首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pyruvate carboxylation by isolated mitochondria from rat liver is inhibited by t-butylhydroperoxide in a fully reversible manner. The rate of malate formation at 10 mM pyruvate was decreased by some 80% by 30 microM t-butylhydroperoxide. The effective peroxide concentration was dependent on the mitochondrial hydrogen supply, being increased to about 120 microM in the presence of 50 microM palmitoylcarnitine. Regarding the mechanism(s) of the t-butylhydroperoxide action, pyruvate transport and intramitochondrial energy or activator supply are unlikely involved, because the effect also took place with alanine as the substrate and was not accompanied by a change in the intramitochondrial levels of adenine nucleotides and acetyl-CoA respectively. However, t-butylhydroperoxide caused a rapid fall in the 3-hydroxybutyrate/acetoacetate ratio and a marked increase in the oxidized glutathione content. Therefore, experiments were designed to disclose the participation of the respective redox couples in the expression of pyruvate carboxylase activity. From measurements of NADPH, NADH, oxidized and reduced glutathione contents of mitochondria incubated under a variety of conditions, evidence has been obtained indicating that the mitochondrial NADH supply represents an important factor in the regulation of pyruvate carboxylase activity. The results presented seemingly provide a new basis for the understanding of the functional relationship between beta-oxidation and pyruvate carboxylation.  相似文献   

2.
The inhibitor of mitochondrial pyruvate transport alpha-cyano-beta-(1-phenylindol-3-yl)-acrylate was used to inhibit progressively pyruvate carboxylation by liver mitochondria from control and glucagon-treated rats. The data showed that, contrary to our previous conclusions [Halestrap (1978) Biochem. J. 172, 389-398], pyruvate transport could not regulate metabolism under these conditions. This was confirmed by measuring the intramitochondrial pyruvate concentration, which almost equilibrated with the extramitochondrial pyruvate concentration in control mitochondria, but was significantly decreased in mitochondria from glucagon-treated rats, where rates of pyruvate metabolism were elevated. Computer-simulation studies explain how this is compatible with linear Dixon plots of the inhibition of pyruvate metabolism by alpha-cyano-4-hydroxycinnamate. Parallel measurements of the mitochondrial membrane potential by using [3H]triphenylmethylphosphonium ions showed that it was elevated by about 3 mV after pretreatment of rats with both glucagon and phenylephrine. There was no significant change in the transmembrane pH gradient. It is shown that the increase in pyruvate metabolism can be explained by a stimulation of the respiratory chain, producing an elevation in the protonmotive force and a consequent rise in the intramitochondrial ATP/ADP ratio, which in turn increases pyruvate carboxylase activity. Mild inhibition of the respiratory chain with Amytal reversed the effects of hormone treatment on mitochondrial pyruvate metabolism and ATP concentrations, but not on citrulline synthesis. The significance of these observations for the hormonal regulation of gluconeogenesis from L-lactate in vivo is discussed.  相似文献   

3.
Glucocorticoids administered to rats have been found to stimulate the rates of utilization of substrates by subsequently isolated hepatic mitochondria. This stimulation was observed in the carboxylation and decarboxylation of pyruvate and in the oxidation of β-hydroxybutyrate and succinate during state 3 and uncoupled conditions. These effects were produced by cortisol, triamcinolone, and dexamethasone, but not by deoxycorticosterone. Responses to the steroids were similar to those observed after glucagon or triiodothyronine administration. The stimulation of the rate of pyruvate decarboxylation was shown to occur independently of the rate of pyruvate carboxylation. Steroids varied with respect to the time required after in vivo administration for stimulation of metabolism to occur, as well as for achievement of maximally stimulated levels. Significant stimulation was obtained within 60 min after treatment with cortisol-succinate and 90 min after dexamethasone or cortisol. Maximal stimulation was observed after 2 to 4 h of treatment. The dose dependency of the mitochondrial responses was observable in the increase in the rates of pyruvate carboxylation after dexamethasone or cortisol treatment. Of the two steroids tested, dexamethasone was approximately 2000-fold more potent than cortisol in increasing mitochondrial activity. The effects of 30 min of treatment with glucagon or 20 h with triiodothyronine were additive with the stimulation produced by glucocorticoids. Complete additivity was found in the increased rates of pyruvate carboxylation, while oxidation of substrates was approximately 75% additive.  相似文献   

