首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) catalyzes the transfer of GlcNAc to O-mannose of glycoproteins. Mutations in the POMGnT1 gene cause muscle–eye–brain disease (MEB). POMGnT1 is a typical type II membrane protein, which is localized in the Golgi apparatus. However, details of the catalytic and reaction mechanism of POMGnT1 are not understood. To develop a better understanding of POMGnT1, we examined the substrate specificity of POMGnT1 using a series of synthetic O-mannosyl peptides based on the human α-dystroglycan (α-DG) sequence as substrates. O-Mannosyl peptides consisting of three to 20 amino acids are recognized as substrates. Enzyme kinetics improved with increasing peptide length up to a length of 8 amino acids but the kinetics of peptides longer than 8 amino acids were similar to those of octapeptides. Our results also show that the amino acid sequence affects POMGnT1 activity. These data suggest that both length and amino acid sequence of mannosyl peptides are determinants of POMGnT1 substrate specificity.  相似文献   

2.
Muscle-eye-brain (MEB) disease is a congenital muscular dystrophy (CMD) phenotype characterized by hypotonia at birth, brain structural abnormalities and ocular malformations. To date, few MEB cases have been reported in China where clinical recognition and genetic confirmatory testing on a research basis are recent developments. Here, we report the clinical and molecular genetics of three MEB disease patients. The patients had different degrees of muscle, eye and brain symptoms, ranging from congenital hypotonia, early-onset severe myopia and mental retardation to mild weakness, independent walking and language problems. This confirmed the expanding phenotypic spectrum of MEB disease with varying degrees of hypotonia, myopia and cognitive impairment. Brain magnetic resonance imaging showed cerebellar cysts, hypoplasia and characteristic brainstem flattening and kinking. Four candidate genes (POMGnT1, FKRP, FKTN and POMT2) were screened, and six POMGnT1 mutations (four novel) were identified, including five missense and one splice site mutation. Pathogenicity of the two novel variants in one patient was confirmed by POMGnT1 enzyme activity assay, protein expression and subcellular localization of mutant POMGnT1 in HeLa cells. Transfected cells harboring this patient’s L440R mutant POMGnT1 showed POMGnT1 mislocalization to both the Golgi apparatus and endoplasmic reticulum. We have provided clinical, histological, enzymatic and genetic evidence of POMGnT1 involvement in three unrelated MEB disease patients in China. The identification of novel POMGnT1 mutations and an expanded phenotypic spectrum contributes to an improved understanding of POMGnT1 structure–function relationships, CMD pathophysiology and genotype–phenotype correlations, while underscoring the need to consider POMGnT1 in Chinese MEB disease patients.  相似文献   

3.
Alpha-dystroglycan is a component of the dystrophin-glycoprotein-complex, which is the major mechanism of attachment between the cytoskeleton and the extracellular matrix. Muscle-eye-brain disease (MEB) is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities and lissencephaly. We recently found that MEB is caused by mutations in the protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase (POMGnT1) gene. POMGnT1 is a glycosylation enzyme that participates in the synthesis of O-mannosyl glycan, a modification that is rare in mammals but is known to be a laminin-binding ligand of alpha-dystroglycan. Here we report a selective deficiency of alpha-dystroglycan in MEB patients. This finding suggests that alpha-dystroglycan is a potential target of POMGnT1 and that altered glycosylation of alpha-dystroglycan may play a critical role in the pathomechanism of MEB and some forms of muscular dystrophy.  相似文献   

4.
Protein O-mannose beta1,2-N-acetyglucosaminyltransferase 1 (POMGnT1) is an enzyme involved in the synthesis of O-mannosyl glycans. Mutations of POMGnT1 in humans result in the muscle-eye-brain (MEB) disease. In this study, we have characterized a null mutation generated by gene trapping with a retroviral vector inserted into the second exon of the mouse POMGnT1 locus. Expression of POMGnT1 mRNA was abolished in mutant mice. Glycosylation of alpha-dystroglycan was also reduced. POMGnT1 mutant mice were viable with multiple developmental defects in muscle, eye, and brain, similar to the phenotypes observed in human MEB disease. The present study provides the first genetic animal model to further dissect the roles of POMGnT1 in MEB disease.  相似文献   

