首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.  相似文献   

2.
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.  相似文献   

3.
Epidermal growth factor (EGF) regulates normal and tumor cell proliferation via epidermal growth factor receptor (EGFR) phosphorylation, homo- or heterodimerization and activation of mitogen-activated protein kinases (MAPKs) and PI3K/AKT cell survival pathways. In contrast, SST via activation of five different receptor subtypes inhibits cell proliferation and has been potential target in tumor treatment. To gain further insight for the effect of SSTRs on EGFR activated signaling, we determine the role of SSTR1 and SSTR1/5 in human embryonic kidney (HEK) 293 cells. We here demonstrate that cells transfected with SSTR1 or SSTR1/5 negatively regulates EGF mediated effects attributed to the inhibition of EGFR phosphorylation, MAPKs as well as the cell survival signaling. Furthermore, SSTR effects were significantly enhanced in cells when EGFR was knock down using siRNA or treated with selective antagonist (AG1478). Most importantly, the presence of SSTR in addition to modulating signaling pathways leads to the dissociation of the constitutive and EGF induced heteromeric complex of EGFR/ErbB2. Furthermore, cells cotransfected with SSTR1/5 display pronounced effect of SST on the signaling and dissociation of the EGFR/ErbB2 heteromeric complex than the cells expressing SSTR1 alone. Taken together this study provides the first evidence that the presence of SSTR controls EGF mediated cell survival pathway via dissociation of ErbB heteromeric complex. We propose that the activation of SSTR and blockade of EGFR might serve novel therapeutic approach in inhibition of tumor proliferation.  相似文献   

4.
Signals downstream of growth factor receptors play an important role in mammary carcinogenesis. Recently, we demonstrated that the small GTPases ARF1 and ARF6 were shown to be activated downstream of the epidermal growth factor receptor (EGFR) and act as a key regulator of growth, migration, and invasion of breast cancer cells. However, the mechanism via which the EGFR recruits and activates ARF1 and ARF6 to transmit signals has yet to be fully elucidated. Here, we identify adaptor proteins Grb2 and p66Shc as important regulators mediating ARF activation. We demonstrate that ARF1 can be found in complex with Grb2 and p66Shc upon EGF stimulation of the basal-like breast cancer MDA-MB-231 cell line. However, we report that these two adaptors regulate ARF1 activation differently, with Grb2 promoting ARF1 activation and p66Shc blocking this response. Furthermore, we show that Grb2 is essential for the recruitment of ARF1 to the EGFR, whereas p66Shc hindered ARF1 receptor recruitment. We demonstrate that the negative regulatory role of p66Shc stemmed from its ability to block the recruitment of Grb2/ARF1 to the EGFR. Conversely, p66Shc potentiates ARF6 activation as well as the recruitment of this ARF isoform to the EGFR. Interestingly, we demonstrate that Grb2 is also required for the activation and receptor recruitment of ARF6. Additionally, we show an important role for p66Shc in modulating ARF activation, cell growth, and migration in HER2-positive breast cancer cells. Together, our results highlight a central role for adaptor proteins p66Shc and Grb2 in the regulation of ARF1 and ARF6 activation in invasive breast cancer cells.  相似文献   

5.
Cross-linking of the B-cell antigen receptor (BCR) induces tyrosine phosphorylation of Shc, which is believed to lead to the activation of Ras. Previous work has shown that tyrosine-phosphorylated Shc forms complexes with another adapter protein, Grb2, and the Ras guanine nucleotide exchange factor SOS. Here, we demonstrate that phosphorylation of Shc by the hematopoietic cell-specific tyrosine kinase Syk induces binding of Grb2 to Shc, suggesting that Syk phosphorylates Shc in stimulated B cells. Surprisingly, Syk-phosphorylated Shc possesses two Grb2 binding sites rather than the one site that has been previously reported. Both of these sites are required for efficient formation of Shc-Grb2-SOS complexes in vitro and in vivo. We suggest that two Grb2 proteins anchored by a single Shc protein bind simultaneously to one SOS molecule, resulting in a complex that is more stable than a complex containing only a single Grb2 protein bound to one SOS molecule. This model is consistent with our observation that BCR stimulation greatly increases the amount of SOS associated with Grb2.  相似文献   

