首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Microbes compose most of the biomass on the planet, yet the majority of taxa remain uncharacterized. These unknown microbes, often referred to as “microbial dark matter,” represent a major challenge for biology. To understand the ecological contributions of these Unknown taxa, it is essential to first understand the relationship between unknown species, neighboring microbes, and their respective environment. Here, we establish a method to study the ecological significance of “microbial dark matter” by building microbial co-occurrence networks from publicly available 16S rRNA gene sequencing data of four extreme aquatic habitats. For each environment, we constructed networks including and excluding unknown organisms at multiple taxonomic levels and used network centrality measures to quantitatively compare networks. When the Unknown taxa were excluded from the networks, a significant reduction in degree and betweenness was observed for all environments. Strikingly, Unknown taxa occurred as top hubs in all environments, suggesting that “microbial dark matter” play necessary ecological roles within their respective communities. In addition, novel adaptation-related genes were detected after using 16S rRNA gene sequences from top-scoring hub taxa as probes to blast metagenome databases. This work demonstrates the broad applicability of network metrics to identify and prioritize key Unknown taxa and improve understanding of ecosystem structure across diverse habitats.Subject terms: Microbial ecology, Metagenomics  相似文献   

2.
Soil microbial communities have great potential for bioremediation of recalcitrant aromatic compounds. However, it is unclear which taxa and genes in the communities, and how they contribute to the bioremediation in the polluted soils. To get clues about this fundamental question here, time-course (up to 24 weeks) metagenomic analysis of microbial community in a closed soil microcosm artificially polluted with four aromatic compounds, including phenanthrene, was conducted to investigate the changes in the community structures and gene pools. The pollution led to drastic changes in the community structures and the gene sets for pollutant degradation. Complete degradation of phenanthrene was strongly suggested to occur by the syntrophic metabolism by Mycobacterium and the most proliferating genus, Burkholderia. The community structure at Week 24 (∼12 weeks after disappearance of the pollutants) returned to the structure similar to that before pollution. Our time-course metagenomic analysis of phage genes strongly suggested the involvement of the ‘kill-the-winner’ phenomenon (i.e. phage predation of Burkholderia cells) for the returning of the microbial community structure. The pollution resulted in a decrease in taxonomic diversity and a drastic increase in diversity of gene pools in the communities, showing the functional redundancy and robustness of the communities against chemical disturbance.  相似文献   

3.
Fungi are important members of soil microbial communities with a crucial role in biogeochemical processes. Although soil fungi are known to be highly diverse, little is known about factors influencing variations in their diversity and community structure among forests dominated by the same tree species but spread over different regions and under different managements. We analyzed the soil fungal diversity and community composition of managed and unmanaged European beech dominated forests located in three German regions, the Schwäbische Alb in Southwestern, the Hainich-Dün in Central and the Schorfheide Chorin in the Northeastern Germany, using internal transcribed spacer (ITS) rDNA pyrotag sequencing. Multiple sequence quality filtering followed by sequence data normalization revealed 1655 fungal operational taxonomic units. Further analysis based on 722 abundant fungal OTUs revealed the phylum Basidiomycota to be dominant (54%) and its community to comprise 71.4% of ectomycorrhizal taxa. Fungal community structure differed significantly (p≤0.001) among the three regions and was characterized by non-random fungal OTUs co-occurrence. Soil parameters, herbaceous understory vegetation, and litter cover affected fungal community structure. However, within each study region we found no difference in fungal community structure between management types. Our results also showed region specific significant correlation patterns between the dominant ectomycorrhizal fungal genera. This suggests that soil fungal communities are region-specific but nevertheless composed of functionally diverse and complementary taxa.  相似文献   

