首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. V. Jacobsen  E. Pressman 《Planta》1979,144(3):241-248
Germination of celery seed occurred after 6 d of imbibition in light. During this time the embryo enlarged at the expense of the adjacent endosperm cells and at the time of germination was 2–3 times as long as in the dry seed. Breakdown of the endosperm cells near the root cap preceeded radicle emergence. None of these changes occurred in darkness.Endosperm digestion began adjacent to the embryo and spread radially. In degrading cells, the aleurone grains often became larger and fewer in number. The cell walls were modified and appeared to undergo partial degradation. Ultimately the cells seemed to lose their contents. In cells adjacent to the root cap, similar changes occurred except there was a transient appearance of starch grains. Radial progression of endosperm breakdown also occurred in isolated endosperm treated with gibberellin A4+7.The results indicate that (1) the stimulus for breakdown of celery endosperm emanates from the embryo in response to light; (2) the stimulus may be a gibberellin because changes in endosperm cells and the sequence of endosperm digestion during germination resemble the responses of isolated endosperm to gibberellin; and (3) the radial progression of endosperm breakdown during germination may be the result of a sequential response of cells to a uniformly applied stimulus rather than the result of gradual embryo expansion.  相似文献   

2.
Summary The reserve endosperm galactomannans of fenugreek (Trigonella foenum-graecum L.), crimson clover (Trifolium incarnatum L.) and lucerne (Medicago sativa L.) are broken down to free galactose and mannose in dry-isolated endosperms (devoid of embryo) incubated under germination conditions. Breakdown is prevented by inhibition of protein synthesis or of oxidative phosphorylation in the aleurone layer. Resting aleurone cells contain inter alia a large number of ribosomes more or less regularly distributed in the ground plasma. At the onset of germination, before galactomannan breakdown begins, polysomes are formed and seem, at least partly, to become associated with vesicles and flat cisternae both probably newly formed and derived from ER. Concurrently with galactomannan breakdown in the reserve cells, wall corrosion occurs in the aleurone layer, the contents of the aleurone grains disappear and the rough vesicles and cisternae proliferate. Later a large central vacuole is formed which incorporates smaller vacuoles emerging from the cytoplasm, and at the same time the rough ER vesicles and cisternae become highly distended.It is concluded that the cells of the aleurone layer are responsible for the synthesis and secretion into the storage cells of the enzymes necessary for galactomannan degradation. The physiology of galactomannan breakdown is compared and contrasted with that of starch mobilisation in the endosperm of germinating cereal grains.This is part three in a series of papers dealing with galactomannan metabolism. Part two: Planta (Berl.) 100, 131–142 (1971).  相似文献   

3.
Underdeveloped (small) embryos embedded in abundant endosperm tissue, and thus having morphological dormancy (MD) or morphophysiological dormancy (MPD), are considered to be the ancestral state in seed dormancy evolution. This trait is retained in the Apiaceae family, which provides excellent model systems for investigating the underpinning mechanisms. We investigated Apium graveolens (celery) MD by combined innovative imaging and embryo growth assays with the quantification of hormone metabolism, as well as the analysis of hormone and cell-wall related gene expression. The integrated experimental results demonstrated that embryo growth occurred inside imbibed celery fruits in association with endosperm degradation, and that a critical embryo size was required for radicle emergence. The regulation of these processes depends on gene expression leading to gibberellin and indole-3-acetic acid (IAA) production by the embryo and on crosstalk between the fruit compartments. ABA degradation associated with distinct spatiotemporal patterns in ABA sensitivity control embryo growth, endosperm breakdown and radicle emergence. This complex interaction between gibberellins, IAA and ABA metabolism, and changes in the tissue-specific sensitivities to these hormones is distinct from non-MD seeds. We conclude that the embryo growth to reach the critical size and the associated endosperm breakdown inside MD fruits constitute a unique germination programme.  相似文献   

