首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
He HB  Wang HB  Fang CX  Lin ZH  Yu ZM  Lin WX 《PloS one》2012,7(5):e37201
Plant-plant interference is the combined effect of allelopathy, resource competition, and many other factors. Separating allelopathy from resource competition is almost impossible in natural systems but it is important to evaluate the relative contribution of each of the two mechanisms on plant interference. Research on allelopathy in natural and cultivated plant communities has been hindered in the absence of a reliable method that can separate allelopathic effect from resource competition. In this paper, the interactions between allelopathic rice accession PI312777, non-allelopathic rice accession Lemont and barnyardgrass were explored respectively by using a target (rice)-neighbor (barnyardgrass) mixed-culture in hydroponic system. The relative competitive intensity (RCI), the relative neighbor effect (RNE) and the competitive ratio (CR) were used to quantify the intensity of competition between each of the two different potentially allelopathic rice accessions and barnyardgrass. Use of hydroponic culture system enabled us to exclude any uncontrolled factors that might operate in the soil and we were able to separate allelopathy from resource competition between each rice accession and barnyardgrass. The RCI and RNE values showed that the plant-plant interaction was positive (facilitation) for PI312777 but that was negative (competition) for Lemont and barnyardgrass in rice/barnyardgrass mixed-cultures. The CR values showed that one PI312777 plant was more competitive than 2 barnyardgrass plants. The allelopathic effects of PI312777 were much more intense than the resource competition in rice/barnyardgrass mixed cultures. The reverse was true for Lemont. These results demonstrate that the allelopathic effect of PI312777 was predominant in rice/barnyardgrass mixed-cultures. The most significant result of our study is the discovery of an experimental design, target-neighbor mixed-culture in combination with competition indices, can successfully separate allelopathic effects from competition.  相似文献   

2.
集群栽培对棉花种内关系的影响   总被引:1,自引:0,他引:1  
为了检验假说“1穴3株集群栽培方式改变了棉花(Gossypium hirsutum)的种内关系, 从而使得经济产量显著提高”, 通过分析在集群和传统栽培方式下棉花各器官的生长特性, 阐明集群栽培下不同穴距对棉花种内关系的影响。结果表明, 与传统1穴1株种植相比, 集群栽培方式下随着穴距的减小, 棉花的茎秆生长显著降低, 在穴距为28 cm时, 叶片生物量最大且籽棉产量最高。进一步分析相对邻体效应(RNE), 发现穴距对棉花茎秆、叶片和籽棉产量的RNE影响都极为显著; 同时, 随着穴距的减小, 茎秆RNE值呈先升高后降低趋势, 且均为负值, 负效应强度在穴距为28 cm时最小。叶片和籽棉产量的RNE值均为正值, 且在穴距为28 cm时正效应强度最大。上述研究结果表明, 集群栽培改变了棉花的种内关系, 且在穴距为28 cm时, 对棉花籽棉产量的助长作用最大。  相似文献   

3.
We studied the effect of productivity on competition intensity and the relationship between competition intensity and community species richness, using a removal experiment with the perennial plant Solidago virgaurea . The experiment was conducted in 16 different communities from two geographically distant areas (western Estonia and northern Norway). The results were compared with the results of previous experiments with Anthoxanthum odoratum from the same areas. Removal of neighbors had a positive effect on the biomass of both Solidago and Anthoxanthum , and this response was stronger in communities with higher productivity. Thus, the corrected index of relative competition intensity, CRCI, increased with increasing community productivity. Species richness was negatively correlated with CRCI in Estonia but not in Norway and not in the case of the pooled material. The results suggest that competitive exclusion operates at least in these communities which species pool is large.
Our results indicate that the relationship between competition intensity and productivity is non-linear. In our data, competition prevails in communities where living plant biomass exceeds 200 g m−2, whereas in less productive communities, competition remains undetected and direct plant–plant relationships might at times be even mutualistic. Moreover, we found that the relationship between competition intensity and productivity is strongly dependent on regional differences and is intimately connected to a concordant variation in the intensity of grazing. The least productive communities both in Estonia and in Norway are characterized by intensive grazing, which reduces importance of competition. Hence, the contrasting results corroborates the predictions of the hypothesis of exploitation ecosystems, predicting that trophic dynamics account for the relationship between competition intensity and primary productivity.  相似文献   