5.
Muscle-eye-brain disease (MEB), an autosomal recessive disorder, is characterized by congenital muscular dystrophy, brain malformation, and ocular abnormalities. Previously, we found that MEB is caused by mutations in the gene encoding the protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 1 (POMGnT1), which is responsible for the formation of the GlcNAcbeta1-2Man linkage of O-mannosyl glycan. Although 13 mutations have been identified in patients with MEB, only the protein with the most frequently observed splicing site mutation has been studied. This protein was found to have no activity. Here, we expressed the remaining mutant POMGnT1s and found that none of them had any activity. These results clearly demonstrate that MEB is inherited as a loss-of-function of POMGnT1.  相似文献   

6.
Muscle-eye-brain disease (MEB) is an autosomal recessive disorder characterized by congenital muscular dystrophy, ocular abnormalities, and lissencephaly. Mammalian O-mannosyl glycosylation is a rare type of protein modification that is observed in a limited number of glycoproteins of brain, nerve, and skeletal muscle. Here we isolated a human cDNA for protein O-mannose beta-1,2-N-acetylglucosaminyltransferase (POMGnT1), which participates in O-mannosyl glycan synthesis. We also identified six independent mutations of the POMGnT1 gene in six patients with MEB. Expression of most frequent mutation revealed a great loss of the enzymatic activity. These findings suggest that interference in O-mannosyl glycosylation is a new pathomechanism for muscular dystrophy as well as neuronal migration disorder.  相似文献   

7.
Protein O-linked mannose beta1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) catalyzes the transfer of GlcNAc to O-mannose of glycoproteins. Mutations in the POMGnT1 gene cause a type of congenital muscular dystrophy called muscle-eye-brain disease (MEB). We evaluated several truncated mutants of POMGnT1 to determine the minimal catalytic domain. Deletions of 298 amino acids in the N-terminus and 9 amino acids in the C-terminus did not affect POMGnT1 activity, while larger deletions on either end abolished activity. These data indicate that the minimal catalytic domain is at least 353 amino acids. Single amino acid substitutions in the stem domain of POMGnT1 from MEB patients abolished the activity of the membrane-bound form but not the soluble form. This suggests that the stem domain of the soluble form of POMGnT1 is unnecessary for activity, but that some amino acids play a crucial role in the membrane-bound form.  相似文献   

8.
Zhang P  Hu H 《Glycobiology》2012,22(2):235-247
Genetic defects in like-glycosyltransferase (LARGE) cause congenital muscular dystrophy with central nervous system manifestations. The underlying molecular pathomechanism is the hypoglycosylation of α-dystroglycan (α-DG), which is evidenced by diminished immunoreactivity to IIH6C4 and VIA4-1, antibodies that recognize carbohydrate epitopes. Previous studies indicate that LARGE participates in the formation of a phosphoryl glycan branch on O-linked mannose or it modifies complex N- and mucin O-glycans. In this study, we overexpressed LARGE in neural stem cells deficient in protein O-mannosyltransferase 2 (POMT2), an enzyme required for O-mannosyl glycosylation. The results showed that overexpressing LARGE did not lead to hyperglycosylation of α-DG in POMT2 knockout (KO) cells but did generate IIH6C4 and VIA4-1 immunoreactivity and laminin-binding activity. Additionally, overexpressing LARGE in cells deficient in both POMT2 and α-DG generated laminin-binding IIH6C4 immunoreactivity. These results indicate that LARGE expression resulted in the glycosylation of proteins other than α-DG in the absence of O-mannosyl glycosylation. The IIH6C4 immunoreactivity generated in double-KO cells was largely removed by treatment either with peptide N-glycosidase F or with cold aqueous hydrofluoric acid, suggesting that LARGE expression caused phosphoryl glycosylation of N-glycans. However, the glycosylation of α-DG by LARGE is dependent on POMT2, indicating that LARGE expression only modifies O-linked mannosyl glycans of α-DG. Thus, LARGE expression mediates the phosphoryl glycosylation of not only O-mannosyl glycans including those on α-DG but also N-glycans on proteins other than α-DG.  相似文献   

