloric intakes were measured daily. After 14 days, all animals were fasted overnight and euthanized. Serum and tissue measurements were made and various parameters were correlated with FFA levels. Serum FFA levels were almost 2 times higher in the obese ZR (approximately 1 mmol/L) compared to the lean (approximately 0.6 mmol/L). Each variable measured was significantly (p < or = 0.05) greater in the obese ZR compared to the lean. There were significant correlations between serum FFA levels and certain variables when data from all ZR were plotted against serum and tissue parameters. However, within phenotypes, there were no significant correlations. Serum FFA levels predict serum and tissue parameters that accompany obesity and IR when comparing lean and obese rats. However, FFA do not predict such parameters within one phenotype. 相似文献
7.
Smink W Gerrits WJ Gloaguen M Ruiter A van Baal J 《Animal : an international journal of animal bioscience》2012,6(2):262-270
Studies suggested that in human adults, linoleic acid (LA) inhibits the biosynthesis of n-3 long-chain polyunsaturated fatty acids (LC-PUFA), but their effects in growing subjects are largely unknown. We used growing pigs as a model to investigate whether high LA intake affects the conversion of n-3 LC-PUFA by determining fatty acid composition and mRNA levels of Δ5- and Δ6 desaturase and elongase 2 and -5 in liver and brain. In a 2 × 2 factorial arrangement, 32 gilts from eight litters were assigned to one of the four dietary treatments, varying in LA and α-linolenic acid (ALA) intakes. Low ALA and LA intakes were 0.15 and 1.31, and high ALA and LA intakes were 1.48 and 2.65 g/kg BW0.75 per day, respectively. LA intake increased arachidonic acid (ARA) in liver. ALA intake increased eicosapentaenoic acid (EPA) concentrations, but decreased docosahexaenoic acid (DHA) (all P < 0.01) in liver. Competition between the n-3 and n-6 LC-PUFA biosynthetic pathways was evidenced by reductions of ARA (>40%) at high ALA intakes. Concentration of EPA (>35%) and DHA (>20%) was decreased by high LA intake (all P < 0.001). Liver mRNA levels of Δ5- and Δ6 desaturase were increased by LA, and that of elongase 2 by both ALA and LA intakes. In contrast, brain DHA was virtually unaffected by dietary LA and ALA. Generally, dietary LA inhibited the biosynthesis of n-3 LC-PUFA in liver. ALA strongly affects the conversion of both hepatic n-3 and n-6 LC-PUFA. DHA levels in brain were irresponsive to these diets. Apart from Δ6 desaturase, elongase 2 may be a rate-limiting enzyme in the formation of DHA. 相似文献
8.
9.
Katsumi Toda Yoshihiro Hayashi Toshiji Saibara 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(6):655-664
The relevance of estrogen functions in lipid metabolism has been suggested in patients with estrogen-signaling deficiencies. Their importance was further implied by studies in estrogen-deficient mice (ArKO mice), which progressively developed hepatic steatosis. As circulating tumor necrosis factor (TNF)-α levels are known to positively correlate with disturbances in lipid metabolism, we investigated the impact of the loss of TNF-α signaling on carbohydrate and lipid metabolism in ArKO mice. Histological examinations of the livers of mice at 5 months of age revealed that ArKO male mice lacking the TNF-α receptor type 1 (TNFR1) gene (ArKO/TNFR1KO) or both the TNFR 1 and 2 genes (ArKO/TNFR1&2KO) developed more severe hepatic steatosis than ArKO or ArKO/TNFR2KO mice. Serum analyses demonstrated a clear increase in cholesterol and insulin levels in the ArKO/TNFR1KO mice compared with the ArKO mice. Glucose- and insulin-tolerance tests further revealed exacerbation of the systemic insulin resistant phenotype in the ArKO/TNFR1KO mice. Hepatic expression of lipogenic genes including fatty-acid synthase and stearoyl-Coenzyme A desaturase 1 were more markedly upregulated in the ArKO/TNFR1KO mice than the ArKO mice. These findings indicate that under estrogen-deficient physiological conditions, hepatic lipid metabolism would benefit from TNF-α mediated signaling via TNFR1. 相似文献
10.
