首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Staphylococcus aureus secretes coagulase (Coa) and von Willebrand factor-binding protein (vWbp) to activate host prothrombin and form fibrin cables, thereby promoting the establishment of infectious lesions. The D1-D2 domains of Coa and vWbp associate with, and non-proteolytically activate prothrombin. Moreover, Coa encompasses C-terminal tandem repeats for binding to fibrinogen, whereas vWbp has been reported to associate with von Willebrand factor and fibrinogen. Here we used affinity chromatography with non-catalytic Coa and vWbp to identify the ligands for these virulence factors in human plasma. vWbp bound to prothrombin, fibrinogen, fibronectin, and factor XIII, whereas Coa co-purified with prothrombin and fibrinogen. vWbp association with fibrinogen and factor XIII, but not fibronectin, required prothrombin and triggered the non-proteolytic activation of FXIII in vitro. Staphylococcus aureus coagulation of human plasma was associated with the recruitment of prothrombin, FXIII, and fibronectin as well as the formation of cross-linked fibrin. FXIII activity in staphylococcal clots could be attributed to thrombin-dependent proteolytic activation as well as vWbp-mediated non-proteolytic activation of FXIII zymogen.  相似文献   

2.
Staphylococcus aureus infection is a frequent cause of sepsis in humans, a disease associated with high mortality and without specific intervention. When suspended in human or animal plasma, staphylococci are known to agglutinate, however the bacterial factors responsible for agglutination and their possible contribution to disease pathogenesis have not yet been revealed. Using a mouse model for S. aureus sepsis, we report here that staphylococcal agglutination in blood was associated with a lethal outcome of this disease. Three secreted products of staphylococci--coagulase (Coa), von Willebrand factor binding protein (vWbp) and clumping factor (ClfA)--were required for agglutination. Coa and vWbp activate prothrombin to cleave fibrinogen, whereas ClfA allowed staphylococci to associate with the resulting fibrin cables. All three virulence genes promoted the formation of thromboembolic lesions in heart tissues. S. aureus agglutination could be disrupted and the lethal outcome of sepsis could be prevented by combining dabigatran-etexilate treatment, which blocked Coa and vWbp activity, with antibodies specific for ClfA. Together these results suggest that the combined administration of direct thrombin inhibitors and ClfA-antibodies that block S. aureus agglutination with fibrin may be useful for the prevention of staphylococcal sepsis in humans.  相似文献   

3.
Staphylococcus aureus has been shown to interact specifically with fibrinogen. Three different extracellular fibrinogen-binding proteins, two of which have coagulase activity, are produced by S. aureus strain Newman. The role of these fibrinogen-binding proteins during staphylococcal colonization and infection has not yet been fully elucidated. Here we describe the cloning, sequencing and expression of a gene for a 19kDa fibrinogen-binding protein. This gene, called fib, encodes a 165-amino-acid polypeptide, including a 29-amino-acid signal sequence. The recombinant protein, which has an estimated molecular mass of 15.9kDa, bound fibrinogen and was recognized by a polyclonal antiserum against the native Fib protein. Homologies between the Fib protein and the fibrinogen-binding domain of coagulase suggest that amino acids within this domain are involved in the binding to fibrinogen.  相似文献   

4.
Neutrophil abscess formation is critical in innate immunity against many pathogens. Here, the mechanism of neutrophil abscess formation was investigated using a mouse model of Staphylococcus aureus cutaneous infection. Gene expression analysis and in vivo multispectral noninvasive imaging during the S. aureus infection revealed a strong functional and temporal association between neutrophil recruitment and IL-1β/IL-1R activation. Unexpectedly, neutrophils but not monocytes/macrophages or other MHCII-expressing antigen presenting cells were the predominant source of IL-1β at the site of infection. Furthermore, neutrophil-derived IL-1β was essential for host defense since adoptive transfer of IL-1β-expressing neutrophils was sufficient to restore the impaired neutrophil abscess formation in S. aureus-infected IL-1β-deficient mice. S. aureus-induced IL-1β production by neutrophils required TLR2, NOD2, FPR1 and the ASC/NLRP3 inflammasome in an α-toxin-dependent mechanism. Taken together, IL-1β and neutrophil abscess formation during an infection are functionally, temporally and spatially linked as a consequence of direct IL-1β production by neutrophils.  相似文献   