4.
We determined the accuracy and reproducibility of whole-community fatty acid methyl ester (FAME) analysis with two model bacterial communities differing in composition by using the Microbial ID, Inc. (MIDI), system. The biomass, taxonomic structure, and expected MIDI-FAME profiles under a variety of environmental conditions were known for these model communities a priori. Not all members of each community could be detected in the composite profile because of lack of fatty acid “signatures” in some isolates or because of variations (approximately fivefold) in fatty acid yield across taxa. MIDI-FAME profiles of replicate subsamples of a given community were similar in terms of fatty acid yield per unit of community dry weight and relative proportions of specific fatty acids. Principal-components analysis (PCA) of MIDI-FAME profiles resulted in a clear separation of the two different communities and a clustering of replicates of each community from two separate experiments on the first PCA axis. The first PCA axis accounted for 57.1% of the variance in the data and was correlated with fatty acids that varied significantly between communities and reflected the underlying community taxonomic structure. On the basis of our data, community fatty acid profiles can be used to assess the relative similarities and differences of microbial communities that differ in taxonomic composition. However, detailed interpretation of community fatty acid profiles in terms of biomass or community taxonomic composition must be viewed with caution until our knowledge of the quantitative and qualitative distribution of fatty acids over a wide variety of taxa and the effects of growth conditions on fatty acid profiles is more extensive.  相似文献   

5.
Ecotones between distinct ecosystems have been the focus of many studies as they offer valuable insights into key drivers of community structure and ecological processes that underpin function. While previous studies have examined a wide range of above‐ground parameters in ecotones, soil microbial communities have received little attention. Here we investigated spatial patterns, composition, and co‐occurrences of archaea, bacteria, and fungi, and their relationships with soil ecological processes across a woodland‐grassland ecotone. Geostatistical kriging and network analysis revealed that the community structure and spatial patterns of soil microbiota varied considerably between three habitat components across the ecotone. Woodland samples had significantly higher diversity of archaea while the grassland samples had significantly higher diversity of bacteria. Microbial co‐occurrences reflected differences in soil properties and ecological processes. While microbial networks were dominated by bacterial nodes, different ecological processes were linked to specific microbial guilds. For example, soil phosphorus and phosphatase activity formed the largest clusters in their respective networks, and two lignolytic enzymes formed joined clusters. Bacterial ammonia oxidizers were dominant over archaeal oxidizers and showed a significant association (p < 0.001) with potential nitrification (PNR), with the PNR subnetwork being dominated by Betaproteobacteria. The top ten keystone taxa comprised six bacterial and four fungal OTUs, with Random Forest Analysis revealing soil carbon and nitrogen as the determinants of the abundance of keystone taxa. Our results highlight the importance of assessing interkingdom associations in soil microbial networks. Overall, this study shows how ecotones can be used as a model to delineate microbial structural patterns and ecological processes across adjoining land‐uses within a landscape.  相似文献   

6.
Ecologists have long studied the temporal dynamics of plant and animal communities with much less attention paid to the temporal dynamics exhibited by microbial communities. As a result, we do not know if overarching temporal trends exist for microbial communities or if changes in microbial communities are generally predictable with time. Using microbial time series assessed via high-throughput sequencing, we conducted a meta-analysis of temporal dynamics in microbial communities, including 76 sites representing air, aquatic, soil, brewery wastewater treatment, human- and plant-associated microbial biomes. We found that temporal variability in both within- and between-community diversity was consistent among microbial communities from similar environments. Community structure changed systematically with time in less than half of the cases, and the highest rates of change were observed within ranges of 1 day to 1 month for all communities examined. Microbial communities exhibited species–time relationships (STRs), which describe the accumulation of new taxa to a community, similar to those observed previously for plant and animal communities, suggesting that STRs are remarkably consistent across a broad range of taxa. These results highlight that a continued integration of microbial ecology into the broader field of ecology will provide new insight into the temporal patterns of microbial and ‘macro''-bial communities alike.  相似文献   

7.

Background

The 16S rRNA gene-based amplicon sequencing analysis is widely used to determine the taxonomic composition of microbial communities. Once the taxonomic composition of each community is obtained, evolutionary relationships among taxa are inferred by a phylogenetic tree. Thus, the combined representation of taxonomic composition and phylogenetic relationships among taxa is a powerful method for understanding microbial community structure; however, applying phylogenetic tree-based representation with information on the abundance of thousands or more taxa in each community is a difficult task. For this purpose, we previously developed the tool VITCOMIC (VIsualization tool for Taxonomic COmpositions of MIcrobial Community), which is based on the genome-sequenced microbes’ phylogenetic information. Here, we introduce VITCOMIC2, which incorporates substantive improvements over VITCOMIC that were necessary to address several issues associated with 16S rRNA gene-based analysis of microbial communities.