Dominick J. Lemas Yann C. Klimentidis Howard H. Wiener Diane M. O’Brien Scarlett E. Hopkins David B. Allison Jose R. Fernandez Hemant K. Tiwari Bert B. Boyer 《Genes & nutrition》2013,8(5):495-505
n-3 Polyunsaturated fatty acids (n-3 PUFAs) have anti-obesity effects that may modulate risk of obesity, in part, through interactions with genetic factors. Genome-wide association studies (GWAS) have identified genetic variants associated with body mass index (BMI); however, the extent to which these variants influence adiposity through interactions with n-3 PUFAs remains unknown. We evaluated 10 highly replicated obesity GWAS single nucleotide polymorphisms (SNPs) for individual and cumulative associations with adiposity phenotypes in a cross-sectional sample of Yup’ik people (n = 1,073) and evaluated whether genetic associations with obesity were modulated by n-3 PUFA intake. A genetic risk score (GRS) was calculated by adding the BMI-increasing alleles across all 10 SNPs. Dietary intake of n-3 PUFAs was estimated using nitrogen stable isotope ratio (δ15N) of red blood cells, and genotype–phenotype analyses were tested in linear models accounting for familial correlations. GRS was positively associated with BMI (p = 0.012), PBF (p = 0.022), ThC (p = 0.025), and waist circumference (p = 0.038). The variance in adiposity phenotypes explained by the GRS included BMI (0.7 %), PBF (0.3 %), ThC (0.7 %), and WC (0.5 %). GRS interactions with n-3 PUFAs modified the association with adiposity and accounted for more than twice the phenotypic variation (~1–2 %), relative to GRS associations alone. Obesity GWAS SNPs contribute to adiposity in this study population of Yup’ik people and interactions with n-3 PUFA intake potentiated the risk of fat accumulation among individuals with high obesity GRS. These data suggest the anti-obesity effects of n-3 PUFAs among Yup’ik people may, in part, be dependent upon an individual’s genetic predisposition to obesity.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-013-0340-z) contains supplementary material, which is available to authorized users. 相似文献11.
《Animal : an international journal of animal bioscience》2012,6(12):1973-1984
This study investigated effects of roasted or extruded oilseed supplementation ranging in n-6/n-3 ratios from 0.3 to 5.0 on the fatty acid composition and expression of delta-5 desaturase (Δ5d) and Δ6-desaturase (Δ6d) protein in commercial steer cheek (m. masseter) and diaphragm (pars costalis diaphragmatis) muscles. In general, the n-6/n-3 ratio of the diet had a subsequent effect on the muscle n-6/n-3 ratio (P < 0.05), with muscle 18:2n-6 and 18:3n-3 content relating to proportion of dietary soya bean and linseed (P < 0.01). Compared with canola, pure linseed and soya bean diets reduced 14:1c-9 and 16:1c-9 (P < 0.05) but increased 18:1t-11 and c-9,t-11 conjugated linoleic acid (CLA) content (P < 0.01). Oilseed processing had a minor influence but extruded oilseeds increase 18:1t-11 and c-9,t-11 CLA compared with roasted (P < 0.05). Polar lipid 18:3n-3 and n-3 long-chain polyunsaturated fatty acid (LC, ⩾20 carbons PUFA) derivative content increased in relation to dietary linseed supplementation in the diaphragm (P < 0.01), whereas only 18:3n-3 was increased in the cheek (P < 0.01). Protein expression did not differ between diets; however, in each muscle the Δ5d protein expression had a stronger association with the desaturase products rather than the precursors. The relationship between Δ5d protein expression and the muscle LC n-6/n-3 ratio was negative in both muscles (P < 0.05). The relationship between Δ6d protein expression and the LC n-6/n-3 ratio was positive in the cheek (P < 0.001) and negative in the diaphragm (P < 0.05). In conclusion, diet n-6/n-3 ratio affected muscle 18:2n-6 and 18:3n-3 deposition, whereas the Δ5d and Δ6d protein expression had some influence on the polar lipid LC-PUFA profile. Results reaffirm that processed oilseeds can be used to increase the proportion of fatty acids potentially beneficial for human health, by influencing the formation of LC-PUFA and reducing the n-6/n-3 ratio. 相似文献
12.
