首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood cells are subjected to various mechanical forces; including pressure, flow, shear force, gravity, and forces acting against them with varying stiffness (eg. blood vessel wall). Scientists have discovered that these forces have profound effects on cellular growth, differentiation, secretion of cytokines, cell death, and migration. These processes are called mechanotransduction, a conversion of mechanical forces to biochemical signals. In this article the author reviews biophysical forces that affect biological functions of blood cells and their responses in normal physiology and pathophysiology. Although input (forces) and output (cellular responses) have been well studied by utilizing recently developed various force-generating devices, the molecular mechanism of mechanotransudction is still a mystery. This is because reconstructing molecular interaction in the presence of mechanical forces in vitro is highly challenging and until now the molecular dynamics involved in structural changes caused by these forces are largely unknown. Nevertheless, the author has reviewed a few examples of potential structural effects on the molecular mechanism of mechanotransduction.  相似文献   

2.
The remarkable ability of living cells to sense, process, and respond to mechanical stimuli in their environment depends on the rapid and efficient interconversion of mechanical and chemical energy at specific times and places within the cell. For example, application of force to cells leads to conformational changes in specific mechanosensitive molecules which then trigger cellular signaling cascades that may alter cellular structure, mechanics, and migration and profoundly influence gene expression. Similarly, the sensitivity of cells to mechanical stresses is governed by the composition, architecture, and mechanics of the cellular cytoskeleton and extracellular matrix (ECM), which are in turn driven by molecular-scale forces between the constituent biopolymers. Understanding how these mechanochemical systems coordinate over multiple length and time scales to produce orchestrated cell behaviors represents a fundamental challenge in cell biology. Here, we review recent advances in our understanding of these complex processes in three experimental systems: the assembly of axonal neurofilaments, generation of tensile forces by actomyosin stress fiber bundles, and mechanical control of adhesion assembly.  相似文献   

3.
Biochemical and mechanical cues of the extracellular matrix have been shown to play important roles in cell-matrix and cell-cell interactions. We have experimentally tested the combined influence of these cues to better understand cell motility, force generation, cell-cell interaction, and assembly in an in vitro breast cancer model. MCF-10A non-tumorigenic mammary epithelial cells were observed on surfaces with varying fibronectin ligand concentration and polyacrylamide gel rigidity. Our data show that cell velocity is biphasic in both matrix rigidity and adhesiveness. The maximum cell migration velocity occurs only at specific combination of substrate stiffness and ligand density. We found cell-cell interactions reduce migration velocity. However, the traction forces cells exert onto the substrate increase linearly with both cues, with cells in pairs exerting higher maximum tractions observed over single cells. A relationship between force and motility shows a maximum in single cell velocity not observed in cell pairs. Cell-cell adhesion becomes strongly favored on softer gels with elasticity ≤ 1250 Pascals (Pa), implying the existence of a compliance threshold that promotes cell-cell over cell-matrix adhesion. Finally on gels with stiffness similar to pre-malignant breast tissue, 400 Pa, cells undergo multicellular assembly and division into 3D spherical aggregates on a 2D surface.  相似文献   

4.
Motility cues in the tumor microenvironment   总被引:2,自引:0,他引:2  
It is now increasingly recognized that the microenvironment plays a critical role in the progression of tumors. Perhaps less obvious is the concept that the microenvironment may share responsibility in determining the "malignant" traits of tumor cells, i.e. invasiveness and metastasis. If tumors are tissues, however unbalanced, rather than a collection of "malignant" cells recruiting local resources for the purpose of growth, then it is inevitable that tumor cells will respond to local stimuli. These stimuli include cues for motility and migration, which normally appear in tissues undergoing formation, remodeling or healing. Carcinoma cells are likely to be sensitive to the motility cues that normally regulate epithelial morphogenetic movements such as ingression, delamination, invagination, and tube or sheet migration. "Malignant" tumors, then, can be redefined as those in which these cues arise more frequently or act more effectively. Here, we expand on this view and propose that invasion and metastasis may be the outcome of tumor cell responses to microenvironmental motility cues. Understanding how such motility cues arise and act, both in normal and tumor tissue, should be a high priority in cancer research.  相似文献   