4.
Question: Are competitive hierarchies, which are typically based on the results of pair‐wise competition experiments, sensitive to the level of species interaction in the underlying competition experiments? Location: Controlled greenhouse study using vegetation typical of old‐fields in East Tennessee, USA. Methods: We extend traditional competitive effect/response methods to incorporate data from competition experiments featuring any level of species interaction (i. e., 2, 3, …, n species interacting simultaneously) and develop an ordinal technique that makes hierarchies more robust to variation in the numerical values of relative yield. We apply these methodological techniques to empirical data from a greenhouse experiment wherein four old‐field plant species were grown in pair‐wise and tri‐wise combination. We also demonstrate how resampling can be used to determine the variability of data and its consequences for development of competitive hierarchies. Results: Different hierarchies were produced when we used different evaluation methods, different levels of species interaction, and different levels of replication. More acute resampling distributions and wider ranges of target/neighbor scores revealed that higher levels of species interaction lead to more distinct hierarchies. Conclusions: Hierarchies developed from interactions among subsets of species may inadequately characterize relationships among the full community because of indirect or higher‐order interactions within multi‐species assemblages. Different evaluation methods can yield different hierarchies, and resampling is an effective tool to determine the sensitivity of resultant hierarchies to the level of replication. In sum, our new methodology can be used to control uncertainty in poorly‐replicated experiments.  相似文献   

5.
The effect of community productivity on competition was studied in 82 permanent plots using two removal experiments with the rhizomatous perennial grass Anthoxanthum odoratum. The removal of neighbouring plants had a positive effect on the number of shoots and total above-ground biomass of Anthoxanthum but no significant effect on mean shoot biomass. The relative competition intensity coefficient (RCI) calculated from these data showed that competition intensity increased with increasing community productivity. Similarly, the importance of competition and the difference between local maximum and local average population density increased with increasing community productivity. We concluded that for Anthoxanthum the impact of competition is greater in high-productivity areas and that competition reduces population density. No evidence was found supporting the importance of positive interactions between plants in tundra areas. Received: 22 June 1999 / Accepted: 3 April 2000  相似文献   

6.
The literature is reviewed to summarize the major indices of interspecific competition used in De Wit replacement experiments. Of the many indices that have been defined, some are less than clear as to their meaning, so interpretations are often difficult to make. In an effort to explore the performance of individual indices and to permit cross-correlation among indices, a series of hypothetical results in different competition scenarios is created. A standardized notation for all indices is also provided, along with equations and proofs. Nine indices are reviewed and analyzed for their behavior under the hypothetical scenarios and a new index that provides increased clarification and interpretability over other indices is proposed. Relative Yield Total, Aggressivity, and Relative Replacement Rate were shown to be poor measures of competition. Relative Crowding Coefficient has many restrictions to its use. The clearest index that includes two or more species is Relative Yield of Mixture. Indices that describe single species accurately were found to be Relative Yield (RY) and Relative Competition Intensity (RCI), both of which are mathematically convertible. An index introduced here, Change in Contribution (CC), is a single species index that differs from RY and RCI because it takes into account the overall biomass each species contributes.  相似文献   

7.
We studied competitive interactions among three species (Corynephorus canescens, Hieracium pilosella and Carex arenaria) of different early successional stages on sand dunes. Our study focused on the influence of competition and water availability on biomass allocation patterns and the plasticity of root responses. Plants were grown for one growing season in a simple additive (target–neighbour) design under low or ambient water supply. Overall competition intensity (e.g., above–and below–ground), as well as root competition alone, were compared using control plants grown without competitors. Our results show high competition intensity leading to an average target plant biomass reduction of 56 relative to controls. Competition was mostly below–ground. With increasing water availability, the competitive effect of H. pilosella on both of the other species decreased significantly. All other tested species combinations were not influenced by water availability. Soil moisture seemed to be a key factor determining the plasticity of root responses. Under limited water availability, strong competitors caused a significant decrease of response ratio (lnRR) based on root: shoot ratios for H. pilosella and C. arenaria and a decrease in lnRR based on specific root length (SRL) for C. arenaria. Under sufficient water supply, however, there was no significant effect of competition on root: shoot ratios for any of the species and only C. arenaria in competition with C. canescens showed a lower lnRR based on SRL. These water–related, species–specific changes of root morphology and allocation patterns may point to an adaptive response to competition.  相似文献   

