首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mice showing mosaic expression of an appropriate marker gene that is activated during development provide simple tools for investigating cell lineages. We used the mosaic β-galactosidase staining patterns in adrenal cortices of 21OH/ LacZ transgenic mice to study both organogenesis and maintenance of the adult tissue. Randomly orientated mosaic patterns present in embryonic day 14.5 (E14.5) adrenals changed progressively during the perinatal period from discrete spots, via patches and radial arrays, to radial stripes, which first emerged between postnatal days 0 and 7 (P0 and P7). The mosaic radial stripe pattern was fully established by P21 and remained unchanged throughout the adult period (8-52 weeks). The mouse adrenal gland grew continuously between E14.5 and P21, including the period during which stripes emerge. Ki67-positive, proliferative cells in the adrenal cortex were mainly localized to the outer cell layers between E18.5 and P3. By P10, cell proliferation had increased, and the proliferative region had expanded but was still mainly confined to the outer cortex. Correlation of changes in mosaic patterns in 21OH/LacZ adrenal cortices with the locations of adrenocortical cell proliferation suggest that the radial stripes arise by edge-biased growth during the perinatal period, even if they are maintained by stem cells in adults. The stability of the adult stripe pattern suggests that stem cell function is unchanged between 8 and 52 weeks.  相似文献   

2.
《Organogenesis》2013,9(4):267-280
Mice showing mosaic expression of an appropriate marker gene that is activated during development provide simple tools for investigating cell lineages. We used the mosaic β-galactosidase staining patterns in adrenal cortices of 21OH/ LacZ transgenic mice to study both organogenesis and maintenance of the adult tissue. Randomly orientated mosaic patterns present in embryonic day 14.5 (E14.5) adrenals changed progressively during the perinatal period from discrete spots, via patches and radial arrays, to radial stripes, which first emerged between postnatal days 0 and 7 (P0 and P7). The mosaic radial stripe pattern was fully established by P21 and remained unchanged throughout the adult period (8–52 weeks). The mouse adrenal gland grew continuously between E14.5 and P21, including the period during which stripes emerge. Ki67-positive, proliferative cells in the adrenal cortex were mainly localized to the outer cell layers between E18.5 and P3. By P10, cell proliferation had increased, and the proliferative region had expanded but was still mainly confined to the outer cortex. Correlation of changes in mosaic patterns in 21OH/LacZ adrenal cortices with the locations of adrenocortical cell proliferation suggest that the radial stripes arise by edge-biased growth during the perinatal period, even if they are maintained by stem cells in adults. The stability of the adult stripe pattern suggests that stem cell function is unchanged between 8 and 52 weeks.  相似文献   

3.
4.
5.
6.
7.
8.
9.
The xanthine oxidase activity of mouse regenerating liver has been shown to be elevated during the period of rapid liver growth and proliferation. This increase is evident when the enzyme activity is expressed per unit wet tissue weight, per unit nitrogen, or per cell. The adrenal cortex probably plays only a minor role in implementing this phenomenon. Further augmentation of the xanthine oxidase level of regenerating liver is not induced by the administration of large quantities of the substrate, xanthine, to the animal.  相似文献   

10.
11.
12.
The nuclear receptor Ad4BP/SF-1 is essential for development of the adrenal cortex and the gonads, which derive from a common adrenogonadal primordium. The adrenal cortex subsequently forms morphologically distinct compartments: the inner (fetal) and outer (definitive or adult) zones. Despite considerable effort, the mechanisms that mediate the differential development of the adrenal and gonadal primordia and the fetal and adult adrenal cortices remain incompletely understood. We previously identified a fetal adrenal-specific enhancer (FAdE) in the Ad4BP/SF-1 locus that directs transgene expression to the fetal adrenal cortex and demonstrated that this enhancer is autoregulated by Ad4BP/SF-1. We now combine the FAdE with the Cre/loxP system to trace cell lineages in which the FAdE was active at some stage in development. These lineage-tracing studies establish definitively that the adult cortex derives from precursor cells in the fetal cortex in which the FAdE was activated before the organization into two distinct zones. The potential of these fetal adrenocortical cells to enter the pathway that eventuates in cells of the adult cortex disappeared by embryonic day 14.5. Thus, these studies demonstrate a direct link between the fetal and adult cortices involving a transition that must occur before a specific stage of development.  相似文献   

13.
In order to establish the nature of the aldosterone synthetase activity in the adrenal cortex, we have used porcine adrenal, bovine adrenal cortex, highly purified bovine and porcine 11 beta-/18-hydroxylase, and antibodies raised against the latter enzyme. Mitochondria from two zones (glomerulosa and fasciculata) of the bovine cortex synthesize aldosterone, but those from glomerulosa are much more active than those from fasciculata. Partially purified (cholate-extracted plus ammonium sulfate-precipitated) extracts of mitochondria from the two zones are equally active in catalyzing all three steps in the conversion of 11-deoxycorticosterone to aldosterone. 18-Hydroxylase and aldehyde synthetase activities (18-hydroxycorticosterone----aldosterone) were completely precipitated from cholate extracts of mitochondria from bovine adrenal by antibodies to the pure porcine enzyme. No activity corresponding to any of the three steps in the conversion of 11-deoxycorticosterone to aldosterone was found in extramitochondrial fractions of the bovine cortex. Synthesis of aldosterone by the pure porcine enzyme was inhibited by antibodies to this enzyme and by metyrapone (an inhibitor of 11 beta-/18-hydroxylase). When fractions of porcine adrenal, resulting from purification of the enzyme from mitochondria, were exhaustively tested for any of the enzyme activities required for the synthesis of aldosterone, activity was found only in those fractions containing the 11 beta-/18-hydroxylase, i.e. no additional enzyme was discarded during the purification procedure. It is concluded that the only adrenocortical enzyme capable of synthesizing aldosterone in bovine and porcine adrenal is the well known 11 beta-hydroxylase, that the conversion of 18-hydroxycorticosterone to aldosterone is catalyzed by this cytochrome P-450, and that this step (aldehyde synthetase) requires the heme of the P-450 as demonstrated by the photochemical action spectrum.  相似文献   

