首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Oxidative stress has been implicated in several steps leading to the development of diabetic vascular complications. The purpose of this study was to determine the efficacy and the possible mechanism of puerarin on high-glucose (HG; 25 mM)-induced proliferation of cultured rat vascular smooth muscle cells (VSMCs) and neointimal formation in a carotid arterial balloon injury model of obese Zucker rats. Our data demonstrated that puerarin significantly inhibited rat VSMC proliferation as well as reactive oxygen species (ROS) generation and NADPH oxidase activity induced by HG treatment. Further studies revealed that HG treatment resulted in phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits, leading to NADPH oxidase activation. Puerarin treatment remarkably disrupted the phosphorylation and membrane translocation of PKCβ2 as well as Rac1, p47phox, and p67phox subunits. Blocking PKCβ2 by infection with AdDNPKCβ2 also abolished HG-induced phosphorylation and membrane translocation of Rac1, p47phox, and p67phox subunits as well as ROS production and NADPH oxidase activation in VSMCs. In vivo neointimal formation of obese Zucker rats evoked by balloon injury was evidently attenuated by the administration of puerarin. These results demonstrate that puerarin may exert inhibitory effects on HG-induced VSMC proliferation via interfering with PKCβ2/Rac1-dependent ROS pathways, thus resulting in the attenuation of neointimal formation in the context of hyperglycemia in diabetes mellitus.  相似文献   

4.
STRIP2 (FAM40B) was reported to regulate tumor cell migration. Our study aims to discuss the effect of STRIP2 in mouse aortic smooth muscle cell (MOVAS) proliferation and migration processes, which contributes greatly to atherosclerosis formation. In MOVAS cells, STRIP2 depletion suppressed cell proliferation and migration, which were related to a remarkable decrease in matrix metalloproteinases-2 (MMP-2)/MMP-9 expression. Additionally, P38 mitogen-activated protein kinases and Protein kinase B (AKT) are inactivated while extracellular signal-regulated kinase (ERK1/2) and jun N-terminal kinase (JNK) are activated upon STRIP2 silencing. SB203580 (P38 inhibitor) further reduced AKT phosphorylation (p-AKT) while dehydrocorydaline chloride (Dc; P38 activator) reversed this effect. Furthermore, Dc significantly recovered MMP-2 expression in STRIP2-knockdown cells. As expected, overexpressing STRIP2 exhibited a contrary effect. Dc and AKT activator SC79 reversed the inhibition of cell proliferation and migration induced by STRIP2 silencing. Interestingly, STRIP2 depletion increased vascular endothelial growth factor level significantly. Taken together, STRIP2 contributed to cell proliferation and migration through P38–AKT–MMP-2 signaling in MOVAS cells, indicating the importance of STRIP2 in atherosclerosis.  相似文献   

5.
Despite the high prevalence of varicose veins, the underlying pathogenesis of this disease remains unclear. The present study aims to explore the role of insulin-like growth factor binding protein 6 (IGFBP6) in vascular smooth muscle cells (VSMCs). Using a protein array approach, we identified several differentially expressed proteins between varicose great saphenous veins and normal great saphenous veins. Bioinformatic analysis showed that IGFBP6 was closely related to cell proliferation. Further validation confirmed that IGFBP6 was one of the most highly expressed proteins in varicose vein tissue. Knocking down IGFBP6 in VSMCs significantly attenuated cell proliferation and induced the S phase arrest during the cell cycle. Further experiments demonstrated that IGFBP6 knockdown increased cyclin E ubiquitination, which reduced expression of cyclin E and phosphorylation of CDK2. Furthermore, IGFBP6 knockdown arrested centrosome replication, which subsequently influenced VSMC morphology. Ultimately, IGFBP6 was validated to be involved in VSMC proliferation in varicose vein tissues. The present study reveals that IGFBP6 is closely correlated with VSMC biological function and provides unprecedented insights into the underlying pathogenesis of varicose veins.  相似文献   

6.
Angioplasty causes local vascular injury, leading to the release of thrombospondin-1 (TSP-1), which stimulates vascular smooth muscle cell (VSMC) migration and proliferation, important steps in the development of intimal hyperplasia. Transforming growth factor beta 2 (TGF-β2) and hyaluronic acid synthase (HAS) are two pro-stenotic genes upregulated in VSMCs by TSP-1. We hypothesized that inhibition of TGF-β2 or HAS would inhibit TSP-1-induced VSMC migration, proliferation, and TSP-1 signaling. Our data demonstrate that Inhibition of either TGF-β2 or HAS inhibited TSP-1-induced VSMC migration and proliferation. Activation of ERK 1 was decreased by TGF-β2 inhibition and unaffected by HAS inhibition. TGF-β2 and HAS are not implicated in TSP-1-induced thbs1 expression, while they are each implicated in TSP-1-induced expression of their own gene. In summary, TSP-1-induced VSMC migration and proliferation rely on intact TGF-β2 signaling and HAS function. TSP-1 activation of ERK 1 is dependent on TGF-β2. These data further expand our understanding of the complexity of TSP-1 cellular signaling and the involvement of TGF-β2 and HAS.  相似文献   