8.
When co‐occurring plant species overlap in flowering phenology they may compete for the service of shared pollinators. Competition for pollination may lower plant reproductive success by reducing the number of pollinator probes or by decreasing the quality of pollen transport to or from a focal species. Pair‐wise interactions between plants sharing pollinators have been well documented. However, relatively few studies have examined interactions for pollination among three or more plant species, and little is known about how the outcomes and mechanisms of competition for pollination may vary with competitor species composition. To better understand how the dynamics of competition for pollination may be influenced by changes in the number of competitors, we manipulated the presence of two competitors, Lythrum salicaria and Lobelia siphilitica, and quantified reproductive success for a third species, Mimulus ringens. Patterns of pollinator preference and interspecific transitions in mixed‐species arrays were significantly influenced by the species composition of competitor plants present. Both pair‐wise and three‐species competition treatments led to a similar ~ 40% reduction in Mimulus ringens seed set. However, the patterns of pollinator foraging we observed suggest that the relative importance of different mechanisms of competition for pollination may vary with the identity and number of competitors present. This variation in mechanisms of competition for pollination may be especially important in diverse plant communities where many species interact through shared pollinators.  相似文献   

9.
生物入侵是全球生物多样性的主要威胁,外来种与本地种的种间竞争能力会影响其能否成功入侵。本研究选用入侵植物空心莲子草和其本地同属种莲子草为对象,探究其专食性天敌莲草直胸跳甲与南方根结线虫对空心莲子草与莲子草的生长及种间关系的影响。结果表明: 与无天敌胁迫相比,线虫处理显著降低了莲子草的株高(28.1%),但显著增加了空心莲子草的株高(52.8%)和莲子草的地上生物量(63.7%);跳甲处理显著降低了莲子草的株高(40.7%),对空心莲子草无显著影响;而跳甲与线虫的共同胁迫显著降低了莲子草的株高(35.3%)和空心莲子草的地下生物量(62.2%),显著增加了莲子草的地上生物量(69.1%);天敌胁迫对两种植物的茎粗、分枝数和根长均无显著影响。无天敌作用下,两种植物的相对邻体效应指数(RNE)均为正值,且空心莲子草的RNE比莲子草高21.3%;天敌胁迫下,空心莲子草的RNE均为负值,而莲子草的RNE在线虫或跳甲单独胁迫下为正值,在线虫和跳甲共同胁迫下为负值。表明地上-地下天敌互作可以使两种植物的种间关系发生改变,并可能促进空心莲子草的入侵。  相似文献   

10.
A central assumption of disturbance ecology equates gap creation with the reduction of overall competitive intensity. I develop the idea that gap creation, due to changes in addition to biomass removal, could also alter the relative competitive rankings among species. I present a quantitative review using meta-analysis in which I separate the effect of gap creation from the effect of competition for species characteristic of different disturbance regimes. Twenty-one studies (with a total of 136 comparisons) directly examined species competitive abilities under gap (disturbed) and matrix (undisturbed) conditions. Overall competitive intensity generally declined in gap conditions, although species characteristic of gap areas responded more strongly to gap creation than did species characteristic of undisturbed matrix areas. Under matrix conditions, matrix species were less affected by competition than gap species, supporting one widespread assumption. However, under gap conditions, matrix and gap species were inhibited to a similar degree by neighbor biomass. These results suggest that gap creation, in addition to decreasing overall competitive intensity, may affect species competitive rankings, possibly due to changes in the environment where the interactions occur.  相似文献   

11.
Little is known about how small-scale variation in neighbor biomass can influence the strength of root competition experienced by an individual plant. In this study, modified root exclusion tubes were used to vary the accessibility of the soil space surrounding Amaranthus retroflexus target plants to the neighboring plants. A gradient of root accessibility was created by drilling varying numbers of holes into standard root exclusion tubes, made of 15 cm diameter PVC pipe. Belowground competitive intensity, defined as biomass reduction due to root interactions alone, relative to growth in the absence of neighbors, was then measured along the resulting gradient of neighbor root densities. At low neighbor root abundances the strength of belowground competition was proportional to neighbor root biomass, consistent with prior evidence that belowground competition is symmetric. If belowground competition were asymmetric, neighbor roots should have had little effect on target plants when they are rare relative to those of the target plant. At higher neighbor root abundances, belowground competitive intensity should increase rapidly. The strong relationship found between neighbor root biomass and belowground competitive intensity suggests relatively small variations in root biomass could lead to large variations in belowground competition. Reduced belowground competition in areas with low root biomass could have important implications for the establishment and growth of poor belowground competitors, suggesting a mechanism by which species coexistence may occur despite extremely intense root competition.  相似文献   