5.
The surge in multidrug resistance in Staphylococcus aureus (Saureus) and the lag in antibiotic discovery necessitate the development of new anti‐infective strategies to reduce Saureus infections. In Saureus, von Willebrand factor‐binding protein (vWbp) is not only the main coagulase that triggers host prothrombin activation and formation of fibrin cables but also bridges the bacterial cell wall and von Willebrand factor, thereby allowing Saureus to bind to platelets and endothelial cells, playing a vital role in pathogenesis of Saureus infections. Here, we have identified that galangin, a bioactive compound found in honey and Alpinia officinarum Hance, is a potent and direct inhibitor of vWbp by coagulation activity inhibition assay, thermal shift assay and biolayer interferometry assay. Molecular dynamic simulations and verification experiments revealed that the Trp‐64 and Leu‐69 residues are necessary for the binding of galangin to vWbp. Significantly, galangin attenuated Saureus virulence in a mouse Saureus‐induced pneumonia model. In addition, we also identified that galangin can enhance the therapeutic effect of latamoxef on Saureus‐induced pneumonia. Taken together, the results suggest that galangin may be used for the development of therapeutic drugs or utilized as adjuvants to combine with antibiotics to combat Saureus‐related infections.  相似文献   

6.
Clumping of Staphylococcal aureus was observed in the presence of fibrinogen as well as fibronectin. In order to elucidate the mechanism of this clumping, binding of radiolabelled fibrinogen and fibronectin to S. aureus cultures was studied. Cultures of S. aureus reacted with 125I-labelled fibrinogen as well as fibronectin. The binding of labelled fibrinogen to S. aureus could be completely inhibited by unlabelled fibronectin, whereas the binding of labelled fibronectin was only partially inhibited by unlabelled fibrinogen. This suggested an interaction of fibronectin with clumping factor which is the binding protein for fibrinogen in staphylococci. The clumping factor was purified from S. aureus strain K 807 by affinity chromatography on fibrinogen-Sepharose followed by HPLC. The purified clumping factor inhibited the binding of fibrinogen and fibronectin to staphylococci. In western blots the purified clumping factor reacted with fibrinogen as well as fibronectin. Thus, the direct interaction of clumping factor with fibronectin might be responsible for the clumping of staphylococci in fibrinogen depleted plasma or serum.  相似文献   

7.
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.  相似文献   

8.
Prothrombin is conformationally activated by von Willebrand factor-binding protein (vWbp) from Staphylococcus aureus through insertion of the NH2-terminal residues of vWbp into the prothrombin catalytic domain. The rate of prothrombin activation by vWbp(1–263) is controlled by a hysteretic kinetic mechanism initiated by substrate binding. The present study evaluates activation of prothrombin by full-length vWbp(1–474) through activity progress curve analysis. Additional interactions from the COOH-terminal half of vWbp(1–474) strengthened the initial binding of vWbp to prothrombin, resulting in higher activity and an ∼100-fold enhancement in affinity. The affinities of vWbp(1–263) or vWbp(1–474) were compared by equilibrium binding to the prothrombin derivatives prethrombin 1, prethrombin 2, thrombin, meizothrombin, and meizothrombin(des-fragment 1) and their corresponding active site-blocked analogs. Loss of fragment 1 in prethrombin 1 enhanced affinity for both vWbp(1–263) and vWbp(1–474), with a 30–45% increase in Gibbs free energy, implicating a regulatory role for fragment 1 in the activation mechanism. Active site labeling of all prothrombin derivatives with d-Phe-Pro-Arg-chloromethyl ketone, analogous to irreversible binding of a substrate, decreased their KD values for vWbp into the subnanomolar range, reflecting the dependence of the activating conformational change on substrate binding. The results suggest a role for prothrombin domains in the pathophysiological activation of prothrombin by vWbp, and may reveal a function for autocatalysis of the vWbp·prothrombin complexes during initiation of blood coagulation.  相似文献   

