首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel PKCθ isoform is highly expressed in T-cells, brain and skeletal muscle and originally thought to have a restricted distribution. It has been extensively studied in T-cells and shown to be important for apoptosis, T-cell activation and proliferation. Recent studies showed its presence in other tissues and importance in insulin signaling, lung surfactant secretion, intestinal barrier permeability, platelet and mast-cell functions. However, little information is available for PKCθ activation by gastrointestinal (GI) hormones/neurotransmitters and growth factors. In the present study we used rat pancreatic acinar cells to explore their ability to activate PKCθ and the possible interactions with important cellular mediators of their actions. Particular attention was paid to cholecystokinin (CCK), a physiological regulator of pancreatic function and important in pathological processes affecting acinar function, like pancreatitis. PKCθ-protein/mRNA was present in the pancreatic acini, and T538-PKCθ phosphorylation/activation was stimulated only by hormones/neurotransmitters activating phospholipase C. PKCθ was activated in time- and dose-related manner by CCK, mediated 30% by high-affinity CCK(A)-receptor activation. CCK stimulated PKCθ translocation from cytosol to membrane. PKCθ inhibition (by pseudostrate-inhibitor or dominant negative) inhibited CCK- and TPA-stimulation of PKD, Src, RafC, PYK2, p125(FAK) and IKKα/β, but not basal/stimulated enzyme secretion. Also CCK- and TPA-induced PKCθ activation produced an increment in PKCθ's direct association with AKT, RafA, RafC and Lyn. These results show for the first time the PKCθ presence in pancreatic acinar cells, its activation by some GI hormones/neurotransmitters and involvement in important cell signaling pathways mediating physiological responses (enzyme secretion, proliferation, apoptosis, cytokine expression, and pathological responses like pancreatitis and cancer growth).  相似文献   

2.
Protein kinase D1 (PKD1) is involved in cellular processes including protein secretion, proliferation and apoptosis. Studies suggest PKD1 is activated by various stimulants including gastrointestinal (GI) hormones/neurotransmitters and growth factors in a protein kinase C (PKC)-dependent pathway. However, little is known about the mechanisms of PKD1 activation in physiologic GI tissues. We explored PKD1 activation by GI hormones/neurotransmitters and growth factors and the mediators involved in rat pancreatic acini. Only hormones/neurotransmitters activating phospholipase C caused PKD1 phosphorylation (S916, S744/748). CCK activated PKD1 and caused a time- and dose-dependent increase in serine phosphorylation by activation of high- and low-affinity CCK(A) receptor states. Inhibition of CCK-stimulated increases in phospholipase C, PKC activity or intracellular calcium decreased PKD1 S916 phosphorylation by 56%, 62% and 96%, respectively. PKC inhibitors GF109203X/Go6976/Go6983/PKC-zeta pseudosubstrate caused a 62/43/49/0% inhibition of PKD1 S916 phosphorylation and an 87/13/82/0% inhibition of PKD1 S744/748 phosphorylation. Expression of dominant negative PKC-delta, but not PKC-epsilon, or treatment with PKC-delta translocation inhibitor caused marked inhibition of PKD phosphorylation. Inhibition of Src/PI3K/MAPK/tyrosine phosphorylation had no effect. In unstimulated cells, PKD1 was mostly located in the cytoplasm. CCK stimulated translocation of total and phosphorylated PKD1 to the membrane. These results demonstrate that CCK(A) receptor activation leads to PKD activation by signaling through PKC-dependent and PKC-independent pathways.  相似文献   