Results

We developed VITCOMIC2 to provide (i) sequence identity searches against broad reference taxa including uncultured taxa; (ii) normalization of 16S rRNA gene copy number differences among taxa; (iii) rapid sequence identity searches by applying the graphics processing unit-based sequence identity search tool CLAST; (iv) accurate taxonomic composition inference and nearly full-length 16S rRNA gene sequence reconstructions for metagenomic shotgun sequencing; and (v) an interactive user interface for simultaneous representation of the taxonomic composition of microbial communities and phylogenetic relationships among taxa. We validated the accuracy of processes (ii) and (iv) by using metagenomic shotgun sequencing data from a mock microbial community.

Conclusions

The improvements incorporated into VITCOMIC2 enable users to acquire an intuitive understanding of microbial community composition based on the 16S rRNA gene sequence data obtained from both metagenomic shotgun and amplicon sequencing.
  相似文献   

8.
Observation of short-term temporal variation in bacterial and viral communities is important for understanding patterns of aquatic microbial diversity. We collected surface seawater once daily for 38 consecutive days with seven more samples interspersed over 40 more days at one location ∼2 km from Santa Catalina Island, California. Bacterial communities were analyzed by automated ribosomal intergenic spacer analysis (ARISA) and viral communities were analyzed by terminal restriction fragment length polymorphism (TRFLP) of the conserved T4-like myoviral gene encoding the major capsid protein (g23). Common bacterial and viral taxa were consistently dominant, and relatively few displayed dramatic increases/decreases or ‘boom/bust'' patterns that might be expected from dynamic predator-prey interactions. Association network analysis showed most significant covariations (associations) occurred among bacterial taxa or among viral taxa and there were several modular (highly-interconnected) associations (P⩽0.005). Associations observed between bacteria and viruses (P⩽0.005) occurred with a median time lag of 2 days. Regression of all pairwise Bray-Curtis similarities between samples indicated a rate of bacterial community change that slows from 2.1%–0.18% per day over a week to 2 months; the rate stays around 0.4% per day for viruses. Our interpretation is that, over the scale of days, individual bacterial and viral OTUs can be dynamic and patterned; resulting in statistical associations regarded as potential ecological interactions. However, over the scale of weeks, average bacterial community variation is slower, suggesting that there is strong community-level ecological resilience, that is, a tendency to converge towards a ‘mean'' microbial community set by longer-term controlling factors.  相似文献   

9.
Understanding the ecological principles underlying the structure and function of microbial communities remains an important goal for microbial ecology. We examined two biogeochemically important taxa, the sulfate-reducing bacterial genus, Desulfobulbus, and the methanogenic archaeal genus, Methanosaeta, to compare and contrast niche partitioning by these two taxa that are ecologically linked as anaerobic terminal oxidizers of organic material. An observational approach utilizing functional gene pyrosequencing was combined with a community-based reciprocal incubation experiment and characterization of a novel Desulfobulbus isolate. To analyze the pyrosequencing data, we constructed a data analysis pipeline, which we validated with several control data sets. For both taxa, particular genotypes were clearly associated with certain portions of an estuarine gradient, consistent with habitat or niche partitioning. Methanosaeta genotypes were generally divided between those found almost exclusively in the marine habitat (∼30% of operational taxonomic units (OTUs)), and those which were ubiquitously distributed across all or most of the estuary (∼70% of OTUs). In contrast to this relatively monotonic distribution, for Desulfobulbus, there were many more genotypes, and their distributions represented a wide range of inferred niche widths from specialist genotypes found only at a single site, to ubiquitous or generalist genotypes found in all 10 sites examined along the full estuarine gradient. Incubation experiments clearly showed that, for both taxa, communities from opposite ends of the estuary did not come to resemble one another, regardless of the chemical environment. Growth of a Desulfobulbus isolated into pure culture indicated that the potential niche of this organism is significantly larger than the realized niche. We concluded that niche partitioning can be an important force structuring microbial populations, with biotic and abiotic components having very different effects depending on the physiology and ecology of each taxon.  相似文献   

