首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lessons from animal models of Huntington's disease   总被引:17,自引:0,他引:17  
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HD gene. The expanded repeats are translated into an abnormally long polyglutamine tract close to the N-terminus of the HD gene product, huntingtin. Studies in mouse models and human suggest that the mutation is associated with a deleterious gain of function. There is now a wide range of mouse models for HD, providing important insights into processes associated with disease pathogenesis. These models have been complemented by studies in Drosophila and Caenorhabditis elegans that have allowed the identification of possible modifier loci through suppressor screens.  相似文献   

2.
Coenzyme Q10 as a possible treatment for neurodegenerative diseases   总被引:1,自引:0,他引:1  
Coenzyme Q 10 (CoQ 10 ) is an essential cofactor of the electron transport gene as well as an important antioxidant, which is particularly effective within mitochondria. A number of prior studies have shown that it can exert efficacy in treating patients with known mitochondrial disorders. We investigated the potential usefulness of coenzyme Q 10 in animal models of Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). It has been demonstrated that CoQ 10 can protect against striatal lesions produced by the mitochondrial toxins malonate and 3-nitropropionic acid. These toxins have been utilized to model the striatal pathology, which occurs in HD. It also protects against 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice. CoQ 10 significantly extended survival in a transgenic mouse model of ALS. CoQ 10 can significantly extend survival, delay motor deficits and delay weight loss and attenuate the development of striatal atrophy in a transgenic mouse model of HD. In this mouse model, it showed additive efficacy when combined with the N -methyl- d -aspartate (NMDA) receptor antagonist, remacemide. CoQ 10 is presently being studied as a potential treatment for early PD as well as in combination with remacemide as a potential treatment for HD.  相似文献   

3.
Huntington's disease (HD) is caused by a mutation in the gene encoding for huntingtin resulting in selective neuronal degeneration. Because HD is an autosomal dominant disorder, affected individuals have one copy of the mutant and one copy of the wild-type allele. Huntingtin has antiapoptotic properties and is critical for cell survival. However, the important role of wild-type huntingtin in both HD and other neurological diseases has not been fully recognized. We demonstrate disease-associated decreased levels of full-length huntingtin in brains of transgenic mouse models of HD, ischemia, trauma, and in spinal cord after injury. In addition, overexpression of wild-type huntingtin confers in vivo protection of neurodegeneration after ischemia. We propose that in HD, in addition to a toxic gain-of-function of mutant huntingtin, a parallel depletion of wild-type huntingtin results in a detrimental loss-of-function, playing an important role in disease progression.  相似文献   

4.
Coenzyme Q 10 (CoQ 10 ) is an essential cofactor of the electron transport gene as well as an important antioxidant, which is particularly effective within mitochondria. A number of prior studies have shown that it can exert efficacy in treating patients with known mitochondrial disorders. We investigated the potential usefulness of coenzyme Q 10 in animal models of Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). It has been demonstrated that CoQ 10 can protect against striatal lesions produced by the mitochondrial toxins malonate and 3-nitropropionic acid. These toxins have been utilized to model the striatal pathology, which occurs in HD. It also protects against 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice. CoQ 10 significantly extended survival in a transgenic mouse model of ALS. CoQ 10 can significantly extend survival, delay motor deficits and delay weight loss and attenuate the development of striatal atrophy in a transgenic mouse model of HD. In this mouse model, it showed additive efficacy when combined with the N -methyl- d -aspartate (NMDA) receptor antagonist, remacemide. CoQ 10 is presently being studied as a potential treatment for early PD as well as in combination with remacemide as a potential treatment for HD.  相似文献   