4.
Metabolite deposition during seed development was examined histochemicallyin Trifolium repens by light- and fluorescence microscopy. Allendosperm haustorium at the chalazal pole of the embryo sacand wall protrusions in cell walls of the suspensor and theembryo sac suggest that transfer of metabolites from maternalto offspring tissue takes place primarily at these sites. Thisis further supported by prominent cutinization of the interpolarregion of the embryo sac wall, accumulation of starch in integumentaltissue at the embryo sac poles, and breakdown of interpolarendothelial cells. Decomposition of osteosclereid starch isfollowed by accumulation in the cellular endosperm and subsequentlyin the embryo parallel to endosperm degradation. The starchaccumulates gradually inward from the subepidermal cells ofthe embryo to the stele. Protein bodies are formed in the vacuolesalong the tonoplast, later to be cut off in vesicles releasedinto the cytoplasm. At maturity the embryo is packed with proteinand starch, but without lipid reserves. Phytin is observed inthe protein bodies. The mature embryo is surrounded by a proteinand starch containing aleurone layer which originates from theendosperm.Copyright 1994, 1999 Academic Press White clover, protein, starch, cuticle, embryo sac wall  相似文献   

5.
The cellular pathway of sucrose transfer from the endosperm cavity to the starchy endosperm of developing grains of wheat (Triticum turgidum) has been elucidated. The modified aleurone and sub-aleurone cells exhibit a dense cytoplasm enriched in mitochondria and endoplasmic relicilium. Significantly, the sub-aleurone cells are characterized by secondary wall ingrowths. Numerous plasmodesmata interconnect all cells between the modified aleurone and starchy endosperm. The pro-tonophore carbonylcyanide-m-chlorophenyl hydrazone (CCCP) slowed [14C]sucrose uptake by grain tissue slices enriched in modified aleurone and sub-aleurone cells but had no effect on uptake by the starchy endosperm. The fluorescent weak acid sulphorhodamine G (SRG) was preferentially accumulated by the modified aleurone and sub-aleurone cells, and this uptake was sensitive to CCCP. The combined plasma membrane surface areas of the modified aleurone and sub-aleurone cells appeared to be sufficient to support the in vivo rates of sucrose transfer to the starchy endosperm. Plasmolysis of intact excised grain inhibited [14C]sucrose transfer from the endosperm cavity to the starchy endosperm. The sulphydryl group modifier p-chloromercuribenzenesulphonie acid (PCMBS) decreased [14C]sucrose uptake by the modified aleurone and sub-aleurone cells but had little effect on uptake by the starchy endosperm. In contrast, when PCMBS and [14C]sucrose were supplied to the endosperm cavity of intact excised grain, PCMBS slowed accumulation by all tissues equally. Estimates of potential sucrose fluxes through the interconnecting plasmodesmata were found to be within the published range. It is concluded that the bulk of sucrose is accumulated from the endosperm cavity by the modified aleurone and sub-aleurone cells and subsequently transferred through the symplast to the starchy endosperm.  相似文献   

6.
7.
8.
The cereal aleurone layer is of major importance due to its nutritional properties as well as its central role in seed germination and industrial malting. Cereal seed germination involves mobilisation of storage reserves in the starchy endosperm to support seedling growth. In response to gibberellic acid produced by the embryo, the aleurone layer synthesises hydrolases that are secreted to the endosperm for the degradation of storage products. The barley aleurone layer can be separated from the other seed tissues and maintained in culture, allowing the study of the effect of added signalling molecules in an isolated system. These properties have led to its use as a model system for the study of plant signalling and germination. More recently, proteome analysis of the aleurone layer has provided new insight into this unique tissue including identification of plasma membrane proteins and targeted analysis of germination-related changes and the thioredoxin system. Here, analysis of intracellular and secreted proteomes reveals features of the aleurone layer system that makes it promising for investigations of plant protein secretion mechanisms.  相似文献   