4.
Treatment of rats for 3 h with dexamethasone was shown to stimulate both pyruvate carboxylation and decarboxylation in the subsequently isolated mitochondria. The effect of hormone treatment on pyruvate carboxylation was also apparent in liver homogenates assayed within minutes of killing the animal and was independent of the temperature at which the assay was performed, suggesting that it was not an artifact of the mitochondrial preparation procedure. The stimulation of both aspects of pyruvate metabolism in the intact organelle was independent of the induction of either pyruvate carboxylase or pyruvate dehydrogenase. Similarly, there was no change in the percentage of pyruvate dehydrogenase in the active form, indicating that the effect of steroid treatment on pyruvate oxidation was not via changes in the degree of phosphorylation of the enzyme. Adrenalectomizing the animals for a period of 14 days before the experiment had no effect on either parameter. Glucocorticoid treatment of the animals increased the rate of pyruvate uptake into the mitochondria, as measured by the titration of pyruvate metabolism with alpha-cyano-4-hydroxycinnamate, a specific inhibitor of the pyruvate translocator. It also increased the intramitochondrial concentrations of acetyl-CoA and ATP and led to an elevated [ATP]/[ADP] ratio within the mitochondria. It is suggested that both enzymes of pyruvate metabolism exist in the mitochondria under considerable restraint and that glucocorticoids act to relieve this restraint by alterations in substrate supply and the intramitochondrial concentrations of effector molecules.  相似文献   

5.
The ratio of the specific radioactivities of 3-hydroxybutyrate: citrate was determined in rat liver mitochondria which were incubated in the presence of [1-14C]palmitate, pyruvate, bicarbonate, ATP, phosphate and malonate. Without compartmentation this ratio would maximally be 2, however, under our conditions values of 2.5-3.7 were observed. In further experiments with mitochondria, the sensitivity of pyruvate carboxylase for acetyl-CoA produced from various precursors was tested. It was found that acetyl-CoA produced from L-acetylcarnitine or by oxidation from either pyruvate, octanoate or palmitylcarnitine but not from leucine led to a stimulation of pyruvate carboxylation. These results demonstrate a compartmentation of acetyl-CoA in liver mitochondria. The further finding that different mitochondrial fractions showed varying ratios of specific radioactivities of 3-hydroxybutyrate:citrate indicates that the observed compartmentation may be explained by the existence of different types of mitochondria with varying enzyme patterns and acetyl-CoA pools.  相似文献   

6.
Phenylephrine effect on liver and kidney cortex mitochondrial pyruvate concentration was investigated. While in liver the alpha 1-adrenergic agent produced a decrease in pyruvate content, a significant increase was observed in kidney, even in the presence of 0.5 mM alpha-cyano-4-hydroxy-cinnamate. These changes were not observed when pyruvate was formed by intramitochondrial transamination of alanine, suggesting a role for the pyruvate transport across mitochondrial membranes in the regulation of mitochondrial pyruvate metabolism in kidney cortex. This was corroborated measuring the phenylephrine effect on pyruvate carboxylation.  相似文献   

7.
The possibility that hormones control hepatic gluconeogenesis via the regulation of the rate of mitochondrial pyruvate carboxylation was investigated with the use of suspensions of liver cells isolated from fasted rats. The mitochondria prepared from liver cells were judged in good condition as they exhibited satisfactory phosphorus-oxygen and respiratory control ratios and transported Ca2+ and K+ ions in an energy-dependent manner. Addition of glucagon, epinephrine, or cyclic adenosine 3':5'-monophosphate to liver cells caused a 50 to 80% increase in the rate of glucose synthesis from lactate. When mitochondria were isolated from the cells after treatment with these agonists, they displayed 2- to 3-fold increases in the rate of pyruvate carboxylation, pyruvate decarboxylation, and pyruvate uptake. These mitochondrial changes are similar to those obtained in hepatic mitochondria prepared from intact, hormone-treated rats. The mitochondrial responses were specific for agents that stimulated gluconeogenesis; no response occurred with 5'-AMP or cyclic adenosine 2':3'-monophosphate. In the cell suspensions, the dose response curves for the activation of mitochondrial pyruvate metabolism and for increased glucose synthesis from L-lactate were coincident with four different agonists. The mitochondrial changes resulting from stimulation with glucagon developed in 1 to 2 min after the rise in cyclic adenosine 3':5'-monophosphate and occurred at least as early as the increase in the rate of gluconeogenesis. When the intracellular level of cyclic adenosine 3':5'-monophosphate returned to basal values, the rates of mitochondrial pyruvate carboxylation and glucose synthesis also declined to control levels. It is concluded that the rate of mitochondrial pyruvate metabolisms can be increased by hormones and cyclic nucleotides and that control of mitochondrial pyruvate carboxylation is an important regulatory site of hepatic gluconeogenesis.  相似文献   