3.
For growth factors, cytokines, G-protein-coupled receptors and numerous other stimuli, the Src Family of kinases (SFK) play a central signaling role. SFKs also play an important role in pancreatic acinar cell function including metabolism, secretion, endocytosis, growth and cytoskeletal integrity, although the specific SFKs involved are not fully known. In the present study we used specific antibodies for the SFK, Yes, to determine its presence, activation by pancreatic secretagogues or growth factors, and interaction with cellular signaling cascades mediated by CCK in which Yes participates in to cause acinar cell responses. Yes was identified in acini and secretagogues known to activate phospholipase C (PLC) [CCK, carbachol, bombesin] as well as post-receptor stimulants activating PKC [TPA] or mobilizing cellular calcium [thapsigargin/calcium ionophore (A23187)] each activated Yes. Secretin, which activates adenylate cyclase did not stimulate Yes, nor did pancreatic growth factors. CCK activation of Yes required both high- and low-affinity CCK(1)-receptor states. TPA-/CCK-stimulated Yes activation was completely inhibited by thapsigargin and the PKC inhibitor, GF109203X. CCK/TPA stimulated the association of Yes with focal adhesion kinases (Pyk2, FAK) and its autophosphorylated forms (pY397FAK, pY402Pyk2). Moreover, CCK/TPA stimulated Yes interacted with a number of other signaling proteins, including Shc, PKD, p130(Cas), PI3K and PTEN. This study demonstrates that in rat pancreatic acini, the SFK member Yes is expressed and activated by CCK and other gastrointestinal hormones/neurotransmitters. Because its activation results in the direct activation of many cellular signaling cascades that have been shown to mediate CCK's effect in acinar cell function our results suggest that it is one of the important pancreatic SFKs mediating these effects.  相似文献   

4.
The receptor of hepatocyte growth factor (HGF), c-met induces different physiological responses in several cell types. Little is known about the role of HGF in exocrine pancreas. However, abnormal HGF signaling has been strongly implicated in pancreatic tumorigenesis and association of HGF with pancreatitis has been demonstrated. We have studied the presence of c-met and activation of their intracellular pathways associated in rat pancreatic acini in comparison with cholecystokinin (CCK) and epidermal growth factor (EGF). C-met expression in rat exocrine pancreas was identified by immunohistochemistry and immunoprecipitation followed by Western analysis. Tyrosine phosphorylation of c-met is strongly stimulated as well as kinase pathways leading to ERK1/2 cascade. HGF, but not CCK or EGF, selectively caused a consistent increase in the amount of p85 regulatory subunit of PI3-K present in anti-phosphotyrosine immunoprecipitates. Downstream of PI3-K, HGF increased Ser473 phosphorylation of Akt selectively, as CCK or EGF did not affect it. HGF selectively stimulated tyrosine phosphorylation of phosphatase PTP1D. HGF failed to promote the well-known CCK effects in pancreatic acini such as amylase secretion and intracellular calcium mobilization. Although HGF shares activation of ERK1/2 with CCK, we demonstrate that it promotes the selective activation of intracellular pathways not regulated by CCK or EGF. Our results suggest that HGF is an in vivo stimulus of pancreatic acini and provide novel insight into the transduction pathways and effects of c-met/HGF in normal pancreatic acinar cells.  相似文献   

5.
The gastrointestinal hormone cholecystokinin (CCK) can induce acute pancreatitis in rodents through its action on acinar cells. Treatment with CCK, in combination with other agents, represents the most commonly used model to induce experimental chronic pancreatitis. Pancreatic stellate cells (PSC) are responsible for pancreatic fibrosis and therefore play a predominant role in the genesis of chronic pancreatitis. However, it is not known whether PSC express CCK receptors. Using real time PCR techniques, we demonstrate that CCK1 and CCK2 receptors are expressed on rat PSC. Interestingly both CCK and gastrin significantly induced type I collagen synthesis. Moreover, both inhibit proliferation. These effects are comparable with TGF-β-stimulated PSC. Furthermore, the natural agonists CCK and gastrin induce activation of pro-fibrogenic pathways Akt, ERK, and Src. Using specific CCK1 and CCK2 receptor (CCK2R) inhibitors, we found that Akt activation is mainly mediated by CCK2R. Akt activation by CCK and gastrin could be inhibited by the PI3K inhibitor wortmannin. Activation of ERK and the downstream target Elk-1 could be inhibited by the MEK inhibitor U0126. These data suggest that CCK and gastrin have direct activating effects on PSC, are able to induce collagen synthesis in these cells, and therefore appear to be important regulators of pancreatic fibrogenesis. Furthermore, similar to TGF-β, both CCK and gastrin inhibit proliferation in PSC.  相似文献   

