首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RGS-containing RhoGEFs (RGS-RhoGEFs) represent a direct link between the G(12) class of heterotrimeric G proteins and the monomeric GTPases. In addition to the canonical Dbl homology (DH) and pleckstrin homology domains that carry out the guanine nucleotide exchange factor (GEF) activity toward RhoA, these RhoGEFs also possess RGS homology (RH) domains that interact with activated α subunits of G(12) and G(13). Although the GEF activity of p115-RhoGEF (p115), an RGS-RhoGEF, can be stimulated by Gα(13), the exact mechanism of the stimulation has remained unclear. Using combined studies with small angle x-ray scattering, biochemistry, and mutagenesis, we identify an additional binding site for activated Gα(13) in the DH domain of p115. Small angle x-ray scattering reveals that the helical domain of Gα(13) docks onto the DH domain, opposite to the surface of DH that binds RhoA. Mutation of a single tryptophan residue in the α3b helix of DH reduces binding to activated Gα(13) and ablates the stimulation of p115 by Gα(13). Complementary mutations at the predicted DH-binding site in the αB-αC loop of the helical domain of Gα(13) also affect stimulation of p115 by Gα(13). Although the GAP activity of p115 is not required for stimulation by Gα(13), two hydrophobic motifs in RH outside of the consensus RGS box are critical for this process. Therefore, the binding of Gα(13) to the RH domain facilitates direct association of Gα(13) to the DH domain to regulate its exchange activity. This study provides new insight into the mechanism of regulation of the RGS-RhoGEF and broadens our understanding of G protein signaling.  相似文献   

2.
3.
Sphingosine-1-phosphate (S1P), formed by sphingosine kinases (SphKs), regulates cellular proliferation and migration by acting as an agonist at specific receptors or intracellularly. Since S1P's effects are probably dependent on subcellular localization of its formation and degradation, we have studied the influence of G protein-coupled receptors on the localization of SphK1. Activation of Gq-coupled receptors induced a profound, rapid (half-life 3–5 s) and long-lasting (> 2 h) translocation of SphK1 to the plasma membrane. This was mimicked by expression of constitutively active G protein α-subunits specifically of the Gq family. Classical Gq signalling pathways, or phosphorylation at Ser225, phospholipase D and Ca2+/calmodulin were not involved in M3 receptor-induced SphK1 translocation in HEK-293 cells. Translocation was associated with S1P receptor internalization, which was dependent on catalytic activity of SphK1 and S1P receptor binding and thus resulted from S1P receptor cross-activation. It is concluded that SphK1 is an important effector of Gq-coupled receptors, linking them via cross-activation of S1P receptors to Gi and G12/13 signalling pathways.  相似文献   

4.
Fbxw7α is a member of the F-box family of proteins, which function as the substrate-targeting subunits of SCF (Skp1/Cul1/F-box protein) ubiquitin ligase complexes. Using differential purifications and mass spectrometry, we identified p100, an inhibitor of NF-κB signalling, as an interactor of Fbxw7α. p100 is constitutively targeted in the nucleus for proteasomal degradation by Fbxw7α, which recognizes a conserved motif phosphorylated by GSK3. Efficient activation of non-canonical NF-κB signalling is dependent on the elimination of nuclear p100 through either degradation by Fbxw7α or exclusion by a newly identified nuclear export signal in the carboxy terminus of p100. Expression of a stable p100 mutant, expression of a constitutively nuclear p100 mutant, Fbxw7α silencing or inhibition of GSK3 in multiple myeloma cells with constitutive non-canonical NF-κB activity results in apoptosis both in cell systems and xenotransplant models. Thus, in multiple myeloma, Fbxw7α and GSK3 function as pro-survival factors through the control of p100 degradation.  相似文献   