10.
Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composition is poorly understood. Here, we sampled soils from 30 chalk grassland fields located in three different chalk hill ridges of Southern England, using a spatially explicit sampling scheme. We assessed microbial communities via phospholipid fatty acid (PLFA) analyses and PCR-denaturing gradient gel electrophoresis (DGGE) and measured soil characteristics, as well as nematode and plant community composition. The relative influences of space, soil, vegetation and nematodes on soil microorganisms were contrasted using variation partitioning and path analysis. Results indicate that soil characteristics and plant community composition, representing habitat and resources, shape soil microbial community composition, whereas the influence of nematodes, a potential predation factor, appears to be relatively small. Spatial variation in microbial community structure was detected at broad (between fields) and fine (within fields) scales, suggesting that microbial communities exhibit biogeographic patterns at different scales. Although our analysis included several relevant explanatory data sets, a large part of the variation in microbial communities remained unexplained (up to 92% in some analyses). However, in several analyses, significant parts of the variation in microbial community structure could be explained. The results of this study contribute to our understanding of the relative importance of different environmental and spatial factors in driving the composition of soil-borne microbial communities.  相似文献   

11.
How much temporal recurrence is present in microbial assemblages is still an unanswered ecological question. Even though marked seasonal changes have been reported for whole microbial communities, less is known on the dynamics and seasonality of individual taxa. Here, we aim at understanding microbial recurrence at three different levels: community, taxonomic group and operational taxonomic units (OTUs). For that, we focused on a model microbial eukaryotic community populating a long‐term marine microbial observatory using 18S rRNA gene data from two organismal size fractions: the picoplankton (0.2–3 µm) and the nanoplankton (3–20 µm). We have developed an index to quantify recurrence in particular taxa. We found that community structure oscillated systematically between two main configurations corresponding to winter and summer over the 10 years studied. A few taxonomic groups such as Mamiellophyceae or MALV‐III presented clear recurrence (i.e., seasonality), whereas 13%–19% of the OTUs in both size fractions, accounting for ~40% of the relative abundance, featured recurrent dynamics. Altogether, our work links long‐term whole community dynamics with that of individual OTUs and taxonomic groups, indicating that recurrent and non‐recurrent changes characterize the dynamics of microbial assemblages.  相似文献   

12.
The fungal community associated with the terrestrial photosynthetic orchid Gymnadenia conopsea was characterized through PCR-amplification directly from root extracted DNA and cloning of the PCR products. Six populations in two geographically distinct regions in Germany were investigated. New ITS-primers amplifying a wide taxonomic range including Basidiomycetes and Ascomycetes revealed a high taxonomic and ecological diversity of fungal associates, including typical orchid mycorrhizas of the Tulasnellaceae and Ceratobasidiaceae as well as several ectomycorrhizal taxa of the Pezizales. The wide spectrum of potential mycorrhizal partners may contribute to this orchid's ability to colonize different habitat types with their characteristic microbial communities. The fungal community of G. conopsea showed a clear spatial structure. With 43 % shared taxa the species composition of the two regions showed only little overlap. Regardless of regions, populations were highly variable concerning taxon richness, varying between 5 and 14 taxa per population. The spatial structure and the continuous presence of mycorrhizal taxa on the one hand and the low specificity towards certain fungal taxa on the other hand suggest that the fungal community associated with G. conopsea is determined by multiple factors. In this context, germination as well as pronounced morphological and genetic differentiation within G. conopsea deserve attention as potential factors affecting the composition of the fungal community.  相似文献   