9.
During germination of barley grains, the appearance of DNA fragmentation started in aleurone cells near the embryo and extended to the distal end in a time-dependent manner. DNA fragmentation was demonstrated to occur only after the expression of -amylase mRNA in the aleurone layer. In addition, cell wall degradation started in cells near the embryo on the sides facing the endosperm. Subsequently cell wall degradation extended to the lateral cell walls and to cells more to the distal end of the grain. A typical alteration of the nucleus was observed by electron microscopy and an almost complete degradation of DNA was found in the nucleus while the nuclear envelope remained intact. The results indicate that programmed cell death occurred in aleurone cells during germination. A model is proposed for the regulation of programmed cell death in aleurone cells during germination involving ABA levels and cell wall degradation.  相似文献   

10.
11.
The results of a light and electron microscopic study of the caryopsis coat and aleurone cells in ungerminated, unimbibed rice (Oryza sativa) caryopses are presented. Surrounding the rice grain is the caryopsis coat composed of the pericarp, seed coat and nucellar layers. The outermost layer, the pericarp, consists of crushed cells and is about 10 μm thick. The seed coat, interior to the pericarp, is one cell thick and has a thick cuticle. Between the seed coat cuticle and endosperm are the remains of the nucellus. The nucellus is about 2.5 μm thick and has a thick cuticle adjacent to the seed coat cuticle. Interior to the caryopsis coat is the aleurone layer of the endosperm. The aleurone completely surrounds the rice grain and is composed of two cell types—aleurone cells that surround the starchy endosperm and modified aleurone cells that surround the germ. The aleurone cells of the starchy endosperm contain many aleurone grains and lipid bodies around a centrally located nucleus. The modified aleurone cells lack aleurone grains, have fewer lipid bodies than the other aleurone cells, and contain filament bundles (fibrils). Plastids of aleurone cells exhibit a unique morphology in which the outer membranes invaginate to form tubules and vesicles within the plastid. Transfer aleurone cells are not observed in the mature rice caryopsis.  相似文献   

12.
13.
槐种子发育中胚乳细胞半乳甘露聚糖积累的研究   总被引:2,自引:0,他引:2  
槐 ( Sophora japonica L.)开花约 60 d至种子成熟 ,为胚乳半乳甘露聚糖积累期。用组织化学方法 ,对储藏于胚乳细胞壁上的半乳甘露聚糖的形成积累进行了观察 ,结果表明 ,半乳甘露聚糖最先在邻近胚的胚乳细胞的粗面内质网的囊泡腔内形成 ,并通过细胞质膜分泌至细胞壁周围。此后 ,半乳甘露聚糖的积累逐渐向种皮方向扩展 ,及至种子成熟时 ,除糊粉层外 ,所有胚乳细胞几乎全由多糖所填充。此外 ,对半乳甘露聚糖发生部位及其积累过程的消长变化进行了讨论  相似文献   

14.
Programmed cell death in cereal aleurone   总被引:21,自引:0,他引:21  
Progress in understanding programmed cell death (PCD) in the cereal aleurone is described. Cereal aleurone cells are specialized endosperm cells that function to synthesize and secrete hydrolytic enzymes that break down reserves in the starchy endosperm. Unlike the cells of the starchy endosperm, aleurone cells are viable in mature grain but undergo PCD when germination is triggered or when isolated aleurone layers or protoplasts are incubated in gibberellic acid (GA). Abscisic acid (ABA) slows down the process of aleurone cell death and isolated aleurone protoplasts can be kept alive in media containing ABA for up to 6 months. Cell death in barley aleurone occurs only after cells become highly vacuolated and is manifested in an abrupt loss of plasma membrane integrity. Aleurone cell death does not follow the apoptotic pathway found in many animal cells. The hallmarks of apoptosis, including internucleosomal DNA cleavage, plasma membrane and nuclear blebbing and formation of apoptotic bodies, are not observed in dying aleurone cells. PCD in barley aleurone cells is accompanied by the accumulation of a spectrum of nuclease and protease activities and the loss of organelles as a result of cellular autolysis.  相似文献   