6.
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is important for tissue proliferation. Previously, we found that tissue regeneration after partial pancreatic resection was markedly attenuated in aged mice as compared to young mice and that this attenuation was because of an age-dependent reduction of PI3K/Akt signaling in the pancreatic acini; however, the mechanisms for the age-associated decline of pancreatic PI3K/Akt signaling remained unknown. To better delineate the mechanisms for the decreased PI3K/Akt activation with aging, age-associated changes in cell proliferation and PI3K/Akt signaling were investigated in the present study using in vitro primary pancreatic acinar cell cultures derived from young and aged mice. In response to treatment with insulin-like growth factor 1 (IGF-1), acinar cells from young but not aged mice showed increased activation of PI3K/Akt signaling and cell proliferation, indicating that intrinsic cellular mechanisms cause the age-associated changes in pancreatic acinar cells. We also found that the expression of PI3K p85α subunit, but not IGF-1 receptor or other PI3K subunits, was significantly reduced in pancreatic acinar cells from aged mice; this age-associated reduction of p85α was confirmed in both mouse and human pancreatic tissues. Finally, small interfering RNA (siRNA)-mediated knockdown of p85α expression in acinar cells from young mice resulted in markedly attenuated activation of PI3K/Akt downstream signaling in response to IGF-1. From these results, we conclude that exocrine pancreatic expression of PI3K p85α subunit is attenuated by aging, which is likely responsible for the age-associated decrease in activation of pancreatic PI3K signaling and acinar cell proliferation in response to growth-promoting stimuli.  相似文献   

7.
Salmonella enterica uses effector proteins translocated by a Type III Secretion System to invade epithelial cells. One of the invasion-associated effectors, SopB, is an inositol phosphatase that mediates sustained activation of the pro-survival kinase Akt in infected cells. Canonical activation of Akt involves membrane translocation and phosphorylation and is dependent on phosphatidyl inositide 3 kinase (PI3K). Here we have investigated these two distinct processes in Salmonella infected HeLa cells. Firstly, we found that SopB-dependent membrane translocation and phosphorylation of Akt are insensitive to the PI3K inhibitor wortmannin. Similarly, depletion of the PI3K regulatory subunits p85α and p85ß by RNAi had no inhibitory effect on SopB-dependent Akt phosphorylation. Nevertheless, SopB-dependent phosphorylation does depend on the Akt kinases, PDK1 and rictor-mTOR. Membrane translocation assays revealed a dependence on SopB for Akt recruitment to Salmonella ruffles and suggest that this is mediated by phosphoinositide (3,4) P2 rather than phosphoinositide (3,4,5) P3. Altogether these data demonstrate that Salmonella activates Akt via a wortmannin insensitive mechanism that is likely a class I PI3K-independent process that incorporates some essential elements of the canonical pathway.  相似文献   

8.
The scaffolding/adapter protein, Gab1, is a key signaling molecule for numerous stimuli including growth factors and G protein-coupled-receptors (GPCRs). A number of questions about Gab1 signaling remain and little is known about the ability of gastrointestinal (GI) hormones/neurotransmitters/growth factors to activate Gab1. Therefore, we examined their ability to activate Gab1 and explored the mechanisms involved using rat pancreatic acini. HGF and EGF stimulated total Gab1 tyrosine phosphorylation (TyrP) and TyrP of Gab1 phospho-specific sites (Y307, Y627), but not other pancreatic growth factors, GI GPCRs (CCK, bombesin, carbachol, VIP, secretin), or agents directly activating PKC or increasing Ca2+. HGF-stimulated Y307 Gab1 TyrP differed in kinetics from total and Y627. Neither GF109203X, nor inhibition of Ca2+ increases altered HGF's effect. In unstimulated cells>95% of Gab1 was cytosolic and HGF stimulated a 3-fold increase in membrane Gab1. HGF stimulated equal increases in pY307 and pY627 Gab1 in cytosol/membrane. HGF stimulated Gab1 association with c-Met, Grb2, SHP2, PI3K, Shc, Crk isoforms and CrkL, but not with PLCgamma1. These results demonstrate that only a subset of pancreatic growth factors (HGF/EGF) stimulates Gab1 signaling and no pancreatic hormones/neurotransmitters. Our results with Gab1 activation with different growth factors, the role of PKC, and its interaction with distant signaling molecules suggest the cellular mechanisms of Gab1 signaling show important differences in different cells. These results show that Gab1 activation plays a central role in HGF's ability to stimulate intracellular transduction cascades in pancreatic acinar cells and this action likely plays a key role in HGF's ability to alter pancreatic cell function (i.e., growth/regeneration).  相似文献   