5.
Strong mechanical forces can, obviously, disrupt cell–cell and cell–matrix adhesions, e.g., cyclic uniaxial stretch induces instability of cell adhesion, which then causes the reorientation of cells away from the stretching direction. However, recent experiments also demonstrated the existence of force dependent adhesion growth (rather than dissociation). To provide a quantitative explanation for the two seemingly contradictory phenomena, a microscopic model that includes both integrin–integrin interaction and integrin–ligand interaction is developed at molecular level by treating the focal adhesion as an adhesion cluster. The integrin clustering dynamics and integrin–ligand binding dynamics are then simulated within one unified theoretical frame with Monte Carlo simulation. We find that the focal adhesion will grow when the traction force is higher than a relative small threshold value, and the growth is dominated by the reduction of local chemical potential energy by the traction force. In contrast, the focal adhesion will rupture when the traction force exceeds a second threshold value, and the rupture is dominated by the breaking of integrin–ligand bonds. Consistent with the experiments, these results suggest a force map for various responses of cell adhesion to different scales of mechanical force.  相似文献   

6.
Many morphogenetic processes are accomplished by coordinated cell rearrangements. These rearrangements are accompanied by substantial shifts in the neighbor relationships between cells. Here we propose a model for studying morphogenesis in epithelial sheets by directed cell neighbor change. Our model describes cell rearrangements by accounting for the balance of forces between neighboring cells within an epithelium. Cell rearrangement and cell shape changes occur when these forces are not in mechanical equilibrium. We will show that cell rearrangement within the epidermal enveloping layer (EVL) of the teleost fish Fundulus during epiboly can be explained solely in terms of the balance of forces generated among constituent epithelial cells. Within a cell, we account for circumferential elastic forces and the force generated by hydrostatic and osmotic pressure. The model treats epithelial cells as two-dimensional polygons where the mechanical forces are applied to the polygonal nodes. A cell node protrudes or contracts when the nodal forces are not in mechanical equilibrium. In an epithelial sheet, adjacent cells share common boundary nodes; in this way, mechanical force is transmitted from cell to cell, mimicking junctional coupling. These junctional nodes can slide, and nodes may appear or disappear, so that the number of polygonal sides is variable. Computer graphics allows us to compare numerical simulations of the model with time-lapse cinemicroscopy of cell rearrangements in the living embryo, and data obtained from fixed and silver stained embryos. By manipulating the mechanical properties of the model cells we can study the conditions necessary to reproduce normal cell behavior during Fundulus epiboly. We find that simple stress relaxation is sufficient to account for cell rearrangements among interior cells of the EVL when they are isotropically contractile. Experimental observations show that the number of EVL marginal cells continuously decreases throughout epiboly. In order for the simulation to reproduce this behavior, cells at the EVL boundary must generate protrusive forces rather than contractile tension forces. Therefore, the simulation results suggest that the mechanical properties of EVL marginal cells at their leading edge must be quite different from EVL interior cells.  相似文献   

7.
Zandomeni K  Schopfer P 《Protoplasma》1994,182(3-4):96-101
Summary Plants respond to mechanical stress by adaptive changes in growth. Although this phenomenon is well established, the mechanism of the perception of mechanical forces by plant cells is not yet known. We provide evidence that the cortical microtubules sub-adjacent to the growth-controlling outer epidermal cell wall of maize coleoptiles respond to mechanical extension and compression by rapidly reorientating perpendicular to the direction of the effective force change. These findings shed new light on many seemingly unrelated observations on microtubule reorientation by growth factors such as light or phytohormones. Moreover, our results suggest that microtubules associated with the plasma membrane are causally involved in sensing vectorial forces and provide vectorial information to the cell that can be utilized in the orientation of plant organ expansion.Abbreviation MT cortical microtubule  相似文献   