9.
10.
Health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) forms biofilm in vitro that is dependent on the surface-located fibronectin binding proteins A and B (FnBPA, FnBPB). Here we provide new insights into the requirements for FnBP-dependent biofilm formation by MRSA. We show that expression of FnBPs is sustained at high levels throughout the growth cycle in the HA-MRSA strain BH1CC in contrast to laboratory strain SH1000, where expression could be detected only in exponential phase. We found that FnBP-mediated biofilm accumulation required Zn2+, while the removal of Zn2+ had no effect on the ability of FnBPA to mediate bacterial adherence to fibrinogen. We also investigated the role of FnBPA expressed on the surface of S. aureus in promoting biofilm formation and bacterial adhesion to fibrinogen. The minimum part of FnBPA required for ligand binding has so far been defined only with recombinant proteins. Here we found that the N1 subdomain was not required for biofilm formation or for FnBPA to promote bacterial adherence to fibrinogen. Residues at the C terminus of subdomain N3 required for FnBPA to bind to ligands using the “dock, lock, and latch” mechanism were necessary for FnBPA to promote bacterial adherence to fibrinogen. However, these residues were not necessary to form biofilm, allowing us to localize the region of FnBPA required for biofilm accumulation to residues 166 to 498. Thus, FnBPA mediates biofilm formation and bacterial adhesion to fibrinogen using two distinct mechanisms. Finally, we identified a hitherto-unrecognized thrombin cleavage site close to the boundary between subdomains N1 and N2 of FnBPA.  相似文献   

11.
Staphylococcus aureus infection begins when bacterial cells circulating in blood adhere to components of the extracellular matrix or endothelial cells of the host and initiate colonization. S. aureus is known to exhibit extensive interactions with platelets. S. aureus is also known to bind to red blood cells (RBCs) in the presence of plasma proteins, such as fibrinogen and IgG. Herein we report a new binding mechanism of S. aureus to RBC independent of those plasma proteins. To characterize the new adhesion mechanism, we experimentally examine the binding kinetics and molecular constituents mediating the new adhesive interactions between S. aureus and RBCs under defined shear conditions. The results demonstrate that the receptors for fibrinogen (clumping factor A) and IgG (protein A) of S. aureus are not involved in the adhesion. S. aureus binds to RBCs with maximal adhesion at the shear rate 100 s–1 and decreasing adhesion with increasing shear. The heteroaggregates formed after shear are stable when subjected to the shear rate 2,000 s–1, indicating that intercellular contact time rather than shear forces controls the adhesion at high shear. S. aureus binding to RBC requires plasma, and 10% plasma is sufficient for maximal adhesion. Plasma proteins involved in the cell-cell adhesion, such as fibrinogen, fibronectin, von Willebrand factor, IgG, thrombospondin, laminin, and vitronectin are not involved in the observed adhesion. The extent of heteroaggregation is dramatically reduced on RBC treatment with trypsin, chymotrypsin, or neuraminidase, suggesting that the receptor(s) mediating the heteroaggregation process is a sialylated glycoprotein on RBC surface. Adhesion is divalent cation dependent and also blocked by heparin. This work demonstrates a new mechanism of S. aureus-RBC binding under hydrodynamic shear conditions via unknown RBC sialoglycoprotein(s). The binding requires plasma protein(s) other than fibrinogen or IgG and does not involve the S. aureus adhesins clumping factor A or protein A. adhesion; red blood cell  相似文献   