13.
Co‐occurrence network analysis based on amplicon sequences is increasingly used to study microbial communities. Patterns of co‐existence or mutual exclusion between pairs of taxa are often interpreted as reflecting positive or negative biological interactions. However, other assembly processes can underlie these patterns, including species failure to reach distant areas (dispersal limitation) and tolerate local environmental conditions (habitat filtering). We provide a tool to quantify the relative contribution of community assembly processes to microbial co‐occurrence patterns, which we applied to explore soil bacterial communities in two dry ecosystems. First, we sequenced a bacterial phylogenetic marker in soils collected across multiple plots. Second, we inferred co‐occurrence networks to identify pairs of significantly associated taxa, either co‐existing more (aggregated) or less often (segregated) than expected at random. Third, we assigned assembly processes to each pair: patterns explained based on spatial or environmental distance were ascribed to dispersal limitation (2%–4%) or habitat filtering (55%–77%), and the remaining to biological interactions. Finally, we calculated the phylogenetic distance between taxon pairs to test theoretical expectations on the linkages between phylogenetic patterns and assembly processes. Aggregated pairs were more closely related than segregated pairs. Furthermore, habitat‐filtered aggregated pairs were closer relatives than those assigned to positive interactions, consistent with phylogenetic niche conservatism and cooperativism among distantly related taxa. Negative interactions resulted in equivocal phylogenetic signatures, probably because different competitive processes leave opposing signals. We show that microbial co‐occurrence networks mainly reflect environmental tolerances and propose that incorporating measures of phylogenetic relatedness to networks might help elucidate ecologically meaningful patterns.  相似文献   

14.
郭馨  黄成  林晓晴  郑欣怡  刘强  黄凌风 《生态学报》2022,42(6):2442-2460
海洋微型鞭毛虫是海洋原生生物中一类高度异质化的类群,物种多样性高,具有多种营养方式,在全球海洋生态系统中占据广阔的生态位,在生物地球化学循环中发挥着关键作用。然而关于其生物多样性和群落结构的认识十分有限,特别是有关环境因子与其生物地理分布关系的研究更为罕见。为了探究微型鞭毛虫群落多样性、群落结构以及影响其生物地理分布格局的环境因素,将高通量测序技术与传统的显微镜观测方法相结合,全面调查了中国东海春季和秋季微型鞭毛虫的群落特征,并深入探讨了与环境因子之间的关系。结果表明:东海微型鞭毛虫的丰度平均为2.27×10~3个/mL,表现为近岸处较高、随离岸距离的增加而下降的趋势;Shannon多样性指数呈现表层低于底层、近岸区低于陆架区的特征,反映了生物群落的稳定程度以及对环境条件的适应程度;不同类群的鞭毛虫具有各自独特的营养模式和相对固定的粒级,表现出对温度、盐度、溶解氧等环境因素的不同响应,从而使群落的物种组成和分布模式呈现明显的季节变化和生境差异。研究结果可为深入认识东海海洋微型鞭毛虫的群落结构、分布格局以及环境影响因素提供理论依据。  相似文献   

15.
Interactions among microbes and stratification across depths are both believed to be important drivers of microbial communities, though little is known about how microbial associations differ between and across depths. We have monitored the free-living microbial community at the San Pedro Ocean Time-series station, monthly, for a decade, at five different depths: 5 m, the deep chlorophyll maximum layer, 150 m, 500 m and 890 m (just above the sea floor). Here, we introduce microbial association networks that combine data from multiple ocean depths to investigate both within- and between-depth relationships, sometimes time-lagged, among microbes and environmental parameters. The euphotic zone, deep chlorophyll maximum and 890 m depth each contain two negatively correlated ‘modules'' (groups of many inter-correlated bacteria and environmental conditions) suggesting regular transitions between two contrasting environmental states. Two-thirds of pairwise correlations of bacterial taxa between depths lagged such that changes in the abundance of deeper organisms followed changes in shallower organisms. Taken in conjunction with previous observations of seasonality at 890 m, these trends suggest that planktonic microbial communities throughout the water column are linked to environmental conditions and/or microbial communities in overlying waters. Poorly understood groups including Marine Group A, Nitrospina and AEGEAN-169 clades contained taxa that showed diverse association patterns, suggesting these groups contain multiple ecological species, each shaped by different factors, which we have started to delineate. These observations build upon previous work at this location, lending further credence to the hypothesis that sinking particles and vertically migrating animals transport materials that significantly shape the time-varying patterns of microbial community composition.  相似文献   