5.
6.
7.
8.
Since the identification of the gene responsible for HD (Huntington''s disease), many genetic mouse models have been generated. Each employs a unique approach for delivery of the mutated gene and has a different CAG repeat length and background strain. The resultant diversity in the genetic context and phenotypes of these models has led to extensive debate regarding the relevance of each model to the human disorder. Here, we compare and contrast the striatal synaptic phenotypes of two models of HD, namely the YAC128 mouse, which carries the full-length huntingtin gene on a yeast artificial chromosome, and the CAG140 KI (knock-in) mouse, which carries a human/mouse chimaeric gene that is expressed in the context of the mouse genome, with our previously published data obtained from the R6/2 mouse, which is transgenic for exon 1 mutant huntingtin. We show that striatal MSNs (medium-sized spiny neurons) in YAC128 and CAG140 KI mice have similar electrophysiological phenotypes to that of the R6/2 mouse. These include a progressive increase in membrane input resistance, a reduction in membrane capacitance, a lower frequency of spontaneous excitatory postsynaptic currents and a greater frequency of spontaneous inhibitory postsynaptic currents in a subpopulation of striatal neurons. Thus, despite differences in the context of the inserted gene between these three models of HD, the primary electrophysiological changes observed in striatal MSNs are consistent. The outcomes suggest that the changes are due to the expression of mutant huntingtin and such alterations can be extended to the human condition.  相似文献   

9.
10.
Huntington's disease (HD) is a hereditary neurodegenerative disorder that gradually robs sufferers of the ability to control movements and induces psychological and cognitive impairments. This devastating, lethal disease is one of several neurological disorders caused by trinucleotide expansions in affected genes, including spinocerebellar ataxias, dentatorubral-pallidoluysian atrophy, and spinal bulbar muscular atrophy. HD symptoms are associated with region-specific neuronal loss within the central nervous system, but to date the mechanism of this selective cell death remains unknown. Strong evidence from studies in humans and animal models suggests the involvement of energy metabolism defects, which may contribute to excitotoxic processes, oxidative dmage, and altered gene regulation. The development of transgenic mouse models expressing the human HD mutation has provided novel opportunities to explore events underlying selective neuronal death in HD, which has hitherto been impossible in humans. Here we discuss how animal models are redefining the role of energy metabolism in HD etiology.  相似文献   

11.
Huntington disease (HD) is an inherited neurodegenerative disease that affects multiple brain regions. It is caused by an expanded polyglutamine tract in huntingtin (Htt). The development of therapies for HD and other neurodegenerative diseases has been hampered by multiple factors, including the lack of clear therapeutic targets, and the cost and complexity of testing lead compounds in vivo. The R6/2 HD mouse model is widely used for pre-clinical trials because of its progressive and robust neural dysfunction, which includes retinal degeneration. Profilin-1 is a Htt binding protein that inhibits Htt aggregation. Its binding to Htt is regulated by the rho-associated kinase (ROCK), which phosphorylates profilin at Ser-137. ROCK is thus a therapeutic target in HD. The ROCK inhibitor Y-27632 reduces Htt toxicity in fly and mouse models. Here we characterized the progressive retinopathy of R6/2 mice between 6–19 weeks of age to determine an optimal treatment window. We then tested a clinically approved ROCK inhibitor, HA-1077, administered intravitreally via liposome-mediated drug delivery. HA-1077 increased photopic and flicker ERG response amplitudes in R6/2 mice, but not in wild-type littermate controls. By targeting ROCK with a new inhibitor, and testing its effects in a novel in vivo model, these results validate the in vivo efficacy of a therapeutic candidate, and establish the feasibility of using the retina as a readout for CNS function in models of neurodegenerative disease.  相似文献   

12.
Huntington's disease (HD) is a fatal neurodegenerative disorder of genetic origin with no known therapeutic intervention that can slow or halt disease progression. Transgenic murine models of HD have significantly improved the ability to assess potential therapeutic strategies. The R6/2 murine model of HD, which recapitulates many aspects of human HD, has been used extensively in pre-clinical HD therapeutic treatment trials. Of several potential therapeutic candidates, both minocycline and coenzyme Q10 (CoQ10) have been demonstrated to provide significant improvement in the R6/2 mouse. Given the specific cellular targets of each compound, and the broad array of abnormalities thought to underlie HD, we sought to assess the effects of combined minocycline and CoQ10 treatment in the R6/2 mouse. Combined minocycline and CoQ10 therapy provided an enhanced beneficial effect, ameliorating behavioral and neuropathological alterations in the R6/2 mouse. Minocycline and CoQ10 treatment significantly extended survival and improved rotarod performance to a greater degree than either minocycline or CoQ10 alone. In addition, combined minocycline and CoQ10 treatment attenuated gross brain atrophy, striatal neuron atrophy, and huntingtin aggregation in the R6/2 mice relative to individual treatment. These data suggest that combined minocycline and CoQ10 treatment may offer therapeutic benefit to patients suffering from HD.  相似文献   