7.
Despite intensive research studies, theories have yet to focus on the contribution of hypoxia to patency differences observed clinically between arterial vs. venous grafts. This study investigates the differential hypoxic response of smooth muscle cells (SMC) to hypoxia-derived endothelial cell (EC) growth factors. Initiation of SMC proliferation under hypoxia (<5% O(2)) occurred only after incubation with hypoxic endothelial cell-conditioned media (H-ECM). After the investigation of several possible growth factors in the H-ECM that may be responsible for SMC proliferation, the greatest difference was observed in vascular endothelial growth factor (VEGF-A) and platelet-derived growth factor homodimer B (PDGF-BB) expression. VEGF-A increased (2-fold) significantly (P < 0.05) in arterial-derived smooth muscle cells (ASMC) under hypoxia compared with venous-derived smooth muscle cells (VSMC), which showed no significant change. VSMC showed significant (P < 0.05) increase in VEGFR-2 expression under hypoxia compared with ASMC. Incubation with VEGFR-2-neutralizing antibody/PDGFR antagonist in VSMC before addition of H-ECM resulted in decreased proliferation. ASMC proliferation under hypoxia did not decrease during incubation with VEGFR-2-neutralizing antibody but did decrease upon PDGFR antagonist incubation. Current therapies focusing on treating intimal hyperplasia have negated the fact that combinational therapy might be required to combat induction of SMC proliferation. Clinically, therapy with PDGFR antagonists plus anti-VEGFR-2 may prove to be efficacious in managing SMC proliferation in venous-derived grafts.  相似文献   

8.
Angiotensin receptor antagonists have shown clinical promise in modulating vascular disease, in part by limiting smooth muscle cell proliferation and migration. The majority of studies examining the contribution of these receptors have been undertaken in cells derived from rat aorta, which primarily express the ANG II type 1 (AT(1)) receptor. This investigation studied the relative contribution of AT(1) and ANG II type 2 (AT(2)) receptors to the mitogenic program of porcine smooth muscle cells. Smooth muscle cells were derived from porcine coronary artery explants. The presence of both AT(1) and AT(2) receptors was demonstrated through ligand binding and RT-PCR analysis. Biochemical and cellular markers of proliferation were monitored in the presence of selective receptor antagonists. Smooth muscle cell migration was measured using both wound healing and Boyden chamber migration assays. Visualization of the AT(1) and AT(2) receptors in growing and quiescent porcine smooth muscle cells with epifluorescence microscopy demonstrated that their subcellular distribution varied with growth state. An examination with several growth assays revealed that both AT(1)-specific losartan and AT(2)-specific PD-123319 receptor antagonists inhibited ANG II-stimulated RNA and DNA synthesis, PCNA expression, and hyperplasia. ANG II induced both directional and nondirectional cell migration. AT(1) receptor antagonist treatment significantly decreased ANG II-induced directional migration only, whereas AT(2) receptor antagonist treatment significantly reduced both modes of migration. Interestingly, the focal adhesion kinase inhibitor PF-573228 also blocked migration but not proliferation. Furthermore, focal adhesion kinase activation in response to ANG II was prevented only by PD-123319, indicating that this activation is downstream of the AT(2) receptor. The observed role of the AT(2) receptor in ANG II-induced migration was confirmed with smooth muscle cells depleted of the AT(2) receptor with short hairpin RNA treatment.  相似文献   

9.
Elevated transforming growth factor β1 (TGFβ1) levels are frequently observed in chronic kidney disease (CKD) patients. TGFβ1 contributes to development of medial vascular calcification during hyperphosphatemia, a pathological process promoted by osteo−/chondrogenic transdifferentiation of vascular smooth muscle cells (VSMCs). Vasorin is a transmembrane glycoprotein highly expressed in VSMCs, which is able to bind TGFβ to inhibit TGFβ signaling. Thus, the present study explored the effects of vasorin on osteo−/chondrogenic transdifferentiation and calcification of VSMCs. Primary human aortic smooth muscle cells (HAoSMCs) were treated with recombinant human TGFβ1 or β-glycerophosphate without or with recombinant human vasorin or vasorin gene silencing by siRNA. As a result, TGFβ1 down-regulated vasorin mRNA expression in HAoSMCs. Vasorin supplementation inhibited TGFβ1-induced pathway activation, SMAD2 phosphorylation and downstream target genes expression in HAoSMCs. Furthermore, treatment with exogenous vasorin blunted, while vasorin knockdown augmented TGFβ1-induced osteo−/chondrogenic transdifferentiation of HAoSMCs. In addition, phosphate down-regulated vasorin mRNA expression in HAoSMCs. Phosphate-induced TGFβ1 expression was not affected by addition of exogenous vasorin. Nonetheless, the phosphate-induced TGFβ1 signaling, osteo−/chondrogenic transdifferentiation and calcification of HAoSMCs were all blunted by vasorin. Conversely, silencing of vasorin aggravated osteoinduction in HAoSMCs during high phosphate conditions. Aortic vasorin expression was reduced in the hyperphosphatemic klotho-hypomorphic mouse model of CKD-related vascular calcification. In conclusion, vasorin, which suppresses TGFβ1 signaling and protects against osteo−/chondrogenic transdifferentiation and calcification of VSMCs, is reduced by pro-calcifying conditions. Thus, vasorin is a novel key regulator of VSMC calcification and may represent a potential therapeutic target for vascular calcification during CKD.  相似文献   