15.
LYSHEDE  OLE B. 《Annals of botany》1992,69(4):365-371
The seeds of Cuscuta pedicellata have been investigated by transmissionand scanning electron microscopy. Additional observations havebeen made on seeds of C. campestris by SEM only. The seed coatconsists of an outer single epidermis, two different palisadelayers, and an inner multiparenchyma layer. The outer epidermalwall in C. pedicellata has a thick cuticle and zones rich inpectic substances. The thicker ‘U-shaped’ cell wallsin the outer palisade layer are strengthened by a wall layerof hemicellulose. The inner palisade layer has thick walledcells with a ‘light line’. The inner cell wall ofthe compressed multiparenchyma layer has a thin cuticle. A fairlythick cuticle is positioned directly on the endosperm surface.The aleurone cell walls are different from the remaining endospermwalls. The latter are thick and believed to be of galactomannans.There is a ‘clear’ zone between the plasmalemmaand the cell wall in the aleurone cells. The embryo cells arepacked with lipids and proteins. In Cuscuta campestris mostendosperm has been absorbed during the seed development. Theembryo apex has two minute leaf primordia. The features of theCuscuta seeds are discussed in relation to functional and environmentalconditions. Cuscuta pedicellata, Cuscuta campestris, seed, seed coat, cuticle, cell walls, endosperm, aleurone cells, galactomannan, embryo, TEM, SEM  相似文献   

16.
Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.  相似文献   

17.
The role of phytic Acid in the wheat grain   总被引:4,自引:2,他引:2       下载免费PDF全文
The concentrations of adenosine triphosphate and phytic acid in testa, embryo plus scutellum, aleurone, and endosperm fractions from grain of Triticum vulgare cv. Insignia have been determined during development under both normal conditions and those of water stress. Phytic acid was not detected in the endosperm. In the embryo plus scutellum and aleurone fractions there was a rapid build-up of phytic acid, but the adenosine triphosphate level did not change markedly at this time. These results are not consistent with physiological roles previously suggested for phytic acid other than the role of phytin as a phosphorus and cation store for the germinating seed.  相似文献   

18.
The hitherto unresolved ontogenetic origin of the aleurone layerin mustard (Sinapis alba L.) seeds was investigated with lightand electron microscopy. Contrary to previous views, this layerof storage cells is neither derived from the endosperm nor fromthe nucellus, but from a particular cell layer within the innerintegument of the seed coat. These cells differentiate and becomefilled with storage protein and fat concurrently with the maturationof the embryo. They survive seed desiccation and become depletedof storage materials during seed germination. Temporally correlatedwith the germinating embryo, the aleurone cells produce microbodyenzymes, which are controlled by light in a similar fashionin both tissues. Sinapis alba L., mustard, aleurone layer, seed coat, seed formation, germination  相似文献   

19.
Decorticated barley grains were germinated at 25° for 6 days, until the endosperm reserves were nearly exhausted. The neutral monosaccharide components of the hydrolysates of the cell walls and gums from the embryo, aleurone layer and starchy endosperm and the endospermic starch were determined at daily intervals. The amount of embryo cell wall polysaccharide increased 40 times and glucose became the major component, followed in abundance by xylose and arabinose. The cell wall and gum polysaccharides of the aleurone layer (plus testa) and the starchy endosperm declined during germination and their compositions altered. The endospermic starch also decreased. In the early stages of germination the apparent composition of the cell walls of the aleurone layer and starchy endosperm depended upon how they had been prepared. After 6 days the cell walls and gums had provided a significant carbohydrate supply to the living tissues, equivalent to 18.5% of the endospermic polysaccharide degraded during growth, starch having provided the remaining 81.5%.  相似文献   

20.
The cereal aleurone cells differentiate from the endosperm epidermis with the exception of endosperm transfer cells. Aleurone cells contain proteins, lipids, and minerals, and are important for digesting the endosperm storage products to nurse the embryo under effects of several hormones during the seed germination. The differentiation of aleurone cells is related to location effect and special gene expression. Moreover, the differentiation of aleurone cells is probably affected by the cues from maternal tissues. In the paper, differentiation mechanism and function of aleurone cells and hormone effects on them are reviewed. Some speculations about the differentiation mechanism of aleurone cells are given here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号