首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The preceding paper (Bec, G., Kerjan, P., Zha, X.D., and Waller, J.P. (1989) J. Biol. Chem. 264, 21131-21137) described the purification to apparent homogeneity from rabbit liver, of a heterotypic complex comprising valyl-tRNA synthetase and Elongation Factor 1H. In the present study, valyl-tRNA synthetase was dissociated and separated from the other components of this complex by hydroxylapatite chromatography in the presence of 0.5 M NaSCN. The properties of the homogeneous mammalian enzyme were compared to those of the corresponding enzyme from yeast. Both behaved as monomeric entities, with apparent molecular masses of 140 and 125 kDa, respectively. Furthermore, both displayed strong affinity toward the polyanionic support heparin-Ultrogel, a property not manifested by the corresponding prokaryotic enzyme. However, unlike the yeast enzyme, that of mammalian origin additionally exhibited hydrophobic properties, as reflected by its affinity toward phenyl-Sepharose. A structural model is proposed according to which mammalian valyl-tRNA synthetase has conserved the polycationic N-terminal domain that distinguishes the corresponding lower eukaryotic enzyme from its prokaryotic counterpart, while acquiring a hydrophobic domain most likely responsible for its association to Elongation Factor 1H.  相似文献   

2.
A high-molecular-mass complex containing valyl-tRNA synthetase has been purified to homogeneity from rabbit liver. The molecular mass of the complex is about 800 kDa. The complex consists of four polypeptides of 130, 50, 40 and 30 kDa.  相似文献   

3.
Elongation factor 1 has been purified about 100-fold from the lysate of rabbit reticulocytes. The native enzyme is highly asymmetric (ff0 = 1.53) and has a molecular weight of 450,000. Polyacrylamide-gel electrophoresis in sodium dodecyl sulfate shows two major bands with molecular weights of about 53,000 and 50,000. Partially purified phospholipase C and AB preparations and elastase cause dissociation of the aggregate form of the enzyme to an active form which has a molecular weight of about 50,000. The effect of these phospholipase preparations is unexplained since rabbit reticulocyte elongation factor 1 contains little or no phospholipid. A protease contamination has been considered but no evidence of protease activity has been detected in the phospholipase preparations. In aminoacyl-tRNA binding, elongation factor 1 appears to show very little, if any, turnover. However, in the presence of elongation factor 2, under conditions where polymerization occurs, elongation factor 1 functions catalytically.  相似文献   

4.
Previous studies have indicated that the high-molecular-weight form of elongation factor 1 (EF-1H) contained four subunits (α, β, γ, and δ). Using the conventional methods of gel-filtration and ion-exchange chromatography, various forms of elongation factor 1 (EF-1α, EF-βδ, EF-1βγδ) have been purified from rabbit reticulocyte lysate. The procedure described allows one to purify these factors from a single batch of lysate in sufficient amounts for physical and biochemical studies. EF-1α is a single polypeptide of Mr 52,000, and has an isoelectric point of 9.1. EF-1βδ and EF-1βγδ are composed of two and three nonidentical polypeptides, respectively, as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Both proteins can form stable aggregates in native conditions that can reach more than 2,000,000 Da. The isoelectric point for each polypeptide was determined; 5.8 for EF-1β, 5.5 for EF-1γ, and 4.8 for EF-1δ. The activity of both proteins was compared on a molecular basis by their ability to stimulate EF-1α in the poly(U)-directed synthesis of polyphenylalanine. On the basis of this assay EF-1βγδ is slightly more active than EF-1βδ. The similarity of the amino acid composition of EF-1γ and EF-1δ and the molar ratio of α:β:γ:δ in EF-1H of approximately 1:1:0.5:0.5 have led to the conclusion that EF-1δ is probably a breakdown product of EF-1γ, and that the native form of EF-1H probably contains only the α, β, and γ subunits.  相似文献   

5.
6.
A multi-enzyme complex of mammalian aminoacyl-tRNA synthetases was isolated from rabbit reticulocytes, and purified by polyethylene glycol fractionation and gel filtration on Biogel A15m and affinity chromatography on tRNA-Sepharose. The synthetase complex contains nine synthetase activities, and the corresponding proteins as analyzed by SDS polyacrylamide gel electrophoresis. Three of the proteins showed the identical subunit molecular weights to those of the reticulocyte's elongation factor eEF1H. The eEF1 alpha protein could not be removed by second tRNA-Sepharose column chromatography, or gel filtration on Biogel A5m or Biogel A15m. Antibodies against eEF1 alpha react with the purified synthetase complex on the basis of dot blot analysis. This finding should provide new clues for elucidating the structural organization of the mammalian protein biosynthetic machinery.  相似文献   

7.
The high-molecular-mass form of valyl-tRNA synthetase is associated with the first elongation factor activity. It includes two polypeptides of about 50 kDa and two others of 40 and 30 kDa, identified as alpha, beta, gamma and delta subunits of eEF-1H. The complex of valyl-tRNA synthetase with eEF-1H is suggested to be a novel form of the first elongation factor.  相似文献   