8.
The effect of acute insulin treatment of hepatocytes on pyruvate carboxylation in both isolated mitochondria and cells rendered permeable by filipin was examined. Challenging the cells with insulin alone had no effect on either the basal rate of pyruvate carboxylation or gluconeogenesis, although it did suppress the responses to both glucagon and catecholamines. Insulin treatment was unable to antagonize the enhanced rate of pyruvate carboxylation caused by stimulation of the cells with either angiotensin or vasopressin. Neither insulin nor the gluconeogenic hormones altered the total extractable pyruvate carboxylase activity in the isolated mitochondria, suggesting that the effect of hormones at the level of the isolated intact organelle was mediated via alterations in the intramitochondrial concentrations of effector molecules, notably ATP and the [ATP]/[ADP] ratio and substrate availability. The alterations in pyruvate carboxylation correlate well with glucose synthesis in terms of sensitivity to effector molecules, putative second messengers and time of onset of the response, indicating that alterations in the flux through this enzyme are compatible with it being an important site in the control of gluconeogenesis from C3 precursors.  相似文献   

9.
The metabolic effects of glucagon and glucagon plus insulin on the isolated rat livers perfused with 10 mM sodium L-lactate as substrate were studied. Glucagon stimulated gluconeogenesis, ketogenesis and ureogenesis at the concentration used of 2.1 nM. The addition of insulin to give a glucagon-to-insulin ratio of 0.2 reversed all the glucagon effects. The glucagon enhancement of gluconeogenesis was accompanied by a rise in cytosolic and mitochondrial state of reduction of the NAD system and a fall in the [ATP]/[ADP] ratio. The analysis of the intermediary metabolite concentrations suggested, as possible sites of glucagon action, the steps between pyruvate and phosphoenolpyruvate as well as the reactions catalyzed by phosphofructokinase and/or fructose bisphosphatase. All the changes in metabolite contents were abolished when insulin was present. Glucagon increased the intramitochondrial concentration of all the metabolites, whose intracellular distribution was calculated. The finding of a significant rise in the calculated intramitochondrial concentration of oxaloacetate points to pyruvate carboxylation as an important site of glucagon interaction with the gluconeogenic pathway. A primary event in the glucagon action redistributing intracellular metabolites seems to be the mitochondrial entry of malate. The possibility is discussed that the changes in metabolite cellular distribution were brought about by the increased cellular state of reduction caused by the hormone.  相似文献   

10.
The effect of oleate, palmitate, and octanoate on glucose formation was studied with lactate or pyruvate as substrate. Octanoate was much more quickly oxidized and utilized for ketone body production than were oleate and palmitate. Among fatty acids studied, only octanoate resulted in a marked increase of the 3-hydroxybutyrate/acetoacetate (3-OHBAcAc) ratio. Each of the fatty acids studied stimulated glucose synthesis from pyruvate. The enhancement of gluconeogenesis by long-chain fatty acids was abolished after the addition of ammonia. As concluded from the “crossover” plot, the stimulatory effect of fatty acids was due to: (i) a stimulation of pyruvate carboxylation, (ii) a provision of reducing equivalents for glyceraldehyde phosphate dehydrogenase, and (iii) an acceleration of flux through hexose diphosphatase. Moreover, palmitate and oleate resulted in an increased generation of mitochondrial phosphpenolpyruvate, while in the presence of octanoate, the activity of mitochondrial phosphoenolpyruvate carboxykinase was diminished. When lactate was used as the glucose precursor, palmitate and oleate increased glucose production by about 50% but did not affect the contribution of mitochondrial phosphoenolpyruvate carboxykinase to gluconeogenesis. In contrast, in spite of the stimulation of both pyruvate carboxylase and hexose diphosphatase, as judged from the crossover plot, the addition of octanoate resulted in a marked inhibition of both glucose formation and mitochondrial generation of phosphoenolpyruvate. The inhibitory effect of octanoate was reversed by ammonia. Results indicate that fatty acids and ammonia are potent regulatory factors of both the rate of glucose formation and the contribution of mitochondrial phosphoenolpyruvate carboxykinase to gluconeogenesis in hepatocytes of the fasted rabbit.  相似文献   