6.
7.
The different epidermal growth factor (EGF)-related peptides elicit a diverse array of biological responses as the result of their ability to activate distinct subsets of ErbB receptor dimers, leading to the recruitment of different intracellular signaling networks. To specifically examine dimerization-dependent modulation of receptor signaling, we constructed NIH 3T3 cell lines expressing ErbB-1 and ErbB-2 singly and in pairwise combinations with each other ErbB family member. This model system allowed the comparison of EGF-activated ErbB-1 with ErbB-1 activated by Neu differentiation factor (NDF)-induced heterodimerization with ErbB-4. In both cases, ErbB-1 coupled to the adaptor protein Shc, but only when activated by EGF was it able to interact with Grb2. Compared to the rapid internalization of EGF-activated ErbB-1, NDF-activated ErbB-1 showed delayed internalization characteristics. Furthermore, the p85 subunit of phosphatidylinositol kinase (PI3-K) associated with EGF-activated ErbB-1 in a biphasic manner, whereas association with ErbB-1 transactivated by ErbB-4 was monophasic. The signaling properties of ErbB-2 following heterodimerization with the other ErbB receptors or homodimerization induced by point mutation or monoclonal antibody treatment were also analyzed. ErbB-2 binding to peptides containing the Src homology 2 domain of Grb2 or p85 and the phosphotyrosine binding domain of Shc varied according to the mode of receptor activation. Finally, tryptic phosphopeptide mapping of both ErbB-1 and ErbB-2 revealed that receptor phosphorylation is dependent on the dimerization partner. Differential receptor phosphorylation may, therefore, be the basis for the differences in the signaling properties observed.  相似文献   

8.
Somatostatin (SST) inhibition of hormone hypersecretion from tumors is mediated by somatostatin receptors (SSTRs). SSTRs also play an important role in controlling tumor growth through specific antiproliferative actions. These receptors are well expressed in numerous normal and tumor tissues and are susceptible to regulation by a variety of factors. Estradiol, a potent trophic and mitogenic hormone in its target tissues, is known to modulate the expression of SST and its receptors. Accordingly, in the present study, we determined the effects of tamoxifen, a selective estrogen receptor (ER) modulator (SERM), and estradiol on SSTR1 and SSTR2 expression at the mRNA and protein levels in ER-positive and -negative breast cancer cells. We found that SSTR1 was upregulated by tamoxifen in a dose-dependent manner but no effect was seen with estradiol. In contrast, SSTR2 was upregulated by both tamoxifen and estradiol. Combined treatment caused suppression of SSTR1 below control levels but had no significant effect on SSTR2. Treatment with SSTR1-specific agonist was significantly more effective in suppressing cell proliferation of cells pre-treated with tamoxifen. Taking these data into consideration, we suggest that tamoxifen and estradiol exert variable effects on SSTR1 and SSTR2 mRNA and protein expression and distributional pattern of the receptors. These changes are cell subtype-specific and affect the ability of SSTR agonists to inhibit cell proliferation.  相似文献   

9.
Two adaptor molecules, Grb2 and Shc, have been implicated in the extracellular signal-regulated kinase (ERK) activation by receptor tyrosine kinases such as the epidermal growth factor receptor (EGFR). Here we show that the EGF-mediated ERK activation is abolished by loss of Grb2, whereas this response is not affected by loss of Shc. Conversely, the EGF-mediated c-Jun N-terminal kinase (JNK) activation is dependent on Shc, but not Grb2. These findings strongly support distinct roles for Grb2 and Shc in controlling ERK and JNK activation after EGF stimulation.  相似文献   

10.
SH-PTP2 is a nontransmembrane human protein-tyrosine phosphatase that contains two Src homology 2 (SH2) domains and binds to insulin receptor substrate 1 (IRS-1) via these domains in response to insulin. The expression of a catalytically inactive mutant of SH-PTP2 (containing the mutation Cys-459-->Ser) in Chinese hamster ovary cells that overexpress human insulin receptors (CHO-IR cells) markedly attenuated insulin-stimulated Ras activation. Expression of mutant SH-PTP2 also inhibited MAP kinase activation in response to insulin but not in response to 12-O-tetradecanoyl phorbol-13-acetate. In contrast, the insulin-induced association of phosphoinositide 3-kinase activity with IRS-1 was not affected by the expression of inactive SH-PTP2. Furthermore, the expression of mutant SH-PTP2 had no effect on the binding of Grb2 to IRS-1, on the tyrosine phosphorylation of Shc, or on the formation of the complex between Shc and Grb2 in response to insulin. However, the amount of SH-PTP2 bound to IRS-1 in insulin-treated CHO-IR cells expressing mutant SH-PTP2 was greater than that observed in CHO-IR cells overexpressing wild-type SH-PTP2. Recombinant SH-PTP2 specifically dephosphorylated a synthetic phosphopeptide corresponding to the sequence surrounding Tyr-1172 of IRS-1, a putative binding site for SH-PTP2. Additionally, phenylarsine oxide, an inhibitor of protein-tyrosine phosphatases, inactivated SH-PTP2 in vitro and increased the insulin-induced association of SH-PTP2 with IRS-1. These results suggest that SH-PTP2 may regulate an upstream element necessary for Ras activation in response to insulin and that this upstream element may be required for the Grb2- or Shc-dependent pathway. Furthermore, these results are consistent with the notion that SH-PTP2 may bind to IRS-1 through its SH2 domains in response to insulin and dephosphorylate the phosphotyrosine residue to which it binds, thereby regulating its association with IRS-1.  相似文献   