12.
Staphylococcus aureus (S. aureus) pathogenesis is a complex process involving a diverse array of extracellular and cell wall components. ClfB, an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family surface protein, described as a fibrinogen-binding clumping factor, is a key determinant of S. aureus nasal colonization, but the molecular basis for ClfB-ligand recognition remains unknown. In this study, we solved the crystal structures of apo-ClfB and its complexes with fibrinogen α (Fg α) and cytokeratin 10 (CK10) peptides. Structural comparison revealed a conserved glycine-serine-rich (GSR) ClfB binding motif (GSSGXGXXG) within the ligands, which was also found in other human proteins such as Engrailed protein, TCF20 and Dermokine proteins. Interaction between Dermokine and ClfB was confirmed by subsequent binding assays. The crystal structure of ClfB complexed with a 15-residue peptide derived from Dermokine revealed the same peptide binding mode of ClfB as identified in the crystal structures of ClfB-Fg α and ClfB-CK10. The results presented here highlight the multi-ligand binding property of ClfB, which is very distinct from other characterized MSCRAMMs to-date. The adherence of multiple peptides carrying the GSR motif into the same pocket in ClfB is reminiscent of MHC molecules. Our results provide a template for the identification of other molecules targeted by S. aureus during its colonization and infection. We propose that other MSCRAMMs like ClfA and SdrG also possess multi-ligand binding properties.  相似文献   

13.
Many serious diseases caused by Staphylococcus aureus appear to be associated with biofilms. Therefore, we investigated the biofilm-forming ability of the methicillin-resistant S. aureus (MRSA) isolates collected from hospitalized patients. As many as 96?% strains had the ability to form biofilm in vitro. The majority of S. aureus strains formed biofilm in ica-dependent mechanism. However, 23?% of MRSA isolates formed biofilm in ica-independent mechanism. Half of these strains carried fnbB genes encoding surface proteins fibronectin-binding protein B involved in intercellular accumulation and biofilm development in S. aureus strains. The biofilm structures were examined via confocal laser scanning microscopy (CLSM) and three-dimensional structures were reconstructed. The images obtained in CLSM revealed that the biofilm created by ica-positive strains was different from biofilm formed by ica-negative strains. The MRSA population showed a large genetic diversity and we did not find a single clone that occurred preferentially in hospital environment. Our results demonstrated the variation in genes encoding adhesins for the host matrix proteins (elastin, laminin, collagen, fibronectin, and fibrinogen) and in the gene involved in biofilm formation (icaA) within the majority of S. aureus clones.  相似文献   

14.
As a first approach to establishing a three-dimensional culture infection model, we studied the growth behavior of the extracellular pathogen Yersinia enterocolitica in three-dimensional collagen gels (3D-CoG). Surprisingly, we observed that plasmidless Y. enterocolitica was motile in the 3D-CoG in contrast to its growth in traditional motility agar at 37 degrees C. Motility at 37 degrees C was abrogated in the presence of the virulence plasmid pYV or the exclusive expression of the pYV-located Yersinia adhesion gene yadA. YadA-producing yersiniae formed densely packed (dp) microcolonies, whereas pYVDelta yadA-carrying yersiniae formed loosely packed microcolonies at 37 degrees C in 3D-CoG. Furthermore, we demonstrated that the packing density of the microcolonies was dependent on the head domain of YadA. Moreover, dp microcolony formation did not depend on the capacity of YadA to bind to collagen fibers, as demonstrated by the use of yersiniae producing collagen nonbinding YadA. By using a yopE-gfp reporter, we demonstrated Ca(2+)-dependent expression of this pYV-localized virulence gene by yersiniae in 3D-CoG. In conclusion, this study revealed unique plasmid-dependent growth behavior of yersiniae in a three-dimensional matrix environment that resembles the behavior of yersiniae (e.g., formation of microcolonies) in infected mouse tissue. Thus, this 3D-CoG model may be a first step to a more complex level of in vitro infection models that mimic living tissue, enabling us to study the dynamics of pathogen-host cell interactions.  相似文献   