8.
Forces such as strain modulate intestinal epithelial biology. Shear and pressure influence other cells. The effects of pressure on human colon cancer cells are poorly understood. Increasing ambient pressure for 30 min by 15 mm Hg over atmospheric stimulated adhesion to matrix proteins of four human colon cancer cell lines and primary cells from three human colon cancers, but not bovine aortic smooth-muscle cells. This effect was energy dependent and cation dependent (blocked by azide and chelation), accompanied by tyrosine phosphorylation of intracellular proteins including focal adhesion kinase, and blocked by tyrosine kinase inhibition (genistein, tyrphostin, and erbstatin) and a functional antibody to the beta1 integrin subunit. Although pressure stimulated adhesion even in a balanced salt solution, baseline and pressure-stimulated adhesion were each substantially diminished in the absence of serum. These data suggest that relatively low levels of increased pressure may stimulate malignant colonocyte adhesion by a cation-dependent beta1-integrin-mediated mechanism, perhaps via focal adhesion kinase-related tyrosine phosphorylation. In addition to elucidating another aspect of physical force regulation of colonocyte biology, these findings may be relevant to the effects of increased pressure engendered by colonic peristalsis, surgical manipulation, or laparoscopic surgery on colon cancer cell adhesion.  相似文献   

9.
During collective cell migration, the intercellular forces will significantly affect the collective migratory behaviors. However, the measurement of mechanical stresses exerted at cell–cell junctions is very challenging. A recent experimental observation indicated that the intercellular adhesion sites within a migrating monolayer are subjected to both normal stress exerted perpendicular to cell–cell junction surface and shear stress exerted tangent to cell–cell junction surface. In this study, an interfacial interaction model was proposed to model the intercellular interactions for the first time. The intercellular interaction model-based study of collective epithelial migration revealed that the direction of cell migration velocity has better alignment with the orientation of local principal stress at higher maximum shear stress locations in an epithelial monolayer sheet. Parametric study of the effects of adhesion strength indicated that normal adhesion strength at the cell–cell junction surface has dominated effect on local alignment between the direction of cell velocity vector and the principal stress orientation, while the shear adhesion strength has little effect, which provides compelling evidence to help explain the force transmission via cell–cell junctions between adjacent cells in collective cell motion and provides new insights into “adhesive belt” effects at cell–cell junction.  相似文献   

10.
Cell adhesion and migration are important events that occur during embryonic development, immune surveillance, wound healing and in tumor metastasis. It is a multi-step process that involves both mechanical and biochemical signaling that results in cell protrusion, adhesion, contraction and retraction. Each of these events generates mechanical forces into the environment measured as traction forces. We have previously found that the calpain small subunit, Calpain 4, is required for normal traction forces, and that this mechanism is independent of the catalytic activities of the holoenzymes that are formed between Calpain 4 and each of the proteolytic heavy chains of Calpain 1 and 2. To define a potential mechanism for the Calpain 4 regulation of traction force, we have evaluated the levels of tyrosine phosphorylation, a hallmark of force dependent signaling within focal adhesions. Using 2D gel electrophoresis we compared tyrosine phosphorylation profiles of Calpain 4 deficient mouse embryonic fibroblasts (MEFs) to the levels in wildtype MEFs and MEF’s deficient in the large catalytic subunits, Capn1 and Capn2. Of particular interest, was the identification of Galectin-3, a galactose binding protein known to interact with integrins. Galectin-3 has previously been shown to regulate cell adhesion and migration in both normal and tumor cells; however its full mechanism remains elusive. We have found that Calpain 4 is essential for the tyrosine phosphorylation of galectin-3, and its ultimate secretion from the cell, and speculate that its secretion interferes with the production of traction forces.  相似文献   