13.
Maaløe T Schmidt EB Svensson M Aardestrup IV Christensen JH 《Prostaglandins, leukotrienes, and essential fatty acids》2011,85(1):37-41
The proinflammatory leukotriene B4 (LTB4) may be of importance in the progression of chronic kidney disease (CKD). We investigated whether n-3 polyunsaturated fatty acids (PUFA) decrease LTB4 and increase the formation of the less inflammatory leukotriene B5 (LTB5) in patients with CKD.Fifty-six patients with CKD stage 2-5 were randomised to 2.4 g n-3 PUFA or olive oil for 8 weeks. Compared to controls, n-3 PUFA significantly decreased release of LTB4 (p<0.001) and 5-hydroxyeicosatetraenoic acid (5-HETE) (p<0.01) and significantly increased release of LTB5 (p<0.001) and 5-hydroxyeicosapentaenoic acid (5-HEPE) (p<0.001) from stimulated neutrophil granulocytes. Kidney function evaluated by creatinine clearance and proteinuria did not improve. In conclusion, n-3 PUFA supplementation for 8 weeks in patients with CKD stage 2-5 significantly decreased LTB4 and 5-HETE and significantly increased LTB5 and 5-HEPE. No effect was seen on kidney function. 相似文献
14.
15.
16.
Adjusting ω-3/ω-6 polyunsaturated fatty acids (PUFAs) ratio in high-fat diet is one potential mean to improve metabolic syndrome; however, underlying mechanisms remain unclear. Four groups of mice were fed 60% kcal diets with saturated fatty acids, three different ω-3/ω-6 PUFAs ratios (low, middle and high) for 12 weeks, respectively. Body weight, atherosclerosis marker, insulin signal index and level of lipid accumulation in liver were significantly lowered in High group compared with saturated fatty acids group and Low group at week 12. Expressions of p-mTOR and raptor were inhibited by high ω-3 PUFAs. Importantly, ω-3 PUFAs intake up-regulated mitochondrial electron transport chain and tricarboxylic acid cycle pathway through metabolomics analysis in liver. Mitochondrial complexes activities were raised, fumaric acid was reduced and oxidative stress was alleviated in High group. We conclude that consuming long-term high-fat diet with same calories but high ω-3/ω-6 PUFAs ratio relieves metabolic syndrome by regulating mTORC1 pathway to enhance mitochondrial function. 相似文献
17.
18.
Srivastava Rai Ajit K. Cefalu Angelo B. Srivastava Nishtha S. Averna Maurizio 《Molecular and cellular biochemistry》2020,473(1-2):247-262
Molecular and Cellular Biochemistry - Reverse cholesterol transport (RCT) and transintestinal cholesterol efflux (TICE) are two important pathways for body cholesterol elimination. We studied these... 相似文献
19.
Osthol is an active constituent isolated from the fruit of Cnidium monnieri (L.) Cusson (Apiaceae), and has obvious therapeutic effect on fatty liver, but its mechanisms are not yet understood completely. One potential link between adipose tissue and fatty liver may be circulating fatty acids. In the present study, the effect of osthol on fatty acid synthesis and release in cultured 3T3-L1 adipocytes was observed. Following treatment of adipocytes with osthol, the intracellular levels of free fatty acids (FFA) and triacylglycerols as well as cultured supernatant level of FFA were decreased, and some lipogenic gene and protein expressions were also decreased, while the peroxisome proliferator-activated receptor (PPAR) α/γ mRNA expressions were increased. Osthol-reduced lipogenic gene expressions were decreased or abrogated after pretreatment with specific inhibitor(s) of PPARα and/or PPARγ. 相似文献
20.
《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1986,889(1):95-102