11.
生长抑素受体家族(somatostatin receptors,SSTRs)是一类介导生长抑素及其类似物,具有多种生物学效应的G蛋白偶联受体家族,其生理功能和作用机制长期以来倍受关注.研究表明,这些细胞膜上存在的特定膜受体包括SSTR1、SSTR2、SSTR3、SSTR4以及SSTR5,可以通过cAMP、PTP和MAPK信号通路,在调控GH分泌、诱导细胞凋亡、抑制肿瘤细胞增生、抑制胰岛素作用和抑制细胞生长等生物学过程发挥重要的作用,同时表现出与其它G蛋白偶联受体性质相似的动力学特征.本文将SSTRs的结构、分布和生理功能、配体选择性、下游信号通路,以及该受体家族的动力学特征最新研究进展作一综述.  相似文献   

12.
Shc proteins are phosphorylated on tyrosine residues and associate with growth factor receptor-bound protein 2 (Grb2) upon treatment of cells with epidermal growth factor (EGF) or insulin. We have studied the role of Shc in insulin- and EGF-induced activation of p21ras in NIH 3T3 cells overexpressing human insulin receptors (A14 cells). A14 cells are equally responsive to insulin and EGF with respect to activation of p21ras. Analysis of Shc immunoprecipitates revealed that (i) both insulin and EGF treatment resulted in Shc tyrosine phosphorylation and (ii) Shc antibodies coimmunoprecipitated both Grb2 and mSOS after insulin and EGF treatment. The induction of tyrosine phosphorylation of Shc and the presence of Grb2 and mSOS in Shc immunoprecipitates followed similar time courses, with somewhat higher levels after EGF treatment. In mSOS immunoprecipitates, Shc could be detected as well. Furthermore, Shc immune complexes contained guanine nucleotide exchange activity toward p21ras in vitro. From these results, we conclude that after insulin and EGF treatment, Shc associates with both Grb2 and mSOS and therefore may mediate, at least in part, insulin- and EGF-induced activation of p21ras. In addition, we investigated whether the Grb2-mSOS complex associates with the insulin receptor or with insulin receptor substrate 1 (IRS1). Although we observed association of Grb2 with IRS1, we did not detect complex formation between mSOS and IRS1 in experiments in which the association of mSOS with Shc was readily detectable. Furthermore, whereas EGF treatment resulted in the association of mSOS with the EGF receptor, insulin treatment did not result in the association of mSOS with the insulin receptor. These results indicate that the association of Grb2-nSOS with Shc may be an important event in insulin-induced, mSOS-mediated activation of p21ras.  相似文献   

13.
The Grb2 adaptor protein is best known for its role in signaling to the small GTPase p21(ras), mediated through its interaction with the SOS guanine nucleotide exchange factor. Here, we demonstrate that Grb2 also signals to Rab5, a small GTPase that plays a key role in early endocytic trafficking. Grb2 functions through association with RN-tre, a GTPase-activating protein for Rab5. Grb2 and RN-tre associate both in vitro and in vivo, with interaction mediated by both SH3 domains of Grb2 and extended proline-rich sequences in RN-tre. Association between Grb2 and RN-tre is constitutive and occurs independently of Eps8, a previously identified binding partner of RN-tre. Epidermal growth factor (EGF) stimulates recruitment of RN-tre to the EGF receptor (EGFR) in a Grb2-dependent manner. Grb2 and the EGFR are internalized and co-localized in endocytic vesicles in response to EGF. Overexpression of RN-tre blocks the internalization of both proteins, consistent with its function as a negative regulator of Rab5 and endocytosis. Strikingly, RN-tre does not block EGF-induced internalization of a Grb2 mutant deficient in RN-tre binding. These results 1) suggest that the ability of RN-tre to inhibit internalization of the EGFR requires Grb2-mediated binding to the receptor and 2) identify Grb2 as a critical regulator of Rab5 and EGFR endocytosis.  相似文献   