13.
Huntington’s disease (HD) is caused due to an abnormal expansion of polyglutamine repeats in the first exon of huntingtin gene. The mutation in huntingtin causes abnormalities in the functioning of protein, leading to deleterious effects ultimately to the demise of specific neuronal cells. The disease is inherited in an autosomal dominant manner and leads to a plethora of neuropsychiatric behaviour and neuronal cell death mainly in striatal and cortical regions of the brain, eventually leading to death of the individual. The discovery of the mutant gene led to a surge in molecular diagnostics of the disease and in making different transgenic models in different organisms to understand the function of wild-type and mutant proteins. Despite difficult challenges, there has been a significant increase in understanding the functioning of the protein in normal and other gain-of-function interactions in mutant form. However, there have been no significant improvements in treatments of the patients suffering from this ailment and most of the treatment is still symptomatic. HD warrants more attention towards better understanding and treatment as more advancement in molecular diagnostics and therapeutic interventions are available. Several different transgenic models are available in different organisms, ranging from fruit flies to primate monkeys, for studies on understanding the pathogenicity of the mutant gene. It is the right time to assess the advancement in the field and try new strategies for neuroprotection using key pathways as target. The present review highlights the key ingredients of pathology in the HD and discusses important studies for drug trials and future goals for therapeutic interventions.  相似文献   

14.
15.
An increasing number of neurodegenerative disorders have been found to be caused by expanding CAG triplet repeats that code for polyglutamine. Huntington's disease (HD) is the most common of these disorders and dentatorubral-pallidoluysian atrophy (DRPLA) is very similar to HD, but is caused by mutation in a different gene, making them good models to study. In this review, we will concentrate on the roles of protein aggregation, nuclear localization and proteolytic processing in disease pathogenesis. In cell model studies of HD, we have found that truncated N-terminal portions of huntingtin (the HD gene product) with expanded repeats form more aggregates than longer or full length huntingtin polypeptides. These shorter fragments are also more prone to aggregate in the nucleus and cause more cell toxicity. Further experiments with huntingtin constructs harbouring exogenous nuclear import and nuclear export signals have implicated the nucleus in direct cell toxicity. We have made mouse models of HD and DRPLA using an N-terminal truncation of huntingtin (N171) and full-length atrophin-1 (the DRPLA gene product), respectively. In both models, diffuse neuronal nuclear staining and nuclear inclusion bodies are observed in animals expressing the expanded glutamine repeat protein, further implicating the nucleus as a primary site of neuronal dysfunction. Neuritic pathology is also observed in the HD mice. In the DRPLA mouse model, we have found that truncated fragments of atrophin-1 containing the glutamine repeat accumulate in the nucleus, suggesting that proteolysis may be critical for disease progression. Taken together, these data lead towards a model whereby proteolytic processing, nuclear localization and protein aggregation all contribute to pathogenesis.  相似文献   

16.
Since the completion of the human and mouse genomes, the focus in mammalian biology has been on assessing gene function. Tools are needed for assessing the phenotypes of the many mouse models that are now being generated, where genes have been "knocked out," "knocked in," or mutated, so that gene expression can be understood in its biological context. Metabolic profiling of cardiac tissue through high resolution NMR spectroscopy in conjunction with multivariate statistics has been used to classify mouse models of cardiac disease. The data sets included metabolic profiles from mouse models of Duchenne muscular dystrophy, two models of cardiac arrhythmia, and one of cardiac hypertrophy. The metabolic profiles demonstrate that the strain background is an important component of the global metabolic phenotype of a mouse, providing insight into how a given gene deletion may result in very different responses in diverse populations. Despite these differences associated with strain, multivariate statistics were capable of separating each mouse model from its control strain, demonstrating that metabolic profiles could be generated for each disease. Thus, this approach is a rapid method of phenotyping mouse models of disease.  相似文献   