5.
6.
d-Secooximes were synthesized from the d-secoaldehydes in the 13β- and 13α-estrone series. The oximes were modified at three sites in the molecule: the oxime function was transformed into an oxime ether, oxime ester or nitrile group, the propenyl side-chain was saturated and the 3-benzyl ether was removed in order to obtain a phenolic hydroxy function. Triazoles were formed via Cu(I)-catalysed azide–alkyne cycloaddition (CuAAC) from 3-(prop-2-yniloxy)-d-secooximes and benzyl azides. All the products were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cell lines (HeLa, MCF-7, A2780 and A431). Some of them exhibited activities with submicromolar IC50 values, better than that of the reference agent cisplatin. The structural modifications led to significant differences in the cytostatic properties. Flow cytometry indicated that one of the most potent agents resulted in a cell cycle blockade.  相似文献   

7.
Massimo Aureli 《FEBS letters》2009,583(15):2469-6422
Human fibroblasts produce ceramide from sialyllactosylceramide on the plasma membranes. Sialidase Neu3 is known to be plasma membrane associated, while only indirect data suggest the plasma membrane association of β-galactosidase and β-glucosidase. To determine the presence of β-galactosidase and β-glucosidase on plasma membrane, cells were submitted to cell surface biotinylation. Biotinylated proteins were purified by affinity column and analyzed for enzymatic activities on artificial substrates. Both enzyme activities were found associated with the cell surface and were up-regulated in Neu3 overexpressing cells. These enzymes were capable to act on both artificial and natural substrates without any addition of activator proteins or detergents and displayed a trans activity in living cells.  相似文献   

8.
9.
We previously reported that necrosis occurs predominantly in porcine renal tubular LLC-PK1 cells, when the cells were exposed transiently to a high concentration of cisplatin. Moreover, we demonstrated that generation of reactive oxygen species and subsequent production of tumor necrosis factor-α (TNF-α) through phosphorylation of p38 MAPK are implicated in the pathogenesis of cisplatin-induced renal cell injury. However, some TUNEL-positive cells appeared in renal proximal tubules of rats after systemic injection of cisplatin, suggesting an involvement of apoptosis. In the present study, we found in LLC-PK1 cells that both apoptosis and necrosis were elicited when the cells were exposed to 200 μM cisplatin for 1 h followed by incubation for 24 h in the presence of 20 μM cisplatin. The cisplatin-induced necrosis was largely attenuated by the antioxidant N-acetylcysteine, while apoptosis was prevented by the specific inhibitors for caspases-2, -8, and -3 and a p53 inhibitor pifithrin-α but not by the p38 MAPK inhibitor SB203580. On the other hand, SB203580 attenuated the cisplatin-induced increase in TNF-α production. These findings suggest that p53-mediated activations of caspases-2, -8 and -3 play a key role in cisplatin-induced renal cell apoptosis, while oxidative stress-induced TNF-α synthesis via p38 MAPK phosphorylation contributed to the necrosis.  相似文献   

10.
The poorly characterized G-protein-coupled receptor GPR35 has been suggested as a potential exploratory target for the treatment of both metabolic disorders and hypertension. It has also been indicated to play an important role in immune modulation. A major impediment to validation of these concepts and further study of the role of this receptor has been a paucity of pharmacological tools that interact with GPR35. Using a receptor-β-arrestin-2 interaction assay with both human and rat orthologues of GPR35, we identified a number of compounds possessing agonist activity. These included the previously described ligand zaprinast. Although a number of active compounds, including cromolyn disodium and dicumarol, displayed similar potency at both orthologues of GPR35, a number of ligands, including pamoate and niflumic acid, had detectable activity only at human GPR35 whereas others, including zaprinast and luteolin, were markedly selective for the rat orthologue. Previous studies have demonstrated activation of Gα13 by GPR35. A Saccharomyces cerevisiae-based assay employing a chimaeric Gpa1-Gα13 G-protein confirmed that all of the compounds active at human GPR35 in the β-arrestin-2 interaction assay were also able to promote cell growth via Gα13. Each of these ligands also promoted binding of [35S]GTP[S] (guanosine 5'-[γ-[35S]thio]triphosphate) to an epitope-tagged form of Gα13 in a GPR35-dependent manner. The ligands identified in these studies will be useful in interrogating the biological actions of GPR35, but appreciation of the species selectivity of ligands at this receptor will be vital to correctly attribute function.  相似文献   