10.
Aberrant proliferation of vascular smooth muscle cells (VSMC) is a critical contributor to the pathogenesis of atherosclerosis (AS). Our previous studies have demonstrated that apelin-13/APJ confers a proliferative response in VSMC, however, its underlying mechanism remains elusive. In this study, we aimed to investigate the role of mitophagy in apelin-13-induced VSMC proliferation and atherosclerotic lesions in apolipoprotein E knockout (ApoE-/-) mice. Apelin-13 enhances human aortic VSMC proliferation and proliferative regulator proliferating cell nuclear antigen expression in dose and time-dependent manner, while is abolished by APJ antagonist F13A. We observe the engulfment of damage mitochondria by autophagosomes (mitophagy) of human aortic VSMC in apelin-13 stimulation. Mechanistically, apelin-13 increases p-AMPKα and promotes mitophagic activity such as the LC3I to LC3II ratio, the increase of Beclin-1 level and the decrease of p62 level. Importantly, the expressions of PINK1, Parkin, VDAC1, and Tom20 are induced by apelin-13. Conversely, blockade of APJ by F13A abolishes these stimulatory effects. Human aortic VSMC transfected with AMPKα, PINK1, or Parkin and subjected to apelin-13 impairs mitophagy and prevents proliferation. Additional, apelin-13 not only increases the expression of Drp1 but also reduces the expressions of Mfn1, Mfn2, and OPA1. Remarkably, the mitochondrial division inhibitor-1(Mdivi-1), the pharmacological inhibition of Drp1, attenuates human aortic VSMC proliferation. Treatment of ApoE-/- mice with apelin-13 accelerates atherosclerotic lesions, increases p-AMPKα and mitophagy in aortic wall in vivo. Finally, PINK1-/- mutant mice with apelin-13 attenuates atherosclerotic lesions along with defective in mitophagy. PINK1/Parkin-mediated mitophagy promotes apelin-13-evoked human aortic VSMC proliferation by activating p-AMPKα and exacerbates the progression of atherosclerotic lesions.  相似文献   

11.
12.
The extracellular matrix signals and regulates the behavior of vascular cells during the pathogenesis of atherosclerosis. Type VIII collagen, a short chain collagen, is scarcely present in normal arteries, but is dramatically upregulated in atherosclerosis and after other types of vascular injury. Cell culture studies have revealed that this protein supports smooth muscle cell (SMC) adhesion and stimulates migration, however little is known about the signaling or the mechanisms by which this occurs. SMCs isolated from wild-type C57BL/6 and type VIII collagen deficient mice were studied using assays to measure chemotactic and haptotactic migration, and remodeling and contraction of 3-dimensional type I collagen gels. Col8?/? SMCs exhibited impairments in migration, and a strongly adhesive phenotype with prominent stress fibers, stable microtubules and pronounced central basal focal adhesions. The addition of exogenous type VIII collagen to the Col8?/? SMCs rescued the impairments in migration, and restored cytoskeletal architecture so that it was similar to Col8+/+ cells. We measured elevated levels of active GTP-RhoA in the Col8?/? cells, and this too was reversed by treatment with exogenous type VIII collagen. We showed that type VIII collagen normally suppresses RhoA activation through a beta-1 integrin dependent mechanism. MMP-2 levels were reduced in the Col8?/? SMCs, and knockdown of MMP-2 in Col8+/+ SMCs partially recapitulated the decreases in migration and 3D gel contraction seen in Col8?/? cells, showing that type VIII collagen-stimulated migration was dependent on MMP-2. Inhibition of Rho restored MMP-2 activity in the Col8?/? cells, and partially rescued migration, demonstrating that the elevations in RhoA activity were responsible for the suppression of migration of these cells. In conclusion, we have shown that type VIII collagen signals through beta-1 integrin receptors to suppress RhoA, allowing optimal configuration of the cytoskeleton, and the stimulation of MMP-2-dependent cell migration.  相似文献   

