首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many viruses achieve reversible attachment to sialic acid (Sia) by encoding envelope glycoproteins with receptor-binding and receptor-destroying activities. Toroviruses and group 2 coronaviruses bind to O-acetylated Sias, presumably via their spike proteins (S), whereas other glycoproteins, the hemagglutinin-esterases (HE), destroy Sia receptors by de-O-acetylation. Here, we present a comprehensive study of these enzymes. Sialate-9-O-acetylesterases specific for 5-N-acetyl-9-O-acetylneuraminic acid, described for bovine and human coronaviruses, also occur in equine coronaviruses and in porcine toroviruses. Bovine toroviruses, however, express novel sialate-9-O-acetylesterases, which prefer the di-O-acetylated substrate 5-N-acetyl-7(8),9-di-O-acetylneuraminic acid. Whereas most rodent coronaviruses express sialate-4-O-acetylesterases, the HE of murine coronavirus DVIM cleaves 9-O-acetylated Sias. Under the premise that HE specificity reflects receptor usage, we propose that two types of Sias serve as initial attachment factors for coronaviruses in mice. There are striking parallels between orthomyxo- and nidovirus biology. Reminiscent of antigenic shifts in orthomyxoviruses, rodent coronaviruses exchanged S and HE sequences through recombination to extents not appreciated before. As for orthomyxovirus reassortants, the fitness of nidovirus recombinant offspring probably depends both on antigenic properties and on compatibility of receptor-binding and receptor-destroying activities.  相似文献   

2.
Two ferret-adapted H5N1 viruses capable of respiratory droplet transmission have been reported with mutations in the hemagglutinin receptor-binding site and stalk domains. Glycan microarray analysis reveals that both viruses exhibit a strong shift toward binding to “human-type” α2-6 sialosides but with notable differences in fine specificity. Crystal structure analysis further shows that the stalk mutation causes no obvious perturbation of the receptor-binding pocket, consistent with its impact on hemagglutinin stability without affecting receptor specificity.  相似文献   

3.
Ficolins are oligomeric innate immune recognition proteins consisting of a collagen-like region and a fibrinogen-like recognition domain that bind to pathogen- and apoptotic cell-associated molecular patterns. To investigate their carbohydrate binding specificities, serum-derived L-ficolin and recombinant H- and M-ficolins were fluorescently labeled, and their carbohydrate binding ability was analyzed by glycan array screening. L-ficolin preferentially recognized disulfated N-acetyllactosamine and tri- and tetrasaccharides containing terminal galactose or N-acetylglucosamine. Binding was sensitive to the position and orientation of the bond between N-acetyllactosamine and the adjacent carbohydrate. No significant binding of H-ficolin to any of the 377 glycans probed could be detected, providing further evidence for its poor lectin activity. M-ficolin bound preferentially to 9-O-acetylated 2-6-linked sialic acid derivatives and to various glycans containing sialic acid engaged in a 2-3 linkage. To further investigate the structural basis of sialic acid recognition by M-ficolin, point mutants were produced in which three residues of the fibrinogen domain were replaced by their counterparts in L-ficolin. Mutations G221F and A256V inhibited binding to the 9-O-acetylated sialic acid derivatives, whereas Y271F abolished interaction with all sialic acid-containing glycans. The crystal structure of the Y271F mutant fibrinogen domain was solved, showing that the mutation does not alter the structure of the ligand binding pocket. These analyses reveal novel ficolin ligands such as sulfated N-acetyllactosamine (L-ficolin) and gangliosides (M-ficolin) and provide precise insights into the sialic acid binding specificity of M-ficolin, emphasizing the essential role of Tyr271 in this respect.  相似文献   

4.
The human Caco-2 cell monolayer model was used to investigate the absorption property, mechanism, and structure-property relationship of seven representative flavonoids, namely, orientin, vitexin, 2”-O-β-L-galactopyranosylorientin, 2”-O-β-L-galactopyranosylvitexin, isoswertisin, isoswertiajaponin, and 2”-O-(2”‘-methylbutanoyl)isoswertisin from the flowers of Trollius chinensis. The results showed that these flavonoids were hardly transported through the Caco-2 cell monolayer. The compounds with 7-OCH3 including isoswertisin, isoswertiajaponin and 2”-O-(2”‘-methylbutanoyl)isoswertisin were absorbed in a passive diffusion manner, and their absorbability was increased in the same order as their polarity. The absorption of the remaining compounds with 7-OH including orientin, vitexin, 2”-O-β-L-galactopyranosylorientin, and 2”-O-β-L-galactopyranosylvitexin involved transporter mediated efflux in addition to passive diffusion. Among the four compounds with 7-OH, those with a free hydroxyl group at C-2” such as orientin and vitexin were the substrates of P-glycoprotein (P-gp) and that with a free hydroxyl group at C-2’ such as 2”-O-β-L-galactopyranosylorientin was the substrate of multidrug resistance protein 2 (MRP2). The results of this study also implied that the absorbability of the flavonoids should be taken into account when estimating the effective components of T. chinensis.  相似文献   