9.
Congenital muscular dystrophies have a broad spectrum of genotypes and phenotypes and there is a need for a better biochemical understanding of this group of diseases in order to aid diagnosis and treatment. Several mutations resulting in these diseases cause reduced O-mannosyl glycosylation of glycoproteins, including α-dystroglycan. The enzyme POMGnT1 (protein-O-mannose N-acetylglucosaminyltransferase 1; EC 2.4.1.-) catalyses the transfer of N-acetylglucosamine to O-linked mannose of α-dystroglycan. In the present paper we describe the biochemical characterization of 14 clinical mutants of the glycosyltransferase POMGnT1, which have been linked to muscle-eye-brain disease or similar conditions. Truncated mutant variants of the human enzyme (recombinant POMGnT1) were expressed in Escherichia coli and screened for catalytic activity. We find that three mutants show some activity towards mannosylated peptide substrates mimicking α-dystroglycan; the residues affected by these mutants are predicted by homology modelling to be on the periphery of the POMGnT1 surface. Only in part does the location of a previously described mutated residue on the periphery of the protein structure correlate with a less severe disease mutant.  相似文献   

10.
Structural and functional effects of core M1 type glycan modification catalyzed by protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) were investigated using a core M1 glycoform focused library of an α-dystroglycan fragment, 372TRGAIIQTPTLGPIQPTRV390. Evanescent-field fluorescence-assisted microarray system illuminated the specific binding pattern of plant lectins that can discriminate the glycan structure of core M1 glycan of the library. The comparative NMR analysis of synthetic glycopeptide having different length of the O-mannosylated glycans revealed a conformational change of the peptide backbone along with core M1 disaccharide formation. No long-range NOE signals of glycan-amino acid nor inter amino acid indicate the conformational change is induced by steric hindrance of core M1, the sole 1,2-O-modified form among protein binding sugar residue found in mammals.  相似文献   

11.
Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.  相似文献   

12.
Walker-Warburg syndrome (WWS) is an autosomal recessive developmental disorder characterized by congenital muscular dystrophy and complex brain and eye abnormalities. A similar combination of symptoms is presented by two other human diseases, muscle-eye-brain disease (MEB) and Fukuyama congenital muscular dystrophy (FCMD). Although the genes underlying FCMD (Fukutin) and MEB (POMGnT1) have been cloned, loci for WWS have remained elusive. The protein products of POMGnT1 and Fukutin have both been implicated in protein glycosylation. To unravel the genetic basis of WWS, we first performed a genomewide linkage analysis in 10 consanguineous families with WWS. The results indicated the existence of at least three WWS loci. Subsequently, we adopted a candidate-gene approach in combination with homozygosity mapping in 15 consanguineous families with WWS. Candidate genes were selected on the basis of the role of the FCMD and MEB genes. Since POMGnT1 encodes an O-mannoside N-acetylglucosaminyltransferase, we analyzed the possible implication of O-mannosyl glycan synthesis in WWS. Analysis of the locus for O-mannosyltransferase 1 (POMT1) revealed homozygosity in 5 of 15 families. Sequencing of the POMT1 gene revealed mutations in 6 of the 30 unrelated patients with WWS. Of the five mutations identified, two are nonsense mutations, two are frameshift mutations, and one is a missense mutation. Immunohistochemical analysis of muscle from patients with POMT1 mutations corroborated the O-mannosylation defect, as judged by the absence of glycosylation of alpha-dystroglycan. The implication of O-mannosylation in MEB and WWS suggests new lines of study in understanding the molecular basis of neuronal migration.  相似文献   

13.
Retinoic acid (RA) is a well established anti-tumor agent inducing differentiation in various cancer cells. Recently, a robust up-regulation of human natural killer-1 sulfotransferase (HNK-1ST) was found in several subsets of melanoma cells during RA-mediated differentiation. However, the molecular mechanism underlying the tumor suppression mediated by HNK-1ST remains unclear. Here, we show that HNK-1ST changed the glycosylation state and reduced the ligand binding activity of α-dystroglycan (α-DG) in RA-treated S91 melanoma cells, which contributed to an attenuation of cell migration. Knockdown of HNK-1ST restored the glycosylation of α-DG and the migration of RA-treated S91 cells, indicating that HNK-1ST functions through glycans on α-DG. Using CHO-K1 cells, we provide direct evidence that HNK-1ST but not other homologous sulfotransferases (C4ST1 and GalNAc4ST1) suppresses the glycosylation of α-DG. The activity-abolished mutant of HNK-1ST did not show the α-DG-modulating function, indicating that the sulfotransferase activity of HNK-1ST is essential. Finally, the HNK-1ST-dependent incorporation of [(35)S]sulfate groups was detected on α-DG. These findings suggest a novel role for HNK-1ST as a tumor suppressor controlling the functional glycans on α-DG and the importance of sulfate transfer in the glycosylation of α-DG.  相似文献   