9.
While pancreatic protein synthesis and the initiation of translation are regulated by hormones and neurotransmiters, whether the elongation process is also regulated is unknown. Stimulatory doses of cholecystokinin (CCK) (100 pM), bombesin (10 nM), and carbachol (10 microM) increased elongation rates (measured as ribosomal half-transit time) in pancreatic acini in vitro. At the same time these secretagogues reduced elongation factor 2 (eEF2) phosphorylation, the main factor known to regulate elongation, and increased the phosphorylation of the eEF2 kinase. The mTOR inhibitor rapamycin reversed the dephosphorylation of eEF2 induced by CCK, as did treatment with the p38 MAPK inhibitor SB202190, the MEK inhibitor PD98059, and the phosphatase inhibitor calyculin A. Neither rapamycin, SB202190, PD98059 nor calyculin A had an effect on CCK mediated eEF2 kinase phosphorylation. Translation elongation in pancreatic acinar cells is likely regulated by eEF2 through the mTOR, p38, and MEK pathways, and modulated through PP2A.  相似文献   

10.
The activated c-Met receptor has potent effects on normal tissues and tumors. c-Met levels are regulated by hepatocyte growth factor (HGF); however, it is unknown if they can be regulated by gastrointestinal (GI) hormones. c-Met is found in many GI tissues/tumors that possess GI hormone receptors. We studied the effect of GI hormones on c-Met in rat pancreatic acini, which possess both receptors. CCK-8, carbachol, and bombesin, but not VIP/secretin, decreased c-Met. CCK-8 caused rapid and potent c-Met down-regulation and abolished HGF-induced c-Met and Gab1 tyrosine phosphorylation, while stimulating c-Met serine phosphorylation. The effect of cholecystokinin (CCK) was also seen in intact acini using immunofluorescence, in a biotinylated fraction representing membrane proteins, in single acinar cells, in Panc-1 tumor cells, and in vivo in rats injected with CCK. CCK-8 did not decrease cell viability or overall responsiveness. GF109203X, thapsigargin, or their combination partially reversed the effect of CCK-8. In contrast to HGF-induced c-Met down-regulation, the effect of CCK was decreased by a lysosome inhibitor (concanamycin) but not the proteasome inhibitor lactacystin. Inhibitors of clathrin-mediated endocytosis blocked the effect of CCK. HGF but not CCK-8 caused c-Met ubiquitination. These results show CCK and other GI hormones can cause rapid c-Met down-regulation, which occurs by a novel mechanism. These results could be important for c-Met regulation in normal as well as in neoplastic tissue in the GI tract.  相似文献   

11.
Some Gq-coupled receptors have been shown to antagonize growth factor activation of phosphatidylinositol 3-kinase (PI3K) and its downstream effector, Akt. We used a constitutively active Galphaq(Q209L) mutant to explore the effects of Galphaq activation on signaling through the PI3K/Akt pathway. Transient expression of Galphaq(Q209L) in Rat-1 fibroblasts inhibited Akt activation induced by platelet-derived growth factor or insulin treatment. Expression of Galphaq(Q209L) also attenuated Akt activation promoted by coexpression of constitutively active PI3K in human embryonic kidney 293 cells. Galphaq(Q209L) had no effect on the activity of an Akt mutant in which the two regulatory phosphorylation sites were changed to acidic amino acids. Inducible expression of Galphaq(Q209L) in a stably transfected 293 cell line caused a decrease in PI3K activity in p110alpha (but not p110beta) immunoprecipitates. Receptor activation of Galphaq also selectively inhibited PI3K activity in p110alpha immunoprecipitates. Active Galphaq still inhibited PI3K/Akt in cells pretreated with the phospholipase C inhibitor U73122. Finally, Galphaq(Q209L) co-immunoprecipitated with the p110alpha-p85alpha PI3K heterodimer from lysates of COS-7 cells expressing these proteins, and incubation of immunoprecipitated Galphaq(Q209L) with purified recombinant p110alpha-p85alpha in vitro led to a decrease in PI3K activity. These results suggest that agonist binding to Gq-coupled receptors blocks Akt activation via the release of active Galphaq subunits that inhibit PI3K. The inhibitory mechanism seems to be independent of phospholipase C activation and might involve an inhibitory interaction between Galphaq and p110alpha PI3K.  相似文献   