5.
H9N2 subtype influenza viruses have been detected in different species of wild birds and domestic poultry in many countries for several decades. Because these viruses are of low pathogenicity in poultry, their eradication is not a priority for animal disease control in many countries, which has allowed them to continue to evolve and spread. Here, we characterized the genetic variation, receptor-binding specificity, replication capability, and transmission in mammals of a series of H9N2 influenza viruses that were detected in live poultry markets in southern China between 2009 and 2013. Thirty-five viruses represented 17 genotypes on the basis of genomic diversity, and one specific “internal-gene-combination” predominated among the H9N2 viruses. This gene combination was also present in the H7N9 and H10N8 viruses that have infected humans in China. All of the 35 viruses preferentially bound to the human-like receptor, although two also retained the ability to bind to the avian-like receptor. Six of nine viruses tested were transmissible in ferrets by respiratory droplet; two were highly transmissible. Some H9N2 viruses readily acquired the 627K or 701N mutation in their PB2 gene upon infection of ferrets, further enhancing their virulence and transmission in mammals. Our study indicates that the widespread dissemination of H9N2 viruses poses a threat to human health not only because of the potential of these viruses to cause an influenza pandemic, but also because they can function as “vehicles” to deliver different subtypes of influenza viruses from avian species to humans.  相似文献   

6.
Viral O-acetylesterases were first identified in several viruses, including influenza C viruses and coronaviruses. These enzymes are capable of removing cellular receptors from the surface of target cells. Hence they are also known as receptor destroying enzymes. We have cloned and expressed several recombinant viral O-acetylesterases. These enzymes were secreted from Sf9 insect cells as chimeric proteins fused to eGFP. A purification scheme to isolate the recombinant O-acetylesterase of influenza C virus was developed. The recombinant enzymes derived from influenza C viruses specifically hydrolyze 9-O-acetylated sialic acids, while that of sialodacryoadenitis virus, a rat coronavirus related to mouse hepatitis virus, is specific for 4-O-acetylated sialic acid. The recombinant esterases were shown to specifically de-O-acetylate sialic acids on glycoconjugates. We have also expressed esterase knockout proteins of the influenza C virus hemagglutinin-esterase. The recombinant viral proteins can be used to unambiguously identify O-acetylated acids in a variety of assays. Published in 2004..  相似文献   

7.
The spike protein N-terminal domains (NTDs) of bovine coronavirus (BCoV) and mouse hepatitis coronavirus (MHV) recognize sugar and protein receptors, respectively, despite their significant sequence homology. We recently determined the crystal structure of MHV NTD complexed with its protein receptor murine carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which surprisingly revealed a human galectin (galactose-binding lectin) fold in MHV NTD. Here, we have determined at 1.55 Å resolution the crystal structure of BCoV NTD, which also has the human galectin fold. Using mutagenesis, we have located the sugar-binding site in BCoV NTD, which overlaps with the galactose-binding site in human galectins. Using a glycan array screen, we have identified 5-N-acetyl-9-O-acetylneuraminic acid as the preferred sugar substrate for BCoV NTD. Subtle structural differences between BCoV and MHV NTDs, primarily involving different conformations of receptor-binding loops, explain why BCoV NTD does not bind CEACAM1 and why MHV NTD does not bind sugar. These results suggest a successful viral evolution strategy in which coronaviruses stole a galectin from hosts, incorporated it into their spike protein, and evolved it into viral receptor-binding domains with altered sugar specificity in contemporary BCoV or novel protein specificity in contemporary MHV.  相似文献   