11.
Vinculin couples as a focal adhesion protein the extracellular matrix (ECM) through integrins to the actomyosin cytoskeleton. During the last years vinculin has become the focus of cell mechanical measurements and a key protein regulating the transmission of contractile forces. In earlier reports vinculin has been described as an inhibitor of cell migration on planar substrates, because knock-out of vinculin in F9 mouse embryonic carcinoma cells and mouse embryonic fibroblasts showed increased cell motility on 2D substrates. The role of vinculin in cell invasion through a 3D extracellular matrix is still fragmentarily investigated. This review presents vinculin in its role as a regulator of cellular mechanical functions. Contractile force generation is reduced when vinculin is absent, or enhanced when vinculin is present. Moreover, the generation of contractile forces is a prerequisite for cell invasion through a dense 3D ECM, where the pore-size is smaller than the diameter of the cell nucleus (<2 μm). Measurements of cell’s biophysical properties will be presented. In summary, vinculin’s leading role among focal adhesion proteins in regulating the mechanical properties of cells will be discussed.  相似文献   

12.
Modern research in the area of probiotics is largely devoted to discovering factors that promote the adherence of probiotic candidates to host mucosal surfaces. The aim of the present study was to test the role of aggregation factor (AggL) and mucin-binding protein (MbpL) from Lactococcus sp. in adhesion to gastrointestinal mucosa. In vitro, ex vivo, and in vivo experiments in rats were used to assess the adhesive potential of these two proteins expressed in heterologous host Lactobacillus salivarius BGHO1. Although there was no influence of MbpL protein expression on BGHO1 adhesion to gut mucosa, expression of AggL had a negative effect on BGHO1 binding to ileal and colonic rat mucosa, as well as to human HT29-MTX cells and porcine gastric mucin in vitro. Because AggL did not decrease the adhesion of bacteria to intestinal fragments in ex vivo tests, where peristaltic simulation conditions were missing, we propose that intestinal motility could be a crucial force for eliminating aggregation-factor-bearing bacteria. Bacterial strains expressing aggregation factor could facilitate the removal of pathogens through the coaggregation mechanism, thus balancing gut microbial ecosystems in people affected by intestinal bacteria overgrowth.  相似文献   

13.
Coronins, WD-repeat actin-binding proteins, are known to regulate cell motility by coordinating actin filament turnover in lamellipodia of migrating cell. Here we report a novel mechanism of Coronin 1C-mediated cell motility that involves regulation of cell-matrix adhesion. RNAi silencing of Coronin 1C in intestinal epithelial cells enhanced cell migration and modulated lamellipodia dynamics by increasing the persistence of lamellipodial protrusion. Coronin 1C-depleted cells showed increased cell-matrix adhesions and enhanced cell spreading compared to control cells, while over-expression of Coronin 1C antagonized cell adhesion and spreading. Enhanced cell-matrix adhesion of coronin-deficient cells correlated with hyperphosphorylation of focal adhesion kinase (FAK) and paxillin, and an increase in number of focal adhesions and their redistribution at the cell periphery. siRNA depletion of FAK in coronin-deficient cells rescued the effects of Coronin 1C depletion on motility, cell-matrix adhesion, and spreading. Thus, our findings provide the first evidence that Coronin 1C negatively regulates epithelial cell migration via FAK-mediated inhibition of cell-matrix adhesion.  相似文献   