12.
水淹对克隆植物空心莲子草种内关系的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为检验“水淹程度可以改变植物种内关系的类型和强度”的假说, 将克隆植物空心莲子草(Alternanthera philoxeroides)的3种不同密度的植株(每盆种植1、4或16株)置于4种不同的水淹处理下(水位分别为-20 (不水淹)、0、20或40 cm), 研究不同水淹程度对空心莲子草种内关系的影响。随着植株密度和水淹程度的增加, 空心莲子草的生长显著减慢, 但密度效应在不同的水淹处理下显著不同。在不发生水淹的情况下, 植株密度对生长的负面(竞争)效应最强; 在水位为0和20 cm的情况下, 植株密度对生长的效应仍为负面的, 但影响强度相对减小; 而在水位为40 cm的情况下, 空心莲子草植株的生物量随着植株密度的增大而倾向于增加。进一步分析相对邻体效应时发现, 随着水淹程度的增加, 相对邻体效应显著增加, 并且数值从负值(不水淹)逐渐变为正值(40 cm水位下)。这些结果支持胁迫梯度假说, 表明水淹可以影响植物的种内关系, 即随着水淹程度的增加, 植物种内竞争作用减弱, 而易化作用增强。  相似文献   

13.
This is the first report to explore the fine‐scale diversity, population genetic structure, and biogeography of a typical planktonic microbe in Japanese and Korean coastal waters and also to try to detect the impact of natural and human‐assisted dispersals on the genetic structure and gene flow in a toxic dinoflagellate species. Here we present the genetic analysis of Alexandrium tamarense (Lebour) Balech populations from 10 sites along the Japanese and Korean coasts. We used nine microsatellite loci, which varied widely in number of alleles and gene diversity across populations. The analysis revealed that Nei's genetic distance correlated significantly with geographic distance in pair‐wise comparisons, and that there was genetic differentiation in about half of 45 pair‐wise populations. These results clearly indicate genetic isolation among populations according to geographic distance and restricted gene flow via natural dispersal through tidal currents among the populations. On the other hand, high P‐values in Fisher's combined test were detected in five pair‐wise populations, suggesting similar genetic structure and a close genetic relationship between the populations. These findings suggest that the genetic structure of Japanese A. tamarense populations has been disturbed, possibly by human‐assisted dispersal, which has resulted in gene flow between geographically separated populations.  相似文献   