12.
13.
Different hormones and neurotransmitters, using Ca2+ as their intracellular messenger, can generate specific cytosolic Ca2+ signals in different parts of a cell. In mouse pancreatic acinar cells, cytosolic Ca2+ oscillations are triggered by activation of acetylcholine (ACh), cholecystokinin (CCK) and bombesin receptors. Low concentrations of these three agonists all induce local Ca(2+)spikes, but in the case of bombesin and CCK these spikes can also trigger global Ca2+ signals. Here we monitor cytosolic Ca2+ oscillations induced by low (2-5 pM) concentrations of bombesin and show that, like ACh- and CCK-induced oscillations, the bombesin-elicited responses are inhibited by ryanodine(50 microM). We then demonstrate that, like CCK- but unlike ACh-induced oscillations, the responses to bombesin are abolished by intracellular infusion of the cyclic ADP ribose (cADPr) antagonist 8-NH2-cADPr (20 microM). We conclude that in mouse pancreatic acinar cells, bombesin, CCK and ACh all produce local Ca2+ spikes by recruiting common oscillator units composed of ryanodine and inositol trisphosphate receptors. However, bombesin and CCK also recruit cADPr receptors, which may account for the global Ca2+ signals that can be evoked by these two agonists. Our new results indicate that each Ca2+ -mobilizing agonist, acting on mouse pancreatic acinar cells, recruits a unique combination of intracellular Ca2+ channels.  相似文献   

14.
The pathological activation of proteases within the pancreatic acinar cell is critical to initiating pancreatitis. Stimulation of acinar cells with supraphysiological concentrations of the CCK analog caerulein (CER) leads to protease activation and pancreatitis. Agents that sensitize the acinar cell to the effects of CCK might contribute to disease. The effects of physiological ligands that increase acinar cell cAMP [secretin, VIP, and pituitary adenylate cyclase activating peptide (PACAP)] on CER-induced responses were examined in isolated rat pancreatic acini. Each ligand sensitized the acinar cell to zymogen activation by physiological concentrations of CER (0.1 nM). VIP and PACAP but not secretin also enhanced activation by supraphysiological concentrations of CER (0.1 muM). A cell-permeable cAMP analog also sensitized the acinar cell to CER-induced activation. The cAMP antagonist Rp-8-Br-cAMP inhibited these sensitizing effects. These findings suggest that ligands that increase acinar cell cAMP levels can sensitize the acinar cell to the effects of CCK-induced zymogen activation.  相似文献   

15.
In pancreatic acinar cells analysis of the propagation speed of secretagogue-evoked Ca2+ waves can be used to examine coupling of hormone receptors to intracellular signal cascades that cause activation of protein kinase C or production of arachidonic acid (AA). In the present study we have investigated the role of cytosolic phospholipase A2 (cPLA2) and AA in acetylcholine (ACh)- and bombesin-induced Ca2+ signaling. Inhibition of cPLA2 caused acceleration of ACh-induced Ca2+ waves, whereas bombesin-evoked Ca2+ waves were unaffected. When enzymatic metabolization of AA was prevented with the cyclooxygenase inhibitor indomethacin or the lipoxygenase inhibitor nordihydroguaiaretic acid, ACh-induced Ca2+ waves were slowed down. Agonist-induced activation of cPLA2 involves mitogen-activated protein kinase (MAPK) activation. An increase in phosphorylation of p38(MAPK) and p42/44(MAPK) within 10 s after stimulation could be demonstrated for ACh but was absent for bombesin. Rapid phosphorylation of p38(MAPK) and p42/44(MAPK) could also be observed in the presence of cholecystokinin (CCK), which also causes activation of cPLA2. ACh-and CCK-induced Ca2+ waves were slowed down when p38(MAPK) was inhibited with SB 203580, whereas inhibition of p42/44(MAPK) with PD 98059 caused acceleration of ACh- and CCK-induced Ca2+ waves. The spreading of bombesin-evoked Ca2+ waves was affected neither by PD 98059 nor by SB 203580. Our data indicate that in mouse pancreatic acinar cells both ACh and CCK receptors couple to the cPLA2 pathway. cPLA2 activation occurs within 1-2 s after hormone application and is promoted by p42/44(MAPK) and inhibited by p38(MAPK). Furthermore, the data demonstrate that secondary (Ca2+-induced) Ca2+ release, which supports Ca2+ wave spreading, is inhibited by AA itself and not by a metabolite of AA.  相似文献   