11.
Hepatocytes prepared from rats treated with dexamethasone for 2 or 3h and maintained in the presence of 10 microM-dexamethasone in the preparation and incubation buffers showed significantly elevated rates of gluconeogenesis compared with those prepared from control animals. Dexamethasone treatment also increased the sensitivity of the cells to glucagon and the catecholamines. Analysis of the concentrations of metabolites in the gluconeogenic pathway indicated that dexamethasone decreased the intracellular concentration of pyruvate and increased those of phosphoenolpyruvate, acetyl-CoA and citrate, suggesting a stimulation of the reaction(s) converting pyruvate into phosphoenolpyruvate. This was substantiated by analysis of the pattern of metabolites found in the mitochondrial compartment after digitonin fractionation of the cells. Inclusion of 3-mercaptopicolinate in the incubation enhanced the effect of the hormone on the distribution of metabolites. Thus, in the absence of an effect of the steroid at the level of phosphoenolpyruvate carboxykinase or pyruvate kinase, dexamethasone treatment still increased the formation of malate, aspartate and citrate from pyruvate, indicating a stimulation in the intact cell of pyruvate carboxylase. It is suggested that the stimulation of pyruvate carboxylase is a result of a general activation of mitochondrial function, with an increase in the intramitochondrial concentrations of acetyl-CoA and ATP, a decrease in glutamate and an enhanced intramitochondrial [ATP]/[ADP] ratio.  相似文献   

12.
Octanoate applied to rat liver mitochondria respiring with glutamate plus malate or succinate (plus rotenone) under resting-state (State 4) conditions stimulates oxygen uptake and decreases the membrane potential, both effects being sensitive to oligomycin but not to carboxyatractyloside. Octanoate also decreases the rate of pyruvate carboxylation under the same conditions, this effect being correlated with the decrease of intramitochondrial content of ATP and increase of AMP. The decrease of pyruvate carboxylation and the change of mitochondrial adenine nucleotides are both reversed by 2-oxoglutarate. Fatty acids of shorter chain length have similar effects, though at higher concentrations. Addition of octanoate in the presence of fluoride (inhibitor of pyrophosphatase) produces intramitochondrial accumulation of pyrophosphate, even under conditions when oxidation of octanoate is prevented by rotenone. In isolated hepatocytes incubated with lactate plus pyruvate, octanoate also increases oxygen uptake and produces a shift in the profile of adenine nucleotides similar to that observed in isolated mitochondria. It decreases the ‘efficiency’ of gluconeogenesis, as expressed by the ratio between an increase of glucose production and an increase of oxygen uptake upon addition of gluconeogenic substrates (lactate plus pyruvate), and increases the reduction state of mitochondrial NAD. These effects taken together are not compatible with uncoupling, but point to intramitochondrial hydrolysis of octanoyl-CoA and probably also shorter chain-length acyl-CoAs. This mechanism probably functions as a ‘safety valve’ preventing a drastic decrease of intramitochondrial free CoA under a large supply of medium- and short-chain fatty acids.  相似文献   

13.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1-34 human parathyroid hormone fragment (0.5 micrograms/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the 'crossover' plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

14.
1. The fixation of CO(2) by pyruvate carboxylase in isolated rat brain mitochondria was investigated. 2. In the presence of pyruvate, ATP, inorganic phosphate and magnesium, rat brain mitochondria fixed H(14)CO(3) (-) into tricarboxylic acid-cycle intermediates at a rate of about 250nmol/30min per mg of protein. 3. Citrate and malate were the main radioactive products with citrate containing most of the radioactivity fixed. The observed rates of H(14)CO(3) (-) fixation and citrate formation correlated with the measured activities of pyruvate carboxylase and citrate synthase in the mitochondria. 4. The carboxylation of pyruvate by the mitochondria had an apparent K(m) for pyruvate of about 0.5mm. 5. Pyruvate carboxylation was inhibited by ADP and dinitrophenol. 6. Malate, succinate, fumarate and oxaloacetate inhibited the carboxylation of pyruvate whereas glutamate stimulated it. 7. The results suggest that the metabolism of pyruvate via pyruvate carboxylase in brain mitochondria is regulated, in part, by the intramitochondrial concentrations of pyruvate, oxaloacetate and the ATP:ADP ratio.  相似文献   