14.
The epithelium covers, protects, and actively regulates various formations and cavities of the human body. During embryonic development the assembly of the epithelium is crucial to the organoid formation, and the invasion of the epithelium is an essential step in cancer metastasis. Live cell mechanical properties and associated forces presumably play an important role in these biological processes. However, the direct measurement of cellular forces in a precise and high-throughput manner is still challenging. We studied the cellular adhesion maturation of epithelial Vero monolayers by measuring single-cell force-spectra with high-throughput fluidic force microscopy (robotic FluidFM). Vero cells were grown on gelatin-covered plates in different seeding concentrations, and cell detachment forces were recorded from the single-cell state, through clustered island formation, to their complete assembly into a sparse and then into a tight monolayer. A methodology was proposed to separate cell-substratum and cell-cell adhesion force and energy (work of adhesion) contributions based on the recorded force-distance curves. For comparison, cancerous HeLa cells were also measured in the same settings. During Vero monolayer formation, a significantly strengthening adhesive tendency was found, showing the development of cell-cell contacts. Interestingly, this type of step-by-step maturation was absent in HeLa cells. The attachment of cancerous HeLa cells to the assembled epithelial monolayers was also measured, proposing a new high-throughput method to investigate the biomechanics of cancer cell invasion. We found that HeLa cells adhere significantly stronger to the tight Vero monolayer than cells of the same origin. Moreover, the mechanical characteristics of Vero monolayers upon cancerous HeLa cell influence were recorded and analyzed. All these results provide insight into the qualitative assessment of cell-substratum and cell-cell mechanical contacts in mono- and multilayered assemblies and demonstrate the robustness and speed of the robotic FluidFM technology to reveal biomechanical properties of live cell assemblies with statistical significances.  相似文献   

15.
How individual cells respond to mechanical forces is of considerable interest to biologists as force affects many aspects of cell behaviour. The application of force on integrins triggers cytoskeletal rearrangements and growth of the associated adhesion complex, resulting in increased cellular stiffness, also known as reinforcement. Although RhoA has been shown to play a role during reinforcement, the molecular mechanisms that regulate its activity are unknown. By combining biochemical and biophysical approaches, we identified two guanine nucleotide exchange factors (GEFs), LARG and GEF-H1, as key molecules that regulate the cellular adaptation to force. We show that stimulation of integrins with tensional force triggers activation of these two GEFs and their recruitment to adhesion complexes. Surprisingly, activation of LARG and GEF-H1 involves distinct signalling pathways. Our results reveal that LARG is activated by the Src family tyrosine kinase Fyn, whereas GEF-H1 catalytic activity is enhanced by ERK downstream of a signalling cascade that includes FAK and Ras.  相似文献   

16.
Activation of the nuclear hormone peroxisome proliferator-activated receptor gamma (PPARgamma) inhibits cell growth and promotes differentiation in a broad spectrum of epithelial derived tumor cell lines. Here we utilized microarray technology to identify PPARgamma gene targets in intestinal epithelial cells. For each gene, the induction or repression was seen with two structurally distinct PPARgamma agonists, and the change in expression could be blocked by co-treatment with a specific PPARgamma antagonist. A majority of the genes could be regulated independently by a retinoid X receptor specific agonist. Genes implicated in lipid transport or storage (adipophilin and liver fatty acid-binding protein) were also activated by agonists of PPAR subtypes alpha and/or delta. In contrast, PPARgamma-selective targets included genes linked to growth regulatory pathways (regenerating gene IA), colon epithelial cell maturation (GOB-4 and keratin 20), and immune modulation (neutrophil-gelatinase-associated lipocalin). Additionally, three different genes of the carcinoembryonic antigen family were induced by PPARgamma. Cultured cells treated with PPARgamma ligands demonstrated an increase in Ca(2+)-independent, carcinoembryonic antigen-dependent homotypic aggregation, suggesting a potential role for PPARgamma in regulating intercellular adhesion. Collectively, these results will help define the mechanisms by which PPARgamma regulates intestinal epithelial cell biology.  相似文献   

17.
Tumorigenesis often involves specific changes in cell motility and intercellular adhesion. Understanding the collective cancer cell behavior associated with these specific changes could facilitate the detection of malignant characteristics during tumor growth and invasion. In this study, a cellular vertex model is developed to investigate the collective dynamics of a disk-like aggregate of cancer cells confined in a confluent monolayer of normal cells. The effects of intercellular adhesion and cell motility on tumor progression are examined. It is found that the stresses in both the cancer cells and the normal cells increase with tumor growth, resulting in a crowded environment and enhanced cell apoptosis. The intercellular adhesion between cancer cells and normal cells is revealed to promote tumor growth and invasion. The tumor invasion dynamics hinges on the motility of cancer cells. The cancer cells could orchestrate into different collective migration modes, e.g., directional migration and rotational oscillations, dictated by the competition between cell persistence and local coordination. Phase diagrams are established to reveal the competitive mechanisms. This work highlights the role of mechanics in regulating tumor growth and invasion.  相似文献   