11.
Mammalian target of rapamycin complex 2 (mTORC2) phosphorylates AGC protein kinases including protein kinase C (PKC) and regulates cellular functions such as cell migration. However, its regulation remains poorly understood. Here we show that lysophosphatidic acid (LPA) induces two phases of PKC-δ hydrophobic motif phosphorylation. The late phase is mediated by Gα(12), which specifically activates ARAF, leading to upregulation of the RFFL E3 ubiquitin ligase and subsequent ubiquitylation and degradation of the PRR5L subunit of mTORC2. Destabilization of PRR5L, a suppressor of mTORC2-mediated hydrophobic motif phosphorylation of PKC-δ, but not AKT, results in PKC-δ hydrophobic motif phosphorylation and activation. This Gα(12)-mediated signalling pathway for mTORC2 regulation is critically important for fibroblast migration and pulmonary fibrosis development.  相似文献   

12.
α-L-Fucosidase (EC 3.2.1.51) activity was studied in different reproductive organs, seminal plasma and spermatozoa of the bull. The highest specific activity of α-L-fucosidase was found in the epididymis. Gel filtration at pH 7.0 revealed two α-L-fucosidases (α-L-fucosidase I and α-L-fucosidase II) in most reproductive tissues, but seminal plasma, spermatozoa and epididymal cauda contained only form I. Fractionation at basic pH (pH 8.5) resulted in the elution of α-L-fucosidase as form II. Some differences were encountered in pH profiles and thermal stabilities of the two enzyme forms and they showed additional polymorphism after chromatofocusing. The comparison of enzyme profiles after fractionations suggests that cauda epididymidis is the main source of the seminal plasma activity in the bull.  相似文献   

13.
Heterotrimeric G-proteins are involved in a variety of cellular responses, but relatively little is known about their function and biochemistry in plants. Antibodies raised against the tobacco heterotrimeric G-protein -subunit (G) were used to analyse its distribution in tobacco leaves. In young tissue the protein level was relatively high, while it declined substantially during later stages of leaf development. Cell fractionation revealed that G is tightly associated with plasma membrane, but can also be detected in purified nuclei.  相似文献   

14.

Background

Two pertussis toxin sensitive Gi proteins, Gi2 and Gi3, are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous Gi isoforms are functionally distinct. To test for isoform-specific functions of Gi proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC).

Methods

Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gαi2 (Gαi2 −/−) or Gαi3 (Gαi3 −/−). mRNA levels of Gαi/o isoforms and L-VDCC subunits were quantified by real-time PCR. Gαi and Cavα1 protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings.

Results

In cardiac tissue from Gαi2 −/− mice, Gαi3 mRNA and protein expression was upregulated to 187±21% and 567±59%, respectively. In Gαi3 −/− mouse hearts, Gαi2 mRNA (127±5%) and protein (131±10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gαi2 −/− mice was lowered (−7.9±0.6 pA/pF, n = 11, p<0.05) compared to wild-type cells (−10.7±0.5 pA/pF, n = 22), whereas it was increased in myocytes from Gαi3 −/− mice (−14.3±0.8 pA/pF, n = 14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gαi2 (but not of Gαi3) and following treatment with pertussis toxin in Gαi3 −/−. The pore forming Cavα1 protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Cavα1 and Cavβ2 subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gαi2.