17.
Sleep and circadian disruptions are commonly reported by patients with neurodegenerative diseases, suggesting these may be an endophenotype of the disorders. Several mouse models of Huntington’s disease (HD) that recapitulate the disease progression and motor dysfunction of HD also exhibit sleep and circadian rhythm disruption. Of these, the strongest effects are observed in the transgenic models with multiple copies of mutant huntingtin gene. For developing treatments of the human disease, knock-in (KI) models offer advantages of genetic precision of the insertion and control of mutation copy number. Therefore, we assayed locomotor activity and immobility-defined sleep in a new model of HD with an expansion of the KI repeats (Q175). We found evidence for gene dose- and age-dependent circadian disruption in the behavior of the Q175 line. We did not see evidence for loss of cells or disruption of the molecular oscillator in the master pacemaker, the suprachiasmatic nucleus (SCN). The combination of the precise genetic targeting in the Q175 model and the observed sleep and circadian disruptions make it tractable to study the interaction of the underlying pathology of HD and the mechanisms by which the disruptions occur.  相似文献   

18.
19.
Huntington's disease (HD) is a progressive neurodegenerative disorder for which there is no effective disease modifying treatment. Following-on from studies in HD animal models, histone deacetylase (HDAC) inhibition has emerged as an attractive therapeutic option. In parallel, several reports have demonstrated a role for histone deacetylase 6 (HDAC6) in the modulation of the toxicity caused by the accumulation of misfolded proteins, including that of expanded polyglutamine in an N-terminal huntingtin fragment. An important role for HDAC6 in kinesin-1 dependent transport of brain-derived neurotrophic factor (BDNF) from the cortex to the striatum has also been demonstrated. To elucidate the role that HDAC6 plays in HD progression, we evaluated the effects of the genetic depletion of HDAC6 in the R6/2 mouse model of HD. Loss of HDAC6 resulted in a marked increase in tubulin acetylation throughout the brain. Despite this, there was no effect on the onset and progression of a wide range of behavioural, physiological, molecular and pathological HD-related phenotypes. We observed no change in the aggregate load or in the levels of soluble mutant exon 1 transprotein. HDAC6 genetic depletion did not affect the efficiency of BDNF transport from the cortex to the striatum. Therefore, we conclude that HDAC6 inhibition does not modify disease progression in R6/2 mice and HDAC6 should not be prioritized as a therapeutic target for HD.  相似文献   

20.
Huntington's disease (HD) is a devastating neurodegenerative disorder for which there are no disease-modifying treatments. The molecular pathogenesis of HD is complex and many mechanisms and cellular processes have been proposed as potential sites of therapeutic intervention. However, prior to embarking on drug development initiatives, it is essential that therapeutic targets can be validated in mammalian models of HD. Previous studies in invertebrate and cell culture HD models have suggested that inhibition of SIRT2 could have beneficial consequences on disease progression. SIRT2 is a NAD(+)-dependent deacetylase that has been proposed to deacetylate α-tubulin, histone H4 K16 and to regulate cholesterol biogenesis - a pathway which is dysregulated in HD patients and HD mouse models. We have utilized mice in which SIRT2 has been reduced or ablated to further explore the function of SIRT2 and to assess whether SIRT2 loss has a beneficial impact on disease progression in the R6/2 mouse model of HD. Surprisingly we found that reduction or loss of SIRT2 had no effect on the acetylation of α-tubulin or H4K16 or on cholesterol biosynthesis in the brains of wild type mice. Equally, genetic reduction or ablation of SIRT2 had no effect on HD progression as assessed by a battery of physiological and behavioural tests. Furthermore, we observed no change in aggregate load or levels of soluble mutant huntingtin transprotein. Intriguingly, neither the constitutive genetic loss nor acute pharmacological inhibition of SIRT2 affected the expression of cholesterol biosynthesis enzymes in the context of HD. Therefore, we conclude that SIRT2 inhibition does not modify disease progression in the R6/2 mouse model of HD and SIRT2 inhibition should not be prioritised as a therapeutic option for HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号