8.
Extraction with dimethyl sulfoxide of wood-meal of the stem of bracatinga (Mimosa scabrella), a south Brazilian hardwood, that was defatted and delignified by treatment with aqueous chlorine at 0–5° followed by extraction with cold ethanol, gave a soluble O-acetylated 4-O-methyl-d-glucurono-d-xylan having (1→4)-linked β-d-xylopyranosyl residues that were unsubstituted (65%) and 2-O-(14%), 3-O- (16%), and 2,3-di-O-acetylated (5%), as determined by methylation analysis. Another preparation obtained by use of refluxing ethanol in the delignification process showed neither removal nor migration of acetyl groups. By comparison with synthetic, partly O-acetylated d-xylans of known composition, 13C-n.m.r. spectroscopy indicated that O-acetyl group migration does not occur during treatment with cold aqueous chlorine, refluxing ethanol, or water at 70°. Methyl 2-O-acetyl-4-O-methyl-β-d-xylopyranoside (6) was also unaffected by aqueous chlorine. O-Acetyl group migration took place more readily in aqueous and dimethyl sulfoxide solutions of 6 than of O-acetyl-d-xylans. The lowest temperatures at which migration was observed in monosaccharides was at 50 and 70° for solutions in D2O and (CD3)2SO, respectively.  相似文献   

9.
Although the existence of O-acetylated sialic acids is well known, it is only in recent years that steady refinement of analytical techniques have enabled detailed mapping of their structural diversity [1]. Fluorimetric analysis of peripheral blood mononuclear cells (PBMC) of patients with Visceral Leishmaniasis (VL) showed six fold increase in the percentage of surface 9-O-acetylated sialoglycoconjugates (9-O-AcSGs) as compared to normal human donors. Using Achatinin-H, a 9-O-acetyl sialic acid- binding lectin, an enhanced presence of 9-O-AcSGs in an 2 6 linkage was demonstrated by flow cytometry; abolition of its binding by pretreatment with a recombinant 9-O-acetylesterase corroborated the presence of this glycotope. Western blotting of PBMC from VL patients indicated the presence of five O-acetylated sialoglycans corresponding to 144, 65, 56, 36 and 19 kDa as compared to 144 and 36 kDa in normal individuals. Taken together our data indicates that during active disease, there is an overexpression of 9-O-AcSGs on the surface of PBMC of VL patients, thus opening up new research avenues wherein the expression of this biomarker could be exploited to monitor the clinical status of VL patients. Published in 2004..  相似文献   

10.
Emerin, a membrane component of nuclear “lamina” networks with lamins and barrier to autointegration factor (BAF), is highly O-GlcNAc-modified (“O-GlcNAcylated”) in mammalian cells. Mass spectrometry analysis revealed eight sites of O-GlcNAcylation, including Ser-53, Ser-54, Ser-87, Ser-171, and Ser-173. Emerin O-GlcNAcylation was reduced ∼50% by S53A or S54A mutation in vitro and in vivo. O-GlcNAcylation was reduced ∼66% by the triple S52A/S53A/S54A mutant, and S173A reduced O-GlcNAcylation of the S52A/S53A/S54A mutant by ∼30%, in vivo. We separated two populations of emerin, A-type lamins and BAF; one population solubilized easily, and the other required sonication and included histones and B-type lamins. Emerin and BAF associated only in histone- and lamin-B-containing fractions. The S173D mutation specifically and selectively reduced GFP-emerin association with BAF by 58% and also increased GFP-emerin hyper-phosphorylation. We conclude that β-N-acetylglucosaminyltransferase, an essential enzyme, controls two regions in emerin. The first region, defined by residues Ser-53 and Ser-54, flanks the LEM domain. O-GlcNAc modification at Ser-173, in the second region, is proposed to promote emerin association with BAF in the chromatin/lamin B “niche.” These results reveal direct control of a conserved LEM domain nuclear lamina component by β-N-acetylglucosaminyltransferase, a nutrient sensor that regulates cell stress responses, mitosis, and epigenetics.  相似文献   

11.
Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1–3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the “universal FGFR ligand” because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the “b” and “c” splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs.  相似文献   

12.
13.
Guanylyl- and methyltransferases, isolated from purified vaccinia virus, were used to specifically label the 5′ ends of the genome RNAs of influenza A and B viruses. All eight segments were labeled with [α-32P]guanosine 5′-triphosphate or S-adenosyl[methyl-3H]methionine to form “cap” structures of the type m7G(5′)pppNm-, of which unmethylated (p)ppN- represents the original 5′ end. Further analyses indicated that m7G(5′)pppAm, m7G(5′)pppAmpGp, and m7G(5′)pppAmpGpUp were released from total and individual labeled RNA segments by digestion with nuclease P1, RNase T1, and RNase A, respectively. Consequently, the 5′-terminal sequences of most or all individual genome RNAs of influenza A and B viruses were deduced to be (p)ppApGpUp. The presence of identical sequences at the ends of RNA segments of both types of influenza viruses indicates that they have been specifically conserved during evolution.  相似文献   