14.
Carbohydrate moieties derived from the G glycoprotein of Vesicular Stomatitis Virus (VSV) grown in parental Chinese hamster ovary (CHO) cells and the glycosylation mutant Lec4 have been analyzed by high-field 1H NMR spectroscopy. The major glycopeptides of CHOVSV and Lec4VSV were purified by their ability to bind to concanavalin A-Sepharose. The carbohydrates in this fraction are of the biantennary, complex type with heterogeneity in the presence of α(2,3)-linked sialic acid and α(1,6)-linked fucose residues. A minor CHOVSV glycopeptide fraction, which does not bind to concanavalin A-Sepharose but which binds to pea lectin-agarose, was also investigated by 1H NMR spectroscopy. These carbohydrates are complex moieties which appear to contain N-acetylglucosamine in β(1,6) linkage. Their spectral properties are most similar to those of a triantennary complex oligosaccharide containing a 2,6-disubstituted mannose α(1,6) residue. Carbohydrates of this type are not found among the glycopeptides of VSV grown in the Lec4 CHO glycosylation mutant.  相似文献   

15.
Dystroglycanopathies are characterized by a reduction in the glycosylation of alpha-dystroglycan (α-DG). A common cause for this subset of muscular dystrophies is mutations in the gene of fukutin-related protein (FKRP). FKRP mutations have been associated with a wide spectrum of clinical severity from severe Walker–Warburg syndrome and muscle–eye–brain disease with brain and eye defects to mild limb–girdle muscular dystrophy 2I with myopathy only. To examine the affects of FKRP mutations on the severity of the disease, we have generated homozygous and compound heterozygous mouse models with human mutations in the murine FKRP gene. P448Lneo+ and E310delneo+ mutations result in severe dystrophic and embryonic lethal phenotypes, respectively. P448Lneo+/E310delneo+ compound heterozygotes exhibit brain defects and severe muscular dystrophies with near absence of α-DG glycosylation. Removal of the Neor cassette from the P448Lneo+ homozygous mice eliminates overt brain and eye defects, and reduces severity of dystrophic phenotypes. Furthermore, introduction of the common L276I mutation to generate transgenic L276Ineo+ homozygous and L276Ineo+/P448Lneo+ and L276Ineo+/E310delneo+ compound heterozygotes results in mice displaying milder dystrophies with reduced α-DG glycosylation and no apparent brain defects. Limited sampling and variation in functionally glycosylated α-DG levels between and within muscles may explain the difficulties in correlating FKRP expression levels with phenotype in clinics. The nature of individual mutations, expression levels and status of muscle differentiation all contribute to the phenotypic manifestation. These mutant FKRP mice are useful models for the study of disease mechanism(s) and experimental therapies.  相似文献   

16.
Saccharomyces cerevisiae wild-type and mutant cells affected in the structure of mannan outer chain were shown to possess in vivo one major dolichol-P-P-bound oligosaccharide. The size, monosaccharide composition, and pattern obtained upon acetolysis and paper chromatography of the oligosaccharide were the same for all strains and for the main corresponding compound isolated from animal tissues. Evidence is presented indicating that the dolichol-P-P derivative occurring in vivo, and containing 2-N-acetylglucosamine, 9-mannose, and 3-glucose residues, is the intermediate involved in yeast protein glycosylation. The transfer of the oligosaccharide to protein was followed in vivo by the excision of the glucose and at the most one mannose residue. Mannoses were then added to the trimmed saccharide moiety. No difference between the first stages (i.e., excision of monosaccharides) of the processing of the protein-bound oligosaccharides by wild-type and mutant cells was found. However, mutants carrying the mnn 1 mutation, which are known to be devoid of terminal α(1–3)-linked mannose residues in the mannan outer chain and inner core, were found not to add such mannose residues to the already glucose-free protein-bound oligosaccharide.  相似文献   