14.
Norman  F.  Martin  C.E. 《Photosynthetica》1999,36(3):471-476
An ecophysiological approach was used to determine if competition can be detected among plants in a recently abandoned old-field and in a native tallgrass prairie in northeastern Kansas. In situ photosynthetic parameters and water potentials (Ψ) of target plants were measured 1-2 d after neighbor (intra- and interspecific) removal as well as 1-4 weeks later, and compared with values for plants with neighbors. Only two of the six study species (four old-field and two prairie species) responded to removal of neighboring plants, and only after several weeks had elapsed. Net photosynthetic rates (PN) and stomatal conductances (gs) of Ambrosia trifida in an old-field increased after removal of both intra- and interspecific neighbors. For Apocynum cannabinum, another old-field species, PN of target plants without neighbors was significantly higher than that of target plants with neighbors. For both these species, values of Ψ were not different between target plants with and without neighbors, suggesting that increased availability of nutrients may have been responsible for the observed ecophysiological responses. Though numerous past studies indicate that competition is a major factor influencing plants in old-field and in prairie communities, the experimental approach used in this study revealed that neighbor removal had only limited effects on ecophysiology of the target plants in either community. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Both competition and burial are important factors that influence plant growth and structuring plant communities. Competition intensity may decline with increased burial stress. However, experimental evidence is scarce. The aim of this study was to elucidate the role of burial stress in influencing plant competition by investigating biomass accumulation, biomass allocation, and clonal growth performance of Carex brevicuspis, one of the dominant species in the Dongting Lake wetland in China. The experiment was conducted with two typical wetland species, C. brevicuspis (target plant) and Polygonum hydropiper (neighbor plant), in a target-neighbor design containing three densities (0, 199, and 398 neighbor plants m-2) and two burial depths (0 and 12 cm). The biomass accumulation of C. brevicuspis decreased with increment of P. hydropiper density in the 0 cm burial treatment. However, in the 12 cm burial treatment, biomass accumulation of C. brevicuspis did not change under medium and high P. hydropiper densities. The relative neighbor effect index (RNE) increased with enhancement of P. hydropiper density but decreased with increasing burial depth. The shoot mass fraction decreased with P. hydropiper density in the 12 cm burial treatments, but the root mass fraction was only affected by burial depth. However, the rhizome mass fraction increased with both P. hydropiper density and burial depth. The number of ramets decreased with increasing P. hydropiper density. With increasing burial depth and density, the proportion of spreading ramets increased from 34.23% to 80.44%, whereas that of clumping ramets decreased from 65.77% to 19.56%. Moreover, increased P. hydropiper density and burial depth led to greater spacer length. These data indicate that the competitive effect of P. hydropiper on C. brevicuspis was reduced by sand burial, which was reflected by different patterns of biomass accumulation and RNE at the two burial depth treatments. A change from a phalanx to a guerrilla growth form and spacer elongation induced by sand burial helped C. brevicuspis to acclimate to competition.  相似文献   

16.
不同水分处理对狗牙根种内相互作用的影响   总被引:1,自引:0,他引:1  
以狗牙根当年生扦插苗为试验材料,根据库区河岸带水分特征设置4种水分处理方式:水分对照组(CK)、水淹与干旱交替组(FD)、土壤水分饱和组(LF)和全淹组(FL),4种密度方式:对照(1株/盆)、低密度(2株/盆)、中密度(4株/盆)及高密度(12株/盆),探究狗牙根生长及形态响应,并验证胁迫梯度假说。结果表明:(1)狗牙根各生物量随水分胁迫强度的增加显著下降(P0.001);密度处理和二者交互作用显著影响狗牙根叶干重、茎干重、根干重、地上生物量和总生物量(P0.001)。(2)水分处理显著影响狗牙根各形态指标(P0.001);密度和二者交互作用显著影响狗牙根分枝数、总茎长和节间长(P0.001)。(3)CK组和LF组狗牙根生物量相对邻体效应(RNE)均为负值,表明其种内关系为竞争关系。FL组各密度组生物量RNE值均为正值,其种内关系转化为促进关系。(4)中高密度组总茎长RNE值随水分胁迫增加而增大。研究表明:(1)狗牙根对不同的水分胁迫均表现出积极响应,可考虑将狗牙根用于库区河岸带植被重建。(2)随种植密度的增大,狗牙根生长及形态均表现出一定的负面效应。(3)本试验在一定程度上支持胁迫梯度假说,但尚需更多概念模型将其改进完善。  相似文献   

17.
Nurse plant facilitation in stressful environments can produce an environment with relatively low stress under its canopy. These nurse plants may produce the conditions promoting intense competition between coexisting species under the canopy, and canopies may establish stress gradients, where stress increases toward the edge of the canopy. Competition and facilitation on these stress gradients may control species distributions in the communities under canopies. We tested the following predictions: (1) interactions between understory species shift from competition to facilitation in habitats experiencing increasing stress from the center to the edge of canopy of a nurse plant, and (2) species distributions in understory communities are controlled by competitive interactions at the center of canopy, and facilitation at the edge of the canopy. We tested these predictions using a neighbor removal experiment under nurse trees growing in arid environments. Established individuals of each of four of the most common herbaceous species in the understory were used in the experiment. Two species were more frequent in the center of the canopy, and two species were more frequent at the edge of the canopy. Established individuals of each species were subjected to neighbor removal or control treatments in both canopy center and edge habitats. We found a shift from competitive to facilitative interactions from the center to the edge of the canopy. The shift in the effect of neighbors on the target species can help to explain species distributions in these canopies. Canopy‐dominant species only perform well in the presence of neighbors in the edge microhabitat. Competition from canopy‐dominant species can also limit the performance of edge‐dominant species in the canopy microhabitat. The shift from competition to facilitation under nurse plant canopies can structure the understory communities in extremely stressful environments.  相似文献   