14.
Somatostatins are a diverse family of peptide hormones that regulate various aspects of growth, development, and metabolism through interactions with numerous somatostatin receptor subtypes (SSTRs) on target tissues. In this study, we used rainbow trout to evaluate the effects of growth hormone (GH), insulin (INS), and insulin-like growth factor-I (IGF-I) on the expression of SSTR 1A, 1B and 2 mRNAs. GH regulated the expression of SSTRs in a subtype- and tissue-specific manner. GH reduced SSTR 1A, 1B, and 2 expression in optic tectum, reduced SSTR 1A and 1B expression in pancreas, reduced SSTR 1A expression in liver, and increased hepatic SSTR 1B expression. INS also regulated SSTR expression in a subtype- and tissue-specific manner. INS reduced SSTR 1B expression in optic tectum, increased SSTR 2 expression in pancreas, and increased SSTR 1B and 2 expression in liver. IGF-I generally decreased the expression of all SSTRs. These data indicate that GH, INS, and IGF-I modulate the expression of SSTRs and suggest that independent mechanisms may serve to regulate the various receptor subtypes.  相似文献   

15.
《Biophysical journal》2022,121(10):1897-1908
Cells sense a variety of extracellular growth factors and signaling molecules through numerous distinct receptor tyrosine kinases (RTKs) on the cell surface. In many cases, the same intracellular signaling molecules interact with more than one type of RTK. How signals from different RTKs retain the identity of the triggering receptor and how (or if) different receptors may synergize or compete remain largely unknown. Here we utilize an experimental strategy, combining microscale patterning and single-molecule imaging, to measure the competition between ephrin-A1:EphA2 and epidermal growth factor (EGF):EGF receptor (EGFR) ligand-receptor complexes for the shared downstream signaling molecules, Grb2 and SOS. The results reveal a distinct hierarchy, in which newly formed EGF:EGFR complexes outcompete ephrin-A1:EphA2 for Grb2 and SOS, revealing a type of negative crosstalk interaction fundamentally controlled by chemical mass action and protein copy number limitations.  相似文献   

16.
To explore the mechanism of MAP kinase activation in adipocytes, we examined the possible involvement of several candidate signaling proteins. MAP kinase activity was markedly increased 2-4 min after treatment with insulin and declined to basal levels after 20 min. The insulin-dependent tyrosine phosphorylation of IRS-1 in the internal membrane and its association with phosphatidylinositol 3 (PI3) kinase preceded MAP kinase activation. There was little or no tyrosine phosphorylation of Shc or association of Grb2 with Shc or IRS-1. Specific PI3 kinase inhibitors blocked the insulin-mediated activation of MAP kinase. They also decreased the activation of MAP kinase by PMA and EGF but to a much lesser extent. Insulin induced phosphorylation of AKT on serine/threonine residues, and its effect could be blocked by PI3 kinase inhibitors. These results suggest that the insulin-dependent activation of MAP kinase in adipocytes is mediated by the IRS-1/PI3 kinase pathway but not by the Shc/Grb2/SOS pathway.  相似文献   

17.
Grb7 is an adapter-type signaling protein, which is recruited via its SH2 domain to a variety of receptor tyrosine kinases (RTKs), including ErbB2 and ErbB3. It is overexpressed in breast, esophageal, and gastric cancers, and may contribute to the invasive potential of cancer cells. Molecular interactions involving Grb7 therefore provide attractive targets for therapeutic intervention. We have utilized phage display random peptide libraries as a source of small peptide ligands to the SH2 domain of Grb7. Screening these libraries against purified Grb7 SH2 resulted in the identification of Grb7-binding peptide phage clones that contained a non-phosphorylated Tyr-X-Asn (YXN) motif. The tyrosine-phosphorylated form of this motif is characteristic of Grb7 SH2 domain binding sites identified in RTKs and other signaling proteins such as Shc. Peptides that are non-phosphorylated have greater potential in the development of therapeutics because of the instability of a phosphate group in vivo. Using a biased library approach with this conserved YXN motif, we identified seven different peptide phage clones, which bind specifically to the SH2 domain of Grb7. These peptides did not bind to the SH2 domain of Grb2 (which also selects for Asn at pY(+2)) or Grb14, a closely related family member. The cyclic structure of the peptides was required to bind to the Grb7 SH2 domain. Importantly, the synthetic Grb7-binding peptide G7-18 in cell lysates was able to specifically inhibit the association of Grb7 with the ErbB family of RTKs, in particular ErbB3, in a dose-dependent manner. These peptides will be useful in the development of targeted molecular therapeutics for cancers overexpressing Grb7 and in the development of Grb7-specific inhibitors to gain a complete understanding of the physiological role of Grb7.  相似文献   