Conclusion

Our data provide novel evidence for an isoform-specific modulation of L-VDCC by Gαi proteins. In particular, loss of Gαi2 is reflected by alterations in channel kinetics and likely involves an impairment of the ERK1/2 signalling pathway.  相似文献   

15.
Summary 13C-13CO homonuclear NOE and 13CO T1 relaxation were measured for a 20 kDa protein using tripleresonance pulse sequences. The experiments were sufficiently sensitive to obtain statistically significant differences in relaxation parameters over the molecule. The 13C-13CO cross-relaxation rate, obtained from these data, is directly proportional to an order parameter describing local motion and it is largely independent of the local correlation time. It is therefore a relatively straightforward observable for the identification of local dynamics.  相似文献   

16.
The Wnt-induced planar cell polarity (PCP) signaling pathway is essential for polarized cell migration and morphogenesis. Dishevelled (Dvl) and its binding protein Daam1 mediate RhoA activation in this pathway. WGEF, a member of the Rho-guanine nucleotide exchange factor (Rho-GEF) family, was shown to play a role in Wnt-induced RhoA activation in Xenopus embryos. However, it has remained unknown which member(s) of a Rho-GEF family are involved in Wnt/Dvl-induced RhoA activation in mammalian cells. Here we identified p114-RhoGEF and Lfc (also called GEF-H1) as the Rho-GEFs responsible for Wnt-3a–induced RhoA activation in N1E-115 mouse neuroblastoma cells. We screened for Rho-GEF–silencing short-hairpin RNAs (shRNAs) that are capable of suppressing Dvl-induced neurite retraction in N1E-115 cells and found that p114-RhoGEF and Lfc shRNAs, but not WGEF shRNA, suppressed Dvl- and Wnt-3a–induced neurite retraction. p114-RhoGEF and Lfc shRNAs also inhibited Dvl- and Wnt-3a–induced RhoA activation, and p114-RhoGEF and Lfc proteins were capable of binding to Dvl and Daam1. Additionally, the Dvl-binding domains of p114-RhoGEF and Lfc inhibited Dvl-induced neurite retraction. Our results suggest that p114-RhoGEF and Lfc are critically involved in Wnt-3a– and Dvl-induced RhoA activation and neurite retraction in N1E-115 cells.  相似文献   

17.
The plasma membrane and mitochondria of bottom fermenting brewer's yeast obtained as a by-product of industrial beer production were isolated and the lipid fraction was analyzed. The phospholipid content accounted for 78 mg/g protein in the plasma membrane and 59 mg/g protein in the mitochondria. Major phospholipids in both preparations were phosphatidylinositol, phosphatidylcholine and phosphatidylethanolamine but their proportions differed significantly. In the plasma membrane phosphatidylinositol, and in the mitochondria phosphatidylcholine were present in the highest concentration (37 and 30%, respectively). The main classes of neutral lipids (triacylglycerols, ergosterol, squalene and steryl esters) were twice more abundant in the plasma membrane than in the mitochondria (61 and 33 mg/g protein, respectively). A characteristic of the neutral lipid composition of both organelles was the low content of ergosterol (12 and 7 mg/g protein, respectively) and a high content of squalene (25 and 22 mg/g protein). The main feature of the fatty acid composition of both organelles was the preponderance of saturated fatty acids (78 and 79%, respectively), among which palmitic acid was the principal one. The most expressed characteristics of lipid fractions of the analyzed plasma membranes and mitochondria, high concentration of squalene and preponderance of saturated fatty acids are the consequences of anaerobic growth conditions. The lack of oxygen had possibly the strongest effect on the lipid composition of the plasma membranes and mitochondria of bottom fermenting brewer's yeast.  相似文献   