16.
In spite of its major impact on life-long health, the process of microbial succession in the gut of infants remains poorly understood. Here, we analyze the patterns of taxonomic and functional change in the gut microbiota during the first year of life for a birth cohort of 13 infants. We detect that individual instances of gut colonization vary in the temporal dynamics of microbiota richness, diversity, and composition at both functional and taxonomic levels. Nevertheless, trends discernible in a majority of infants indicate that gut colonization occurs in two distinct phases of succession, separated by the introduction of solid foods to the diet. This change in resource availability causes a sharp decrease in the taxonomic richness of the microbiota due to the loss of rare taxa (p = 2.06e-9), although the number of core genera shared by all infants increases substantially. Moreover, although the gut microbial succession is not strictly deterministic, we detect an overarching directionality of change through time towards the taxonomic and functional composition of the maternal microbiota. Succession is however not complete by the one year mark, as significant differences remain between one-year-olds and their mothers in terms of taxonomic (p = 0.009) and functional (p = 0.004) microbiota composition, and in taxonomic richness (p = 2.76e-37) and diversity (p = 0.016). Our results also indicate that the taxonomic composition of the microbiota shapes its functional capacities. Therefore, the observed inter-individual variability in taxonomic composition during succession is not fully compensated by functional equivalence among bacterial genera and may have important physiological consequences. Finally, network analyses suggest that positive interactions among core genera during community assembly contribute to ensure their permanence within the gut, and highlight an expansion of complexity in the interactions network as the core of taxa shared by all infants grows following the introduction of solid foods.  相似文献   

17.
The Moorea Coral Reef Long Term Ecological Research (LTER) Site (17.50°S, 149.83°W) comprises the fringe of coral reefs and lagoons surrounding the volcanic island of Moorea in the Society Islands of French Polynesia. As part of our Microbial Inventory Research Across Diverse Aquatic LTERS biodiversity inventory project, we characterized microbial community composition across all three domains of life using amplicon pyrosequencing of the V6 (bacterial and archaeal) and V9 (eukaryotic) hypervariable regions of small-subunit ribosomal RNA genes. Our survey spanned eight locations along a 130-km transect from the reef lagoon to the open ocean to examine changes in communities along inshore to offshore gradients. Our results illustrate consistent community differentiation between inshore and offshore ecosystems across all three domains, with greater richness in all domains in the reef-associated habitats. Bacterial communities were more homogenous among open ocean sites spanning >100 km than among inshore sites separated by <1 km, whereas eukaryotic communities varied more offshore than inshore, and archaea showed more equal levels of dissimilarity among subhabitats. We identified signature communities representative of specific geographic and geochemical milieu, and characterized co-occurrence patterns of specific microbial taxa within the inshore ecosystem including several bacterial groups that persist in geographical niches across time. Bacterial and archaeal communities were dominated by few abundant taxa but spatial patterning was consistent through time and space in both rare and abundant communities. This is the first in-depth inventory analysis of biogeographic variation of all three microbial domains within a coral reef ecosystem.  相似文献   

18.
Although numerous studies have investigated changes in soil microbial communities across space, questions about the temporal variability in these communities and how this variability compares across soils have received far less attention. We collected soils on a monthly basis (May to November) from replicated plots representing three land-use types (conventional and reduced-input row crop agricultural plots and early successional grasslands) maintained at a research site in Michigan, USA. Using barcoded pyrosequencing of the 16S rRNA gene, we found that the agricultural and early successional land uses harbored unique soil bacterial communities that exhibited distinct temporal patterns. α-Diversity, the numbers of taxa or lineages, was significantly influenced by the sampling month with the temporal variability in α-diversity exceeding the variability between land-use types. In contrast, differences in community composition across land-use types were reasonably constant across the 7-month period, suggesting that the time of sampling is less important when assessing β-diversity patterns. Communities in the agricultural soils were most variable over time and the changes were significantly correlated with soil moisture and temperature. Temporal shifts in bacterial community composition within the successional grassland plots were less predictable and are likely a product of complex interactions between the soil environment and the more diverse plant community. Temporal variability needs to be carefully assessed when comparing microbial diversity across soil types and the temporal patterns in microbial community structure can not necessarily be generalized across land uses, even if those soils are exposed to the same climatic conditions.  相似文献   

19.
Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.  相似文献   

20.
The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean''s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (~3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号