15.
Coagulase (Coa) secreted by Staphylococcus aureus is associated with the establishment of staphylococcal disease, which activates host prothrombin and generates fibrin shields. The R domain of Coa, consisting of several conserved repeats, is important in immune evasion during S. aureus infection. However, previous research showed that the Coa R domain induced very weak specific antibody responses. In this study, we constructed a new R domain, CoaR6, consisting of 6 repeats that occur most frequently in clinical isolates. By fusing CoaR6 with Hc, the C-terminal fragment of the heavy chain of tetanus neurotoxin, we successfully increased anti-CoaR6 IgG levels in immunized mice which were hardly detected in mice immunized with CoaR6 plus alum. To further improve anti-CoaR6 responses, the combination adjuvants alum plus CpG were formulated with the antigen and exhibited a significantly higher specific antibody response. Moreover, active Th1/Th17 immune responses were observed in Hc-CoaR6 immunized group rather than CoaR6. Active immunization of Hc-CoaR6 with alum plus CpG showed protective effects in a peritonitis model induced by two S. aureus strains with different coagulase types. Our results provided strategies to improve the immunogenicity of R domain and supporting evidences for R domain to be an S. aureus vaccine candidate.  相似文献   

16.
Staphylococcus aureus is a leading cause of catheter-related bloodstream infections and endocarditis. Both involve (i) biofilm formation, (ii) exposure to fluid shear, and (iii) high rates of dissemination. We found that viscoelasticity allowed S. aureus biofilms to resist detachment due to increased fluid shear by deformation, while remaining attached to a surface. Further, we report that S. aureus microcolonies moved downstream by rolling along the lumen walls of a glass flow cell, driven by the flow of the overlying fluid. The rolling appeared to be controlled by viscoelastic tethers. This tethered rolling may be important for the surface colonization of medical devices by nonmotile bacteria.  相似文献   

17.
Staphylococcus pseudintermedius, a commensal and pathogen of dogs and occasionally of humans, expresses surface proteins potentially involved in host colonization and pathogenesis. Here, we describe the cloning and characterization of SpsD, a surface protein of S. pseudintermedius reported as interacting with extracellular matrix proteins and corneocytes. A ligand screen and Western immunoblotting revealed that the N-terminal A domain of SpsD bound fibrinogen, fibronectin, elastin and cytokeratin 10. SpsD also interfered with thrombin-induced fibrinogen coagulation and blocked ADP-induced platelet aggregation. The binding site for SpsD was mapped to residues 395–411 in the fibrinogen γ-chain, while binding sites in fibronectin were localized to the N- and C-terminal regions. SpsD also bound to glycine- and serine-rich omega loops within the C-terminal tail region of cytokeratin 10. Ligand binding studies using SpsD variants lacking the C-terminal segment or containing an amino-acid substitution in the putative ligand binding site provided insights into interaction mechanism of SpsD with the different ligands. Together these data demonstrate the multi-ligand binding properties of SpsD and illustrate some interesting differences in the variety of ligands bound by SpsD and related proteins from S. aureus.  相似文献   