18.
q directly activates p63RhoGEF and closely related catalytic domains found in Trio and Kalirin, thereby linking Gq-coupled receptors to the activation of RhoA. Although the crystal structure of Gαq in complex with the catalytic domains of p63RhoGEF is available, the molecular mechanism of activation has not yet been defined. In this study, we show that membrane translocation does not appear to play a role in Gαq-mediated activation of p63RhoGEF, as it does in some other RhoGEFs. Gαq instead must act allosterically. We next identify specific structural elements in the PH domain that inhibit basal nucleotide exchange activity, and provide evidence that Gαq overcomes this inhibition by altering the conformation of the α6–αN linker that joins the DH and PH domains, a region that forms direct contacts with RhoA. We also identify residues in Gαq that are important for the activation of p63RhoGEF and that contribute to Gα subfamily selectivity, including a critical residue in the Gαq C-terminal helix, and demonstrate the importance of these residues for RhoA activation in living cells.  相似文献   

19.
《Cellular signalling》2014,26(11):2551-2561
Activation of the GTPase RhoA linked to cell invasion can be tightly regulated following Gα13 stimulation. We have used a cellular model displaying Gα13-dependent inhibition of RhoA activation associated with defective cell invasion to the chemokine CXCL12 to characterize the molecular players regulating these processes. Using both RNAi transfection approaches and protein overexpression experiments here we show that the Src kinase Blk is involved in Gα13-activated tyrosine phosphorylation of p190RhoGAP, which causes RhoA inactivation and ultimately leads to deficient cell invasion. Characterization of molecular interplays between Gα13, Blk and p190RhoGAP revealed that Blk binds Gα13, and that Blk-mediated p190RhoGAP phosphorylation upon Gα13 activation correlates with weakening of Gα13–Blk association connected to increased Blk–p190RhoGAP assembly. These results place Blk upstream of the p190RhoGAP–RhoA pathway in Gα13-activated cells, overall representing an opposing signaling module during CXCL12-triggered invasion. In addition, analyses with Blk- or Gα13-knockdown cells indicated that Blk can also mediate CXCL12-triggered phosphorylation of p190RhoGAP independently of Gα13. However, even if CXCL12 induces the Blk-mediated GAP phosphorylation, the simultaneous stimulation of the guanine-nucleotide exchange factor Vav1 by the chemokine, as earlier reported, leads to a net increase in RhoA activation. Therefore, when Gα13 is concurrently stimulated with CXCL12 there appears to be sufficient Blk activity to promote adequate levels of p190RhoGAP tyrosine phosphorylation to inactivate RhoA and to impair cell invasiveness.  相似文献   

20.
Numerous studies have identified members of the multidrug resistance protein (MRP) family of ABC transporters as ATP-dependent GS-X pumps responsible for export of various xenobiotic conjugates, and the few known glutathione conjugates of endogenous metabolites. In the present study we have investigated the possibility that the glutathione conjugate of 13-oxooctadecadienoic acid (13-OXO-SG), is exported from HT-29 cells by one of these GS-X pumps. The precursor 13-oxooctadecadienoic acid (13-OXO) is a metabolic oxidation product of linoleic acid. The transport of 13-OXO-SG is compared to that of the glutathione conjugate of chlorodinitrobenzene (DNP-SG). The results show that the efflux of 13-OXO-SG is ATP-dependent. In cultured HT-29 cells as well as in inside-out vesicles prepared from these cells, significant inhibition of conjugate export is achieved by the energy disrupters, β,γ-methylene ATP, sodium vanadate, and 2-deoxyglucose. Significant inhibition of the vesicle-mediated transport is also observed in the presence of genistein and verapamil. In inside-out vesicles, the transport of both conjugates exhibits saturation with an apparent Km of 325.5 μM and a Vmax of 0.0669 nmol/mg protein per min for 13-OXO-SG and a Km of 169 μM and a Vmax of 0.496 nmol/mg protein per min for DNP-SG. Furthermore, co-inhibition is observed when both conjugates are present simultaneously which is consistent with the involvement of common pumps. The data in this report demonstrate the involvement of an ATP-dependent pump in the metabolic disposition of endogenously derived metabolites of linoleic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号