18.
Questions: 1. Can the importance and the intensity of competition vary independently along a nutrient gradient? 2. Are these variations species dependent? Location: Sub‐alpine pastures of the northern French Alps. Methods: Competition intensity measures how much competition decreases the performances of an organism. Competition importance measures how much competition contributes to affect performance, among other processes (such as environmental stress or disturbance). Competition intensity and importance were measured on three co‐occurring species: Festuca rubra, a perennial grass, and two forbs of contrasting basal area, Chaerophyllum hirsutum and Alchemilla xantho‐chlora. A neighbour removal experiment was performed on Festuca rubra in three sub‐alpine grassland communities differing in fertility and on Chaerophyllum hirsutum and Alchemilla xanthochlora in the two more fertile of these communities. The importance of competition was quantified using an index proposed by Brooker et al. (2005). Results: Competition intensity and importance showed different patterns of variation along the fertility gradient for Festuca rubra: competition importance decreased with decreasing fertility whereas competition intensity did not change. The largest forb was the least affected by competition. Our results suggest that the importance of competition for all three species depended on their individual tolerance to low nutrient availability. Conclusions: 1. The distinction between the importance and the intensity of competition is helpful to explain conflicting results obtained on the variations of competition indices along productivity gradients. 2. The choice of a phytometer can affect the conclusions drawn from empirical studies.  相似文献   

19.
A comparison of the proteome of eight genetically well‐characterized isolates of the Bostrychia radicans (Mont.) Mont./B. moritziana (Sond. ex Kütz.) J. Agardh species complex was undertaken to establish if genetic relationships among them can be determined using proteome data. Genetic distances were calculated on the basis of common and distinct spots in two‐dimensional gel electrophoresis (2‐DE). Proteomes of the male and female plants of each population were compared to analyze the range of genetic difference within an isolate. Haploid male and female plants of the same species had 3.7%–7.1% sex‐specific proteins. The degree of similarity of the proteome was consistent with previous DNA sequence data and sexual compatibility studies between the isolates. Two sexually compatible isolates from Venezuela showed a pair‐wise distance ranging from 0.14 to 0.21. The isolates from Mexico and Venezuela, which were partially compatible, showed a maximum pair‐wise distance of 0.26. A high level of genetic difference was found among isolates that were sexually incompatible. The isolate from Brazil was reproductively isolated from the Mexico and Venezuela isolates and showed a maximum pair‐wise distance of 0.65 and 0.58, respectively. Comparative proteomics may be helpful for studying genetic distances among algal samples, if intraisolate variation (gene expression) can be minimized or tested.  相似文献   

20.
Question: Do contrasting biotic contexts in nutrient‐poor grasslands affect the predictability of invasion by exploitative species following fertilization? Location: French Alps. Methods: We examined community responses after 2 years of nutrient addition for two nutrient‐poor European calcareous grasslands, a mesoxeric community dominated by the short bunchgrass Bromus erectus and a mesic community dominated by the tall rhizomatous grass Brachypodium rupestre. We also performed reciprocal transplantations of these two dominant slow‐growing species and Arrhenatherum elatius, a tall fast‐growing grass that dominates nutrient‐rich communities and is likely to invade nutrient‐poor communities after fertilization. Transplants were grown with or without neighbors, in order to measure their individual responses (without neighbors) and competition intensity (by comparing performances with and without neighbors using the Relative Neighbor Effect index – RNE) during one growing season in all three communities. Results: In the Bromus community, fertilization induced a strong increase in fast‐growing grasses (including A. elatius). Competition intensity was low for the three transplanted grasses, but strongly increased with resource addition, to reach values observed in the Arrhenatherum community. In the Brachypodium community, no change in competition intensity with fertilization was detected, because of the high mortality of the two “non‐resident” species, irrespective of the presence of neighbors. Conclusions: Community responses to nutrient improvement are context‐dependent and vary as a function of the biotic environment. Soil processes are proposed as the main drivers of community resistance to the invasion of fast‐growing species in the mesic, nutrient‐poor grassland dominated by the large conservative competitor B. rupestre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号