18.
The Src homology 2-containing 5' inositolphosphatases (SHIP and SHIP2) dephosphorylate 3'-phosphorylated PtdIns on the 5' position, decreasing intracellular levels of PtdIns 3,4,5-P3. In the current study, we investigated the role of SHIP in insulin and platelet-derived growth factor (PDGF) signaling by expressing wild-type (WT) and catalytically inactive SHIPDeltaIP in 3T3-L1 adipocytes, utilizing adenoviral infection. Insulin and PDGF both stimulated tyrosine phosphorylation of SHIP-WT and of SHIPDeltaIP, and tyrosine phosphorylation of SHIP-associated proteins increased after ligand stimulation. Tyrosine-phosphorylated PDGFR, IR, and insulin receptor substrate-1 all immunoprecipitated with SHIP. Expression of WT and DeltaIP mutant SHIP did not affect tyrosine phosphorylation of either the insulin or the PDGF receptor, or the expression of insulin receptor substrate-1 and Shc proteins. Both SHIP-WT and SHIPDeltaIP blocked insulin and PDGF-induced MAPK and MAPK kinase phosphorylation as well as, GTP-bound Ras activity, suggesting that the catalytic activity of SHIP is not necessary for these effects. SHIP associated with Shc upon ligand stimulation, indicating that the SHIP-Shc association is phosphorylation dependent. This association was primarily between the SHIP-SH2 domain and the phosphorylated tyrosine residues of Shc because no association was observed when the 3YF-Shc mutant was coexpressed with SHIP. The Shc*Grb2 association was not compromised by SHIP expression, despite complete inhibition of the Ras/MAPK pathway. Interestingly, son-of-sevenless (SOS) protein normally found in Grb2 complexes was markedly reduced in SHIP expressing cells, whereas the displaced SOS was recovered when the post-Grb2-IP supernatants were blotted with anti-SOS antibody. Thus, SHIP competes son-of-sevenless (SOS) away from Shc-Grb2. In summary, 1) SHIP-WT and SHIPDeltaIP expression inhibit insulin and PDGF stimulated Ras, MAPK kinase, and MAPK activities; 2) SHIP associates with tyrosine phosphorylated Shc, and the proline-rich sequences in SHIP associate with Grb2 and titrate out SOS to form Shc*Grb2*SHIP complexes; and 3) dissociation of SOS from the Shc*Grb2 complex inhibits Ras GTP loading, leading to decreased signaling through the MAPK pathway.  相似文献   

19.
Although many proteins have been shown to participate in ligand‐stimulated endocytosis of EGF receptor (EGFR), the adaptor protein responsible for interaction of activated EGFR with endocytic machinery remains elusive. We show here that EGF stimulates transient tyrosine phosphorylation of Tom1L1 by the Src family kinases, resulting in transient interaction of Tom1L1 with the activated EGFR bridged by Grb2 and Shc. Cytosolic Tom1L1 is recruited onto the plasma membrane and subsequently redistributes into the early endosome. Mutant forms of Tom1L1 defective in Tyr‐phosphorylation or interaction with Grb2 are incapable of interaction with EGFR. These mutants behave as dominant‐negative mutants to inhibit endocytosis of EGFR. RNAi‐mediated knockdown of Tom1L1 inhibits endocytosis of EGFR. The C‐terminal tail of Tom1L1 contains a novel clathrin‐interacting motif responsible for interaction with the C‐terminal region of clathrin heavy chain, which is important for exogenous Tom1L1 to rescue endocytosis of EGFR in Tom1L1 knocked‐down cells. These results suggest that EGF triggers a transient Grb2/Shc‐mediated association of EGFR with Tyr‐phosphorylated Tom1L1 to engage the endocytic machinery for endocytosis of the ligand–receptor complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号