8.
In extracts of various mammalian tissues obtained in the presence of protease inhibitors Val-tRNA synthetase exists exclusively as a complex with a molecular mass of about 800 kDa. This complex was purified by gel filtration and two HPLC steps and contained five different polypeptides with molecular masses of 140, 50, 50, 40 and 30 kDa. The complex seems to have no tissue or species specificity, because preparations with identical polypeptide composition were obtained by the same method from rabbit liver and reticulocytes, and rat and beef liver. Four low-molecular-mass polypeptides were identified by two-dimensional electrophoresis as subunits of the heavy form of elongation factor 1 (EF-1H). The complex possesses the activity of EF-1 in the poly(U)-directed translation system, indicating that EF-1H is an integral part of the complex. Gel filtration of the tissue extracts reveals three different peaks of EF-1 activity, corresponding to EF-1 alpha, EF-1H and the high-molecular-mass complex of Val-tRNA synthetase and EF-1H. All activity of Val-tRNA synthetase and about 25% of EF-1 activity are associated with the complex. Different forms of EF-1 revealed no significant differences in the nucleotide-binding properties, but the complex of Val-tRNA synthetase with EF-1H was 10 times more active in the poly(U)-directed binding of Phe-tRNAPhe to ribosomes than EF-1H. These results strongly suggest that the complex of Val-tRNA synthetase with EF-1H is a novel functionally active individual form of EF-1.  相似文献   

9.
10.
11.
Eukaryotic polypeptide elongation factor 1 (EF-1) from pig liver has been resolved into two complementary factors, EF-1alpha and EF-1beta (Iwasaki, K., Mizumoto, K., Tanka, M., and Kaziro, Y. (1973) J. Biochem. (Tokyo) 74, 849). This paper describes the procedures for purification of EF-1beta and some properties of the purified factor. The purification method includes an aqueous two-phase separation technique, a treatment of the crude factor with sodium cholate and two successive column chromatographies on diethyl-aminoethyl-Sephadex A-50. By this method, EF-1beta was purified about 50-fold starting from the material obtained after two-phase separation followed by ammonium sulfate fractionation with a recovery of 20%. The purified EF-1beta appeared homogeneous, having a molecular weight of about 90,000. It consisted of two unequal subunits of the molecular weights of 55,000 and 30,000. It stimulates polymerization of phenylalanine dependent on poly(U) in the presence of both EF-1alpha and EF-2, as well as the EF-1alpha-dependent binding of phenylalanyl-tRNA to ribosomes in the presence of GTP. However, it had no effect on the stoichiometric binding of phenylalanyl-tRNA to ribosomes dependent on EF-1alpha in the presence of guanyl-5'-yl methylenediphosphonate. These results indicate that the function of EF-1beta is to stimulate the recycling of EF-1alpha.  相似文献   

12.
The mitochondrial protein synthesis translocase elongation factor Gmt (EF-Gmt) from bovine liver has been purified to greater than 90% homogeneity by a combination of conventional gravity and high performance liquid chromatography. The purification scheme results in an approximate overall 14,000-fold purification with 2% total recovery of EF-Gmt activity. Gel filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicate that the mitochondrial factor is a single polypeptide with a molecular weight of 80,000. EF-Gmt displays similar levels of activity on its homologous mitochondrial ribosomes and on Escherichia coli ribosomes. The mitochondrial translocase is sensitive to temperatures above 37 degrees C, but the factor is partially protected from heat inactivation in the presence of GTP or GDP. The activity of EF-Gmt is inhibited by treatment of the factor with N-ethylmaleimide. In contrast to all other translocases tested to date, EF-Gmt is completely resistant to the inhibiting effect of fusidic acid when tested on its homologous ribosomes. It displays weak sensitivity to this antibiotic when assayed in the presence of heterologous E. coli ribosomes.  相似文献   

13.
14.
15.
16.
Pseudouridylate synthetase from Salmonella typhimurium has been purified 1,000 fold and is about 90% pure. The enzyme has a molecular weight of 50,000 daltons. In the presence of tRNA there is a change in molecular weight from 50.000 to 100.000. This change does not seem to be due to the formation of a tRNA-enzyme complex but rather to a tRNA induced dimerization. Other properties of the enzyme are described.  相似文献   

17.
18.
19.
20.
Translation requires the specific attachment of amino acids to tRNAs by aminoacyl-tRNA synthetases (aaRSs) and the subsequent delivery of aminoacyl-tRNAs to the ribosome by elongation factor 1 alpha (EF-1α). Interactions between EF-1α and various aaRSs have been described in eukaryotes, but the role of these complexes remains unclear. To investigate possible interactions between EF-1α and other cellular components, a yeast two-hybrid screen was performed for the archaeon Methanothermobacter thermautotrophicus. EF-1α was found to form a stable complex with leucyl-tRNA synthetase (LeuRS; KD = 0.7 μM). Complex formation had little effect on EF-1α activity, but increased the kcat for Leu-tRNALeu synthesis ~8-fold. In addition, EF-1α co-purified with the archaeal multi-synthetase complex (MSC) comprised of LeuRS, LysRS and ProRS, suggesting the existence of a larger aaRS:EF-1α complex in archaea. These interactions between EF-1α and the archaeal MSC contribute to translational fidelity both by enhancing the aminoacylation efficiencies of the three aaRSs in the complex and by coupling two stages of translation: aminoacylation of cognate tRNAs and their subsequent channeling to the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号