13.
Occlusive lesions of atherosclerosis are the consequence of focal accumulation within the innermost layer of the artery of leukocytes from the circulation and smooth muscle cells (SMCs) from the underlying media. Tea polyphenol especially (−)-Epigallocatechin-3-gallate (EGCG) has been shown to have cardiovascular protective effect. However, the effects of other catechins such as (+)-catechin, and (−)-epicatechin-3-gallate (ECG) on SMC’s functions have not been fully understood. In the present study, we investigate the effects of tea catechins on SMC adhesion and migration. Our results indicate that EGCG and ECG but not (+)-catechin were able to inhibit SMC adhesion on collagen and laminin, two abundant extracellular matrix (ECM) proteins expressed in physiological and pathological conditions. Further analyses indicate that EGCG could bind laminin more than collagen. Moreover, EGCG could inhibit SMC adhesion to integrin β1 Ab and affect SMC’s β1 integrin expression, suggesting it affects SMC’s cellular components. In migration experiment, laminin- and PDGF-BB-induced SMC migration were both inhibited by EGCG in a dose-dependent manner. Taken together, the data presented here provide evidence showing that among these tea catechins, EGCG and ECG are relatively effective inhibitors on SMC–ECM interaction and their action mechanisms are through interference with SMC’s integrin β1 receptor and binding to ECM proteins.  相似文献   

14.
Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1α in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1α expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1α mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1α expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1α by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1α had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1α decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPARγ activation by a PPARγ antagonist GW9662 abolished the suppressive effects of PGC-1α on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1α were enhanced by a PPARγ agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1α expression. PGC-1α suppresses PDGF-induced VSMC migration through PPARγ coactivation and, consequently, p38 MAPK inhibition.  相似文献   

15.
16.
Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α). TNF-α can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protective effects of estradiol (E2). We therefore investigated the effects of TNF-α on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-α (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-α, an effect that was abolished by co-culture with E2. TNF-α increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-α alone. SV-EC migration was significantly impaired by TNF-α (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-α increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-α potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there was no modulation by E2 in either cell-type. In conclusion, TNF-α induced SV neointima formation, increased SMC proliferation and migration, impaired SV-EC migration and increased expression of adhesion molecules. E2 exerted distinct cell-type and function-specific modulation, the mechanisms underlying which are worthy of further detailed study.  相似文献   

17.
18.
19.
Atheroma formation and restenosis following percutaneous vascular intervention involve the growth and migration of vascular smooth muscle cells (SMCs) into neointimal lesions, in part due to changes in the extracellular matrix. While some clinical studies have suggested that, in comparison to non-diabetics, β3 integrin inhibition in diabetic patients confers protection from restenosis, little is known regarding the role of β3 integrin inhibition on SMC responses in this context. To understand the molecular mechanisms underlying integrin-mediated regulation of SMC function in diabetes, we examined SMC responses in diabetic mice deficient in integrin β3 and observed that the integrin was required for enhanced proliferation, migration and extracellular regulated kinase (ERK) activation. Hyperglycemia-enhanced membrane recruitment and catalytic activity of PKCβ in an integrin β3-dependent manner. Hyperglycemia also promoted SMC filopodia formation and cell migration, both of which required αVβ3, PKCβ, and ERK activity. Furthermore, the integrin–kinase association was regulated by the αVβ3 integrin ligand thrombospondin and the integrin modulator Rap1 under conditions of hyperglycemia. These results suggest that there are differences in SMC responses to vascular injury depending on the presence or absence of hyperglycemia and that SMC response under hyperglycemic conditions is largely mediated through β3 integrin signaling.  相似文献   

20.
Hypoxia-induced vascular smooth muscle cells (VSMCs) migration plays an important role in vascular remodeling and is implicated in vascular diseases, such as atherosclerosis and pulmonary hypertension. We previously observed the increased expression of krüppel-like factor 4 (KLF4) in VSMCs under hypoxia. However, whether the upregulation of KLF4 participates in hypoxia-induced VSMCs migration is still unknown. In this study, we demonstrated that KLF4 was an important player in the process of VSMCs migration under hypoxia since interference of KLF4 by small interfering RNA mostly dampened hypoxia-induced migration of VSMCs. In addition, using luciferase reporter and ChIP assays, we confirmed two hypoxia-inducible factor 1α (HIF1α) binding elements (located at -150 to -163 and -3922 to -3932) in the upstream regulatory region of klf4 locus and identified KLF4 as a novel direct target gene of HIF1α. Our findings unveil a novel regulatory mechanism that involves HIF1α-induced upregulation of KLF4, which plays a vital role in VSMCs migration under hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号