14.
《Carbohydrate research》1986,154(1):145-163
3,4,6-Tri-O-acetyl-1,2-O-[1-(exo-, endo-cyano)ethylidene]-α-d-galacto- (1a/b), -α-d-gluco- (2a/b), and -β-d-manno-pyranose (3a/b) were stereoselectively isomerized to the corresponding per-O-acetylated 1,2-trans-aldohexopyranosyl cyanides in 75, 16, and 62% yield, respectively, by treatment with boron trifluoride etherate in dry nitromethane. The corresponding per-O-acetylated 1,2-cis-aldohexopyranosyl cyanides were obtained concurrently in respective yields of 1.9, 0.9, and 4.8%. The per-O-acetylaldohexopyranosyl cyanide products were found stable to the reaction conditions and were readily isolated following completion of the rearrangement. It had previously been proved that reaction of 2,3,4,6-tetra-O-acetyl-α-d-manno- and -gluco-pyranosyl bromide with mercuric cyanide in nitromethane generates, in the ratio of ∼1:1, the desired 1,2-trans-glycosyl cyanides and the corresponding 1,2-O-(1-cyanoethylidene) isomers (3a/b and 2a/b, respectively). Treatment of these reaction-mixtures with boron trifluoride etherate in nitromethane effected the rearrangement of 3a/b and 2a/b, thereby facilitating the isolation, and increasing the overall yields, of the per-O-acetylated 1,2-trans-d-manno and -gluco-pyranosyl cyanides (58 and 30% total yield, respectively) relative to the earlier procedures. The boron trifluoride etherate-mediated reaction of per-O-acetyl-α- and -β-d-galacto, -α- and -β-d-gluco-, -α-d-manno-, and -2-deoxy-2-phthalimido-β-d-gluco-pyranoses with trimethylsilyl cyanide in nitromethane was also investigated. This reaction provides a “one-flask” synthesis of the corresponding per-O-acetylated 1,2-trans-aldohexopyranosyl cyanides in which 1,2-O-(1-cyanoethylidene) derivatives are isomerized in situ. Finally, improved preparations of the (not readily accessible) per-O-acetylated 1,2-cis-d-manno- and -gluco-pyranosyl cyanides are described. Thus, 2,3,4,6-tetra-O-acetyl-α- and -β-d-mannopyranosyl cyanide (48 and 16% total yield, respectively) and -α- and -β-d-glucopyranosyl cyanide (12 and 39% total yield, respectively) were synthesized by fusion of the corresponding -α-d-glycosyl bromides with mercuric cyanide.  相似文献   

15.
Influenza C virus spike glycoprotein HEF specifically recognizesglycoconjugates containing 9-O-acetyl-N-acetylneuraminic acid.The same protein also contains an esterase activity. Takingadvantage of these two properties, influenza C virus was usedas a very sensitive probe for the detection of traces of 9-O-acetyl-N-acetylneuraminicacid in human leucocytes. The binding of influenza C virus toleucocyte glycoproteins and gangliosides separated by sodiumdodecyl sulphate–polyacrylamide gel electrophoresis andthin-layer chromatography, respectively, was assayed using achromogenic esterase substrate. In this way, glycoproteins ofB-lymphocytes and T-lymphocytes were found to contain 9-O-acetylatedsialic acids. Of the various 9-O-acetylated gangliosides detected,one had the characteristics of 9-O-acetylated GD3. The identificationof 9-O-acetylated sialic acids on distinct glycoproteins andglycolipids should be helpful in assigning a physiological roleto this sugar. O-acetylation gangliosides influenza C virus lymphocytes sialic acids  相似文献   

16.
Zearalenone, a secondary metabolite produced by several plant-pathogenic fungi of the genus Fusarium, has high estrogenic activity in vertebrates. We developed a Saccharomyces cerevisiae bioassay strain that we used to identify plant genes encoding UDP-glucosyltransferases that can convert zearalenone into zearalenone-4-O-glucoside (ZON-4-O-Glc). Attachment of the glucose moiety to zearalenone prevented the interaction of the mycotoxin with the human estrogen receptor. We found that two of six clustered, similar UGT73C genes of Arabidopsis thaliana encode glucosyltransferases that can inactivate zearalenone in the yeast bioassay. The formation of glucose conjugates seems to be an important plant mechanism for coping with zearalenone but may result in significant amounts of “masked” zearalenone in Fusarium-infected plant products. Due to the unavailability of an analytical standard, the ZON-4-O-Glc is not measured in routine analytical procedures, even though it can be converted back to active zearalenone in the digestive tracts of animals. Zearalenone added to yeast transformed with UGT73C6 was converted rapidly and efficiently to ZON-4-O-Glc, suggesting that the cloned UDP-glucosyltransferase could be used to produce reference glucosides of zearalenone and its derivatives.  相似文献   