15.
1. Pyruvate carboxylase is present in brown adipose tissue mitochondria. 2. In isolated mitochondria, pyruvate, bicarbonate and ATP, the substrates for pyruvate carboxylase, are able to replace added malate in supplying a condensing partner for acetyl-CoA formed from beta-oxidation of fatty acids. 3. In brown adipocytes, pyruvate and CO2 increase the rate of norepinephrine-stimulated respiration synergistically. 4. The norepinephrine-stimulated respiration in brown adipocytes is diminished when pyruvate transport into the mitochondria is inhibited. 5. Pyruvate carboxylation increases the intramitochondrial level of citric acid cycle intermediates, as shown by titrations of malonate inhibition of respiration. 6. Pyruvate carboxylation can continuously supply the mitochondria with citric acid cycle intermediates, as evidenced by its ability to maintain respiration when oxoglutarate conversion to glutamate is stimulated. 7. Pyruvate carboxylation is necessary for maximal oxygen consumption even when drainage of the citric acid cycle for amino acid synthesis is eliminated. 8. Pyruvate carboxylation explains observed effects of CO2 on respiration in brown adipocytes, and may also explain the increased glucose uptake by brown adipose tissue during thermogenesis in vivo.  相似文献   

16.
Mitochondria isolated from sea urchin embryos in early development show almost the same activities of cytochrome c oxidase and flavin-linked complex enzymes, which are estimated by cytochrome c reductases as in those isolated from unfertilized eggs. The activities of these cytochrome c reductases are inhibited by Ca2+ at above 10-5 M more strongly than cytochrome c oxidase. To investigate the changes in intramitochondrial Ca2+ concentration at fertilization, the activity of pyruvate dehydrogenase, another mitochondrial enzyme, was measured. The activity of this enzyme was controlled by phosphorylation and Ca2+-dependent dephosphorylation of the catalytic unit. The enzyme activity increased for 30 min after fertilization, decreased and became close to zero within ~60 min. Then, the activity appreciably increased again after hatching. This seems to reflect changes in the intramitochondrial Ca2+ concentration. The enzyme activity was enhanced by pre-incubation with Ca2+ at concentrations up to 10-5 M but was made quite low at above 10-4 M Ca2+ and 10-3 M adenosine triphosphate. Although the changes in pyruvate dehydrogenase activity observed at fertilization will reflect the changes in the intramitochondrial calcium concentration, the intramitochondrial Ca2+ concentration of unfertilized eggs cannot be estimated from these results because high (> 10-4 M) or low (10-6 M) Ca2+ can inhibit the enzyme. Measurement of respiration of a single egg showed that injection of ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid released the mitochondrial electron transport in the unfertilized egg. The possibility that changes in intramitochondrial calcium concentration occur at fertilization is discussed in relation to activation of both mitochondrial respiration and pyruvate dehydrogenase.  相似文献   

17.
The regulation of the pyruvate dehydrogenase multienzyme complex was investigated during alpha-adrenergic stimulation with phenylephrine in the isolated perfused rat liver. The metabolic flux through the pyruvate dehydrogenase reaction was monitored by measuring the production of 14CO2 from infused [1-14C] pyruvate. In livers from fed animals perfused with a low concentration of pyruvate (0.05 mM), phenylephrine infusion significantly inhibited the rate of pyruvate decarboxylation without affecting the amount of pyruvate dehydrogenase in its active form. Also, phenylephrine caused no significant effect on tissue NADH/NAD+ and acetyl-CoA/CoASH ratios or on the kinetics of pyruvate decarboxylation in 14CO2 washout experiments. Phenylephrine inhibition of [1-14C]pyruvate decarboxylation was, however, closely associated with a decrease in the specific radioactivity of perfusate lactate, suggesting that the pyruvate decarboxylation response simply reflected dilution of the labeled pyruvate pool due to phenylephrine-stimulated glycogenolysis. This suggestion was confirmed in additional experiments which showed that the alpha-adrenergic-mediated inhibitory effect on pyruvate decarboxylation was reduced in livers perfused with a high concentration of pyruvate (1 mM) and was absent in livers from starved rats. Thus, alpha-adrenergic agonists do not exert short term regulatory effects on pyruvate dehydrogenase in the liver. Furthermore, the results suggest either that the rat liver pyruvate dehydrogenase complex is insensitive to changes in mitochondrial calcium or that changes in intramitochondrial calcium levels as a result of alpha-adrenergic stimulation are considerably less than suggested by others.  相似文献   