14.
The primary aim of this study was to determine the possible cause of slow or delayed embryonic development in Cynopterus sphinx by investigating morphological and steroidogenic changes in the corpus luteum (CL) and circulating hormone concentrations during two pregnancies of a year. This species showed delayed post-implantational embryonic development during gastrulation of the first pregnancy. Morphological features of the CL showed normal luteinization during both pregnancies. The CL did not change significantly in luteal cell size during the delay period of the first pregnancy as compared with the second pregnancy. The circulating progesterone and 17β-estradiol concentrations were significantly lower during the period of delayed embryonic development as compared with the same stage of embryonic development during the second pregnancy. We also showed a marked decline in the activity of 3β-hydroxysteroid dehydrogenase, P450 side chain cleavage enzyme, and steroidogenic acute regulatory peptide in the CL during the delay period. This may cause low circulating progesterone and estradiol synthesis and consequently delay embryonic development. What causes the decrease in steroidogenic factors in the CL during the period of delayed development in C. sphinx is under investigation.  相似文献   

15.
Steroid 21-hydroxylase (CYP21A2) is a key enzyme of glucocorticoid and mineralocorticoid biosynthesis in the adrenal cortex and belongs to the family of microsomal cytochrome P450. CYP21A2 deficiency is the most common cause of human congenital adrenal hyperplasia (CAH). Human CYP21A2 and its C169R mutant, observed in a patient with classic CAH, were expressed in Sf9 and Hi5 insect cells infected with recombinant baculoviruses. Functional CYP21A2 was produced to 28% of the total microsomal protein under optimal conditions. The C169R mutation did not affect the efficiency of CYP21A2 synthesis in insect cells, nor did it prevent CYP21A2 incorporation in membranes of the endoplasmic reticulum. Functional analysis in vitro showed that the mutant enzyme almost completely lacked the catalytic activity towards two substrates, progesterone and 17-hydroxyprogesterone.  相似文献   

16.
The steroidogenic enzyme cytochrome P450c21 (CYP21A1) is synthesized in the adrenal cortex and is essential for cortisol and aldosterone production. We have studied the structure and activity of ovine P450c21 proteins by analysis and expression of the corresponding cDNAs. Two P450c21 mRNAs (2.2 and 1.7 kilobases) were detected in ovine adrenal RNA and corresponded to two types of P450c21 cDNA clones that differed in their 3' region. One clone encoded a protein similar in structure to bovine, murine, and human P450c21 proteins. The other clone contained a 3' deletion of about 500 nucleotides and encoded a P450c21 protein that was truncated by 18 residues at the carboxyl terminus. The boundaries of this deletion suggested that an additional splicing event was responsible for the shortened mRNA sequence. Detailed Southern analysis of ovine genomic DNA indicates that the two mRNAs are derived from one gene even though two P450c21 genes are present in the ovine genome. The activities of the two P450c21 proteins were determined by expressing the respective cDNA clones in COS cells. The complete P450c21 protein was an efficient catalyst of 21-hydroxylation reactions, whereas no 21-hydroxylation activity was detected in cells containing the P450c21 protein with the carboxyl-terminal deletion.  相似文献   

17.
18.
Summary The distribution of adrenaline, noradrenaline, aliesterases and non-specific cholinesterases in the cortical and medullary cells and that of ascorbic acid in the cortex have been studied histochemically in sections of adrenal glands from embryonic, juvenile and adult chicken. Both the catecholamines are secreted by the embryonic medulla from the 11th day of incubation but noradrenaline is the more abundant of the two hormones at all stages and it is secreted by the majority of chromaffin cells. There is a tendency for the adrenaline-secreting cells to predominate in the subcapsular layer of the medulla. Both types of chromaffin cells reveal considerable cholinesterase activity consistently from the second half of incubation period onwards.A high concentration of aliesterases and ascorbic acid are developed and maintained in the cortical cords from the time the cortex begins secretory activity, namely, the 10-day incubation stage. Lower concentrations of cholinesterases are also present in the cells of the cortex. The cords of the peripheral zone of cortex show higher concentrations of both the enzymes and ascorbic acid than those of the central zone.From a thesis submitted to McGill University, Montreal, Canada in 1963 in partial fulfillment of the requirements for the degree of Doctor of Philosophy. The work was done during tenure of a Canadian Commonwealth Scholarship.  相似文献   

19.
20.
The correlation and cluster analysis revealed that the brain weight of the rat 21-day-old foetus obviously depended on 3 beta-hydroxysteroiddehydrogenase activity in adrenal cortex. No such dependence was found in 1-day-old foetus. Thickness of the brain cortex in 21-day-old foetus and in 1-day-old rat correlated with parameters of the enzyme activity in the corpus luteum, corpus atretic, and theca folliculi of mother's ovaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号