18.
Staphylococci adapt specifically to various animal hosts by genetically determined mechanisms that are not well understood. One such adaptation involves the ability to coagulate host plasma, by which strains isolated from ruminants or horses can be differentiated from closely related human strains. Here, we report first that this differential coagulation activity is due to animal‐specific alleles of the von Willebrand factor‐binding protein (vWbp) gene, vwb, and second that these vwb alleles are carried by highly mobile pathogenicity islands, SaPIs. Although all Staphylococcus aureus possess chromosomal vwb as well as coagulase (coa) genes, neither confers species‐specific coagulation activity; however, the SaPI‐coded vWbps possess a unique N‐terminal region specific for the activation of ruminant and equine prothrombin. vWbp‐encoding SaPIs are widely distributed among S. aureus strains infecting ruminant or equine hosts, and we have identified and characterized four of these, SaPIbov4, SaPIbov5, SaPIeq1 and SaPIov2, which encode vWbpSbo4, vWbpSbo5, vWbpSeq1 and vWbpSov2 respectively. Moreover, the SaPI‐carried vwb genes are regulated differently from the chromosomal vwb genes of the same strains. We suggest that the SaPI‐encoded vWbps may represent an important host adaptation mechanism for S. aureus pathogenicity, and therefore that acquisition of vWbp‐encoding SaPIs may be determinative for animal specificity.  相似文献   

19.

Background

Staphylococci belong to the most important pathogens causing implant-associated infections. Colonization of the implanted medical devices by the formation of a three-dimensional structure made of bacteria and host material called biofilm is considered the most critical factor in these infections. To form a biofilm, bacteria first attach to the surface of the medical device, and then proliferate and accumulate into multilayered cell clusters. Biofilm accumulation may be mediated by polysaccharide and protein factors.

Methology/Principal Findings

The information on Staphylococcus aureus protein factors involved in biofilm accumulation is limited, therefore, we searched the S. aureus Col genome for LPXTG-motif containing potential surface proteins and chose the so far uncharacterized S. aureus surface protein C (SasC) for further investigation. The deduced SasC sequence consists of 2186 amino acids with a molecular mass of 238 kDa and has features typical of Gram-positive surface proteins, such as an N-terminal signal peptide, a C-terminal LPXTG cell wall anchorage motif, and a repeat region consisting of 17 repeats similar to the domain of unknown function 1542 (DUF1542). We heterologously expressed sasC in Staphylococcus carnosus, which led to the formation of huge cell aggregates indicative of intercellular adhesion and biofilm accumulation. To localize the domain conferring cell aggregation, we expressed two subclones of sasC encoding either the N-terminal domain including a motif that is found in various architectures (FIVAR) or 8 of the DUF1542 repeats. SasC or its N-terminal domain, but not the DUF1542 repeat region conferred production of huge cell aggregates, higher attachment to polystyrene, and enhanced biofilm formation to S. carnosus and S. aureus. SasC does not mediate binding to fibrinogen, thrombospondin-1, von Willebrand factor, or platelets as determined by flow cytometry.

Conclusions/Significance

Thus, SasC represents a novel S. aureus protein factor involved in cell aggregation and biofilm formation, which may play an important role in colonization during infection with this important pathogen.  相似文献   

20.

Background

During the last years, 19F-MRI and perfluorocarbon nanoemulsion (PFC) emerged as a powerful contrast agent based MRI methodology to track cells and to visualize inflammation. We applied this new modality to visualize deep tissue abscesses during acute and chronic phase of inflammation caused by Staphylococcus aureus infection.

Methodology and Principal Findings

In this study, a murine thigh infection model was used to induce abscess formation and PFC or CLIO (cross linked ironoxides) was administered during acute or chronic phase of inflammation. 24 h after inoculation, the contrast agent accumulation was imaged at the site of infection by MRI. Measurements revealed a strong accumulation of PFC at the abscess rim at acute and chronic phase of infection. The pattern was similar to CLIO accumulation at chronic phase and formed a hollow sphere around the edema area. Histology revealed strong influx of neutrophils at the site of infection and to a smaller extend macrophages during acute phase and strong influx of macrophages at chronic phase of inflammation.

Conclusion and Significance

We introduce 19F-MRI in combination with PFC nanoemulsions as a new platform to visualize abscess formation in a murine thigh infection model of S. aureus. The possibility to track immune cells in vivo by this modality offers new opportunities to investigate host immune response, the efficacy of antibacterial therapies and the influence of virulence factors for pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号