18.
Doyle AD  Lee J 《BioTechniques》2002,33(2):358-364
Cells can sense and respond to different types of mechanical stimuli that can lead to changes in rate of cell division, cell orientation, cell motility, and gene expression. There is rapidly growing interest in understanding how these processes are regulated by mechano-chemical signaling mechanisms. The movement offish epithelial keratocytes is regulated by the activation of stretch-activated calcium channels, which allow cells to trigger retraction of the rear cell margin, when forward movement is impeded. We have developed a new assay that permits imaging of intracellular calcium concentration simultaneously with the detection of traction forces generated by moving keratocytes. The assay consists of a thin sheet of gelatin embedded with a surface layer of small fluorescent marker beads, on which cells can move. The elastic properties of the gelatin substrata can be reproducibly varied over a wide range and are stable for long periods, while submerged beneath culture medium. Gelatin substrata are thin, transparent, and highly elastic, allowing real-time detection of changes in traction force production that are associated with transient increases in intracellular calcium and that occur in response to mechanical stretching.  相似文献   

19.
Drosophila Bazooka and atypical protein kinase C are essential for epithelial polarity and adhesion. We show here that wild-type bazooka function is required during cell invasion of epithelial follicle cells mutant for the tumor suppressor discs large. Clonal studies indicate that follicle cell Bazooka acts as a permissive factor during cell invasion, possibly by stabilizing adhesion between the invading somatic cells and their substratum, the germline cells. Genetic epistasis experiments demonstrate that bazooka acts downstream of discs large in tumor cell invasion. In contrast, during the migration of border cells, Bazooka function is dispensable for cell invasion and motility, but rather is required cell-autonomously in mediating cell adhesion within the migrating border cell cluster. Taken together, these studies reveal Bazooka functions distinctly in different types of invasive behaviors of epithelial follicle cells, potentially by regulating adhesion between follicle cells or between follicle cells and their germline substratum.  相似文献   

20.
Membrane tether formation from blebbing cells   总被引:10,自引:0,他引:10       下载免费PDF全文
Dai J  Sheetz MP 《Biophysical journal》1999,77(6):3363-3370
Membrane tension has been proposed to be important in regulating cell functions such as endocytosis and cell motility. The apparent membrane tension has been calculated from tether forces measured with laser tweezers. Both membrane-cytoskeleton adhesion and membrane tension contribute to the tether force. Separation of the plasma membrane from the cytoskeleton occurs in membrane blebs, which could remove the membrane-cytoskeleton adhesion term. In renal epithelial cells, tether forces are significantly lower on blebs than on membranes that are supported by cytoskeleton. Furthermore, the tether forces are equal on apical and basolateral blebs. In contrast, tether forces from membranes supported by the cytoskeleton are greater in apical than in basolateral regions, which is consistent with the greater apparent cytoskeletal density in the apical region. We suggest that the tether force on blebs primarily contains only the membrane tension term and that the membrane tension may be uniform over the cell surface. Additional support for this hypothesis comes from observations of melanoma cells that spontaneously bleb. In melanoma cells, tether forces on blebs are proportional to the radius of the bleb, and as large blebs form, there are spikes in the tether force in other cell regions. We suggest that an internal osmotic pressure inflates the blebs, and the pressure calculated from the Law of Laplace is similar to independent measurements of intracellular pressures. When the membrane tension term is subtracted from the apparent membrane tension over the cytoskeleton, the membrane-cytoskeleton adhesion term can be estimated. In both cell systems, membrane-cytoskeleton adhesion was the major factor in generating the tether force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号