16.
The development of acute pancreatitis (AP) is triggered by acinar events, but the subsequent extra-acinar events, particularly a distinct immune response, appear to determine its severity. Cytokines modulate this immune response and are derived not only from immunocytes but also from pancreatic acinar cells. We studied whether pancreatic acinar cells were also capable of responding to cytokines. The JAK/STAT-pathway represents the main effector for many cytokines. Therefore, expression and regulation of JAK and STAT proteins were investigated in rat pancreatic acinar cells. Western blotting showed expression of JAK1, JAK2, Tyk2, and STAT1, STAT2, STAT3, STAT5, STAT6. In addition, STAT1 was reversibly tyrosine-phosphorylated upon the procedure of acinar cell isolation. In contrast, STAT3-phosphorylation occurred spontaneously after pancreas removal and was not reversible within 8 h. STAT1 phosphorylation was also observed upon treatment with IFN-gamma but not upon EGF, TNF-alpha or IL-6, and inhibited by the JAK2-inhibitor AG-490. Immunohistochemistry revealed cytoplasmic expression of unphosphorylated STAT1 in untreated acinar cells and nuclear translocation of phosphorylated STAT1 following IFN-gamma-treatment. Interestingly, although CCK leads to the activation of multiple stress pathways in pancreatic acinar cells, we found no influence of CCK on phosphorylation of STAT1, STAT3, or STAT5 in the pancreas. In conclusion, our data provide further evidence that pancreatic acinar cells are able to interact with immune cells. Besides stimulating immune cells via cytokine secretion, acinar cells are in turn capable of responding to IFN-gamma via JAK2 and STAT1 which may have an impact on the development of AP.  相似文献   

17.
Gastrin (G17) has a CCK-B receptor-mediated growth-promoting effect on the AR42J rat acinar cell line. We examined whether G17 inhibits apoptosis induced by serum withdrawal of AR42J cells and CHO-K1 cells stably expressing CCK-B receptors (CHO-K1/CCK-B cells). Cellular apoptosis was measured by flow cytometry and the terminal deoxynucleotidyltransferase-mediated dUTP-FITC nick end-labeling method. Serum withdrawal induced AR42J and CHO-K1/CCK-B cell apoptosis. Addition of 10 nM G17 reversed these effects. We examined the action of G17 (10 nM) on phosphorylation and activation of protein kinase B/Akt, a kinase known to promote cell survival. Akt phosphorylation and activation were measured by kinase assays and Western blots with an anti-phospho-Akt antibody. G17 stimulated Akt phosphorylation and activation. G17 induction of Akt phosphorylation was inhibited by the phosphoinositide 3-kinase (PI 3-kinase) inhibitors LY-294002 (10 microM) and wortmannin (200 nM) but not by the mitogen-activated protein kinase kinase 1 inhibitor PD-98059 (50 microM). To study the role of p38 kinase in G17 signaling to Akt, we examined the effect of G17 on p38 kinase activation and phosphorylation using kinase assays and Western blots with an anti-phospho-p38 kinase antibody. G17 induced p38 kinase activity at doses and with kinetics similar to those observed for Akt induction. The p38 kinase inhibitor SB-203580 inhibited G17 induction of Akt phosphorylation and activation at a concentration (10 microM) 10-fold higher than necessary to block p38 kinase (1 microM), suggesting the possible involvement of kinase activities other than p38 kinase. Transduction of AR42J cells with the adenoviral vector Adeno-dn Akt, which overexpresses an inhibitor of Akt, reversed the antiapoptotic action of G17. In conclusion, G17 promotes AR42J cell survival through the induction of Akt via PI 3-kinase and SB-203580-sensitive kinase activities.  相似文献   