17.
We previously reported Israa (immune-system-released activating agent), a novel gene nested in intron 6 of the mouse Zmiz1 gene. Zmiz1 is involved in several functions such as fertility and T cell development and its knockout leads to non-viable embryos. We also reported ISRAA's expression in lymphoid organs, particularly in the thymus CD3+ T cells during all developmental stages. In addition, we showed that ISRAA is a binding partner of Fyn and Elf-1 and regulates the expression of T cell activation-related genes in vitro. In this paper, we report the generation and characterization of an Israa?/? constitutive knockout mouse. The histological study shows that Israa?/? mice exhibit thymus and spleen hyperplasia. Israa?/? derived T cells showed increased proliferation compared to the wild-type mice T cells. Moreover, gene expression analysis revealed a set of differentially expressed genes in the knockout and wild-type animals during thymus development (mostly genes of T cell activation pathways). Immunological phenotyping of the thymocytes and splenocytes of Israa?/- showed no difference with those of the wild-type. Moreover, we observed that knocking out the Zmiz1 intron embedded Israa gene does not affect mice fertility, thus does not disturb this Zmiz1 function. The characterization of the Israa?/- mouse confirms the role ISRAA plays in the expression regulation of genes involved in T cell activation established in vitro. Taken together, our findings point toward a potential functional interrelation between the intron nested Israa gene and the Zmiz1 host gene in regulating T cell activation. This constitutively Israa?/? mice can be a good model to study T cell activation and to investigate the relationship between host and intron-nested genes.  相似文献   

18.
Atherosclerosis is a complex disease initiated by the vascular accumulation of lipoproteins in the sub-endothelial space, followed by the infiltration of monocytes into the arterial intima. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and of various signaling pathways. In order to study specifically the role of macrophage Cav-1 in atherosclerosis, we used Cav-1 ?/? Apoe ?/? mice and transplanted them with bone marrow (BM) cells obtained from Cav-1 +/+ Apoe ?/? or Cav-1 ?/? Apoe ?/? mice and vice versa. We found that Cav-1 +/+ mice harboring Cav-1 ?/? BM-derived macrophages developed significantly larger lesions than Cav-1 +/+ mice harboring Cav-1 +/+ BM-derived macrophages. Cav-1 ?/? macrophages were more susceptible to apoptosis and more prone to induce inflammation. The present study provides clear evidence that the absence of Cav-1 in macrophage is pro-atherogenic, whereas its absence in endothelial cells protects against atherosclerotic lesion formation. These findings demonstrate the cell-specific role of Cav-1 during the development of this disease.  相似文献   

19.
Immunodeficient mice are widely used for pre-clinical studies to understand various human diseases. Here, we report the generation of four immunodeficient mouse models using CRISPR/Cas9 system without inserting any foreign gene sequences such as NeoR cassettes and their characterization. By eliminating any possible effects of adding a NeoR cassette, our mouse models may allow us to better elucidate the in vivo functions of each gene. Our FVB-Rag2?/?, B6-Rag2?/?, and BALB/c-Prkdc?/? mice showed phenotypes similar to those of the earlier immunodeficient mouse models, including a lack of mature B cells and T cells and an increase in the number of CD45+DX-5+ natural killer cells. However, B6-Il2rg?/? mice had a unique phenotype, with a lack of mature B cells, increased number of T cells, and decreased number of natural killer cells. Additionally, serum immunoglobulin levels in all four immunodeficient mouse models were significantly reduced when compared to those in wild-type mice with the exception of IgM in B6-Il2rg?/? mice. These results indicate that our immunodeficient mouse models are a robust tool for in vivo studies of the immune system and will provide new insights into the variation in phenotypic outcomes resulting from different gene-targeting methodologies.  相似文献   

20.
Hypoglycosylation is a common characteristic of dystroglycanopathy, which is a group of congenital muscular dystrophies. More than ten genes have been implicated in α-dystroglycanopathies that are associated with the defect in the O-mannosylation pathway. One such gene is GTDC2, which was recently reported to encode O-mannose β-1,4-N-acetylglucosaminyltransferase. Here we show that GTDC2 generates CTD110.6 antibody-reactive N-acetylglucosamine (GlcNAc) epitopes on the O-mannosylated α-dystroglycan (α-DG). Using the antibody, we show that mutations of GTDC2 identified in Walker–Warburg syndrome and alanine-substitution of conserved residues between GTDC2 and EGF domain O-GlcNAc transferase resulted in decreased glycosylation. Moreover, GTDC2-modified GlcNAc epitopes are localized in the endoplasmic reticulum (ER). These data suggested that GTDC2 is a novel glycosyltransferase catalyzing GlcNAcylation of O-mannosylated α-DG in the ER. CTD110.6 antibody may be useful to detect a specific form of GlcNAcylated O-mannose and to analyze defective O-glycosylation in α-dystroglycanopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号