18.
In the presence of 0.5 mM extracellular Ca2+ concentration both 1–34 human parathyroid hormone fragment (0.5 μg/ml) as well as 0.1 mM dibutyryl cAMP stimulated gluconeogenesis from lactate in renal tubules isolated from fed rabbits. However, these two compounds did not affect glucose synthesis from pyruvate as substrate. When 2.5 mM Ca2+ was present the stimulatory effect of the hormone fragment on gluconeogenesis from lactate was not detected but dibutyryl cAMP increased markedly the rate of glucose formation from lactate, dihydroxyacetone and glutamate, and inhibited this process from pyruvate and malate. Moreover, dibutyryl cAMP was ineffective in the presence of either 2-oxoglutarate or fructose as substrate. Similar changes in glucose formation were caused by 0.1 mM cAMP. As concluded from the ‘crossover’ plot the stimulatory effect of dibutyryl cAMP on glucose formation from lactate may result from an acceleration of pyruvate carboxylation due to an increase of intramitochondrial acetyl-CoA, while an inhibition by this compound of gluconeogenesis from pyruvate is likely due to an elevation of mitochondrial NADH/NAD+ ratio, resulting in a decrease of generation of oxaloacetate, the substrate of phosphoenolpyruvate carboxykinase. Dibutyryl cAMP decreased the conversion of fracture 1,6-bisphosphate to fructose 6-phosphate in the presence of both substrates which may be secondary to an inhibition of fructose 1,6-bisphosphatase.  相似文献   

19.
In hepatocytes isolated from fasted normal rats and incubated without albumin or gelatin, norepinephrine stimulated gluconeogenesis from fructose or dihydroxyacetone only in the absence of added calcium and from sorbitol or glycerol only in the presence of added calcium. The effects of calcium, norepinephrine, or calcium in combination with norepinephrine on the concentration of intermediary metabolites were therefore studied in hepatocytes metabolizing fructose or sorbitol as the representative oxidized or reduced substrate, respectively. With fructose as the substrate, addition of calcium increased the concentrations of lactate, pyruvate, glyceraldehyde 3-phosphate, and β-hydroxybutyrate, but decreased the concentrations of phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate, glucose 6-phosphate, malate, citrate, and α-oxoglutarate. With sorbitol as the substrate, calcium increased the concentrations of pyruvate, malate, β-hydroxybutyrate, and glucose. With either substrate, calcium caused a decrease in the lactate/ pyruvate ratio and an increase in the β-hydroxybutyrate/acetoacetate ratio, indicating the stimulation of transfer of reducing equivalents from cytosol to mitochondria. With sorbitol as the substrate, and with calcium present, norepinephrine promoted further electron transfer from cytosolic to mitochondrial NAD. Enhanced cytosolic calcium concentrations, when cells are exposed to catecholamines in the presence of medium calcium, stimulate the mitochondrial α-glycerophosphate dehydrogenase and thus the transfer of electrons between cell compartments.  相似文献   

20.
Experiments were performed to determine if catecholamines can regulate control points in the gluconeogenic pathway, such as mitochondrial pyruvate carboxylation and pyruvate kinase activity, via an alpha-adrenergic, adenosine 3':5'-monophosphate-independent mechanism. Of a number of alpha agonists tested, only norepinephrine, epinephrine, and phenylephrine caused an increase in mitochondrial pyruvate metabolism. The effects of catecholamines on pyruvate carboxylation were not attenuated by 1-propranolol which abolishes changes in cyclic nucleotide levels but were blocked by alpha antagonists such as ergotamine, phenoxybenzamine, and phentolamine. Time course experiments demonstrated that the effects of catecholamines on the mitochondria and on carbohydrate metabolism correlated temporally with the concentration of epinephrine in the medium but not with the small changes in adenosine 3':5'-monophosphate. The effects of catecholamines appeared to require extracellular Ca2+ ion. The observation that catecholamines do not increase gluconeogenesis to the same extent as glucagon was not due to a differential effect on mitochondrial CO2 fixation. Rather, catecholamines caused a smaller inhibition of pyruvate kinase activity than did glucagon. The effects of catecholamines on pyruvate kinase also appeared to be mediated by an alpha-adrenergic, adenosine 3':5'-monophosphate-independent mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号