17.
Candida antarctica lipase B (CAL-B)-catalysed regioselective deacetylation of 2′,3′,5′-tri-O-acetyl-1-β-d-arabinofuranosyluracil (1) and 2′,3′,5′-tri-O-acetyl-9-β-d-arabinofuranosyladenine (2) was studied. The choice of the reaction medium allowed the regioselective formation of products bearing different degree of acetylation: in isopropanol, CAL-B catalysed the formation of the corresponding 2′-O-acetylated arabinonucleosides, while hydrolyses afforded the 2′,3′-di-O-acetylated products. In particular, the procedure herein described allows a simple and efficient preparation of the reported vidarabine prodrug 2′,3′-di-O-acetyl-9-β-d-arabinofuranosyladenine, avoiding the utilisation of protective groups. Moreover, to achieve full deacetylation of the assayed substrates, a set of commercial hydrolases and fungal keratinases from Doratomyces microsporus (DMK) and Paecilomyces marquandii (PMK) were tested. While only PMK and DMK catalysed the quantitative complete deacetylation of 1, DMK accomplished full deacetylation of 2 in shorter time than the other assayed enzymes.  相似文献   

18.
Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural O-acetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification.  相似文献   

19.
Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF165) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FGF receptor (FGFR) and VEGF165/VEGF receptor signaling complexes. However, the structural characteristics of HS that determine activation or inhibition of such complexes are only partially defined. Here we show that ovarian tumor endothelium displays high levels of HS sequences that harbor glucosamine 6-O-sulfates when compared with normal ovarian vasculature where these sequences are also detected in perivascular area. Reduced HS 6-O-sulfotransferase 1 (HS6ST-1) or 6-O-sulfotransferase 2 (HS6ST-2) expression in endothelial cells impacts upon the prevalence of HS 6-O-sulfate moieties in HS sequences, which consist of repeating short, highly sulfated S domains interspersed by transitional N-acetylated/N-sulfated domains. 1–40% reduction in 6-O-sulfates significantly compromises FGF2- and VEGF165-induced endothelial cell sprouting and tube formation in vitro and FGF2-dependent angiogenesis in vivo. Moreover, HS on wild-type neighboring endothelial or smooth muscle cells fails to restore endothelial cell sprouting and tube formation. The affinity of FGF2 for HS with reduced 6-O-sulfation is preserved, although FGFR1 activation is inhibited correlating with reduced receptor internalization. These data show that 6-O-sulfate moieties in endothelial HS are of major importance in regulating FGF2- and VEGF165-dependent endothelial cell functions in vitro and in vivo and highlight HS6ST-1 and HS6ST-2 as potential targets of novel antiangiogenic agents.  相似文献   

20.
Viruses that infect phytoplankton are an important component of aquatic ecosystems, yet in lakes they remain largely unstudied. In order to investigate viruses (Phycodnaviridae) infecting eukaryotic phytoplankton in lakes and to estimate the number of potential host species, samples were collected from four lakes at the Experimental Lakes Area in Ontario, Canada, during the ice-free period (mid-May to mid-October) of 2004. From each lake, Phycodnaviridae DNA polymerase (pol) gene fragments were amplified using algal-virus-specific primers and separated by denaturing gradient gel electrophoresis; 20 bands were extracted from the gels and sequenced. Phylogenetic analysis indicated that freshwater environmental phycodnavirus sequences belong to distinct phylogenetic groups. An analysis of the genetic distances “within” and “between” monophyletic groups of phycodnavirus isolates indicated that DNA pol sequences that differed by more than 7% at the inferred amino acid level were from viruses that infect different host species. Application of this threshold to phylogenies of environmental sequences indicated that the DNA pol sequences from these lakes came from viruses that infect at least nine different phytoplankton species. A multivariate statistical analysis suggested that potential freshwater hosts included Mallomonas sp., Monoraphidium sp., and Cyclotella sp. This approach should help to unravel the relationships between viruses in the environment and the phytoplankton hosts they infect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号