18.
The purpose of the present study was to evaluate the effects of EtOH on RhoA, actin cytoskeleton, catenin p120 and E-cadherin and their interactions in CCK-stimulated rat pancreatic acini. In isolated rat pancreatic acinar cells, CCK stimulation enhanced protein expression and association of RhoA, Gα13, Vav-2, catenin p120 and E-cadherin. CCK induced translocation and activation of RhoA and actin-filamentous assembly and disassembly. RhoA was diffusely localized throughout the acinar cell in the resting state and redistributed to the apical site in response to submaximal CCK stimulation and to a lesser extent in response to supramaximal CCK stimulation. Ethanol and subsequent submaximal CCK stimulation mimicked the effect of supramaximal CCK stimulation in terms of amylase secretion and morphologic effects. However, inhibition of RhoA translocation and activation were observed only with ethanol pretreatment. Ethanol followed by supramaximal CCK stimulation disrupted the well-defined localization of catenin p120 and E-cadherin around the lateral plasma membrane. These data suggest that ethanol impaired the assembly and disassembly of actin cytoskeleton and impaired cell–cell adhesion via the RhoA signaling pathways, catenin p120 and E-cadherin in CCK-stimulated pancreatic acini.  相似文献   

19.
In the present study, we identified novel negative cross-talk between the angiotensin II subtype 2 (AT2) receptor and insulin receptor signaling in the regulation of phosphoinositide 3-kinase (PI3K), Akt, and apoptosis in rat pheochromocytoma cell line, PC12W cells, which exclusively express AT2 receptor. We demonstrated that insulin-mediated insulin receptor substrate (IRS)-2-associated PI3K activity was inhibited by AT2 receptor stimulation, whereas IRS-1-associated PI3K activity was not significantly influenced. AT2 receptor stimulation did not change insulin-induced tyrosine phosphorylation of IRS-2 or its association with the p85alpha subunit of PI3K, but led to a significant reduction of insulin-induced p85alpha phosphorylation. AT2 receptor stimulation increased the association of a protein tyrosine phosphatase, SHP-1, with IRS-2. Moreover, we demonstrated that AT2 receptor stimulation inhibited insulin-induced Akt phosphorylation and that insulin-mediated antiapoptotic effect was also blocked by AT2 receptor activation. Overexpression of a catalytically inactive dominant negative SHP-1 markedly attenuated the AT2 receptor- mediated inhibition of IRS-2-associated PI3K activity, Akt phosphorylation, and antiapoptotic effect induced by insulin. Taken together, these results indicate that AT2 receptor-mediated activation of SHP-1 and the consequent inhibition IRS-2-associated PI3K activity contributed at least partly to the inhibition of Akt phosphorylation, thereby inducing apoptosis.  相似文献   

20.
CCK increases the rate of net protein synthesis in rat pancreatic acini by activating initiation and elongation factors required for translation. The immunosuppressant FK506 inhibits the Ca2+-calmodulin-dependent phosphatase calcineurin in pancreatic acinar cells and blocks pancreatic growth induced by chronic CCK treatment. To test a requirement for calcineurin in the activation of the translational machinery stimulated by CCK, we evaluated the effects of FK506 on protein synthesis and on regulatory initiation and elongation factors in rat pancreatic acini in vitro. CCK acutely increased protein synthesis in acini from normal rats with a maximum increase at 100 pM CCK to 170 ± 11% of control. The immunosuppressant FK506 dose-dependently inhibited CCK-stimulated protein synthesis over the same concentration range that blocked calcineurin activity, as assessed by dephosphorylation of the calcineurin substrate calcium-regulated heat-stable protein of 24 kDa. Another immunosuppressant, cyclosporin A, inhibited protein synthesis, but its effects appeared more complex. FK506 also inhibited protein synthesis stimulated by bombesin and carbachol. FK506 did not significantly affect the activity of the initiation factor-2B, or the phosphorylation of the initiation factor-2, ribosomal protein protein S6, or the mRNA cap binding protein eukaryotic initiation factor (eIF) 4E. Instead, blockade of calcineurin with FK506 reduced the phosphorylation of the eIF4E binding protein, reduced the formation of the eIF4F complex, and increased the phosphorylation of eukaryotic elongation factor 2. From these results, we conclude that calcineurin activity is required for protein synthesis, and this action may be related to an effect on the formation of the mRNA cap binding complex and the elongation processes. exocrine pancreas; cholecystokinin; translation initiation factors; protein phosphatase 2B; immunosuppressants  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号