首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《Autophagy》2013,9(12):2115-2125
Colchicine treatment is associated with an autophagic vacuolar myopathy in human patients. The presumed mechanism of colchicine-induced myotoxicity is the destabilization of the microtubule system that leads to impaired autophagosome-lysosome fusion and the accumulation of autophagic vacuoles. Using the MTOR inhibitor rapamycin we augmented colchicine’s myotoxic effect by increasing the autophagic flux; this resulted in an acute myopathy with muscle necrosis. In contrast to myonecrosis induced by cardiotoxin, myonecrosis induced by a combination of rapamycin and colchicine was associated with accumulation of autophagic substrates such as LC3-II and SQSTM1; as a result, autophagic vacuoles accumulated in the center of myofibers, where LC3-positive autophagosomes failed to colocalize with the lysosomal protein marker LAMP2. A similar pattern of central LC3 accumulation and myonecrosis is seen in human patients with colchicine myopathy, many of whom have been treated with statins (HMGCR/HMG-CoA reductase inhibitors) in addition to colchicine. In mice, cotreatment with colchicine and simvastatin also led to muscle necrosis and LC3 accumulation, suggesting that, like rapamycin, simvastatin activates autophagy. Consistent with this, treatment of mice with four different statin medications enhanced autophagic flux in skeletal muscle in vivo. Polypharmacy is a known risk factor for toxic myopathies; our data suggest that some medication combinations may simultaneously activate upstream autophagy signaling pathways while inhibiting the degradation of these newly synthesized autophagosomes, resulting in myotoxicity.  相似文献   

2.
Autophagy is a major pathway for delivery of proteins and organelles to lysosomes where they are degraded and recycled. We have previously shown excessive autophagy in a mouse model of Pompe disease (glycogen storage disease type II), a devastating myopathy caused by a deficiency of the glycogen-degrading lysosomal enzyme acid alpha-glucosidase. The autophagic buildup constituted a major pathological component in skeletal muscle and interfered with delivery of the therapeutic enzyme. To assess the role of autophagy in the pathogenesis of the human disease, we have analyzed vesicles of the lysosomal-degradative pathway in isolated single muscle fibers from Pompe patients. Human myofibers showed abundant autophagosome formation and areas of autophagic buildup of a wide range of sizes. In patients, as in the mouse model, the enormous autophagic buildup causes greater skeletal muscle damage than the enlarged, glycogenfilled lysosomes outside the autophagic regions. Clearing or preventing autophagic buildup seems, therefore, a necessary target of Pompe disease therapy.  相似文献   

3.
《Autophagy》2013,9(6):546-552
Autophagy is a major pathway for delivery of proteins and organelles to lysosomes where they are degraded and recycled. We have previously shown excessive autophagy in a mouse model of Pompe disease (glycogen storage disease type II), a devastating myopathy caused by a deficiency of the glycogen-degrading lysosomal enzyme, acid alpha-glucosidase. The autophagic buildup constituted a major pathological component in skeletal muscle and interfered with delivery of the therapeutic enzyme. To assess the role of autophagy in the pathogenesis of the human disease, we have analyzed vesicles of the lysosomal-degradative pathway in isolated single muscle fibers from Pompe patients. Human myofibers showed abundant autophagosome formation and areas of autophagic buildup of a wide range of sizes. In patients, as in the mouse model, the enormous autophagic buildup causes greater skeletal muscle damage than the enlarged, glycogen-filled lysosomes outside the autophagic regions. Clearing or preventing autophagic buildup seems, therefore, a necessary target of Pompe disease therapy.  相似文献   

4.
Members of the synaptotagmin family have been proposed to function as Ca2+ sensors in membrane fusion. Syt VII is a ubiquitously expressed synaptotagmin previously implicated in plasma membrane repair and Trypanosoma cruzi invasion, events which are mediated by the Ca2+-regulated exocytosis of lysosomes. Here, we show that embryonic fibroblasts from Syt VII-deficient mice are less susceptible to trypanosome invasion, and defective in lysosomal exocytosis and resealing after wounding. Examination of mutant mouse tissues revealed extensive fibrosis in the skin and skeletal muscle. Inflammatory myopathy, with muscle fiber invasion by leukocytes and endomysial collagen deposition, was associated with elevated creatine kinase release and progressive muscle weakness. Interestingly, similar to what is observed in human polymyositis/dermatomyositis, the mice developed a strong antinuclear antibody response, characteristic of autoimmune disorders. Thus, defective plasma membrane repair in tissues under mechanical stress may favor the development of inflammatory autoimmune disease.  相似文献   

5.
In Pompe disease, a deficiency of lysosomal acid alpha-glucosidase, intralysosomal glycogen accumulates in multiple tissues, with skeletal and cardiac muscle most severely affected.(1) Complete enzyme deficiency results in rapidly progressive infantile cardiomyopathy and skeletal muscle myopathy that is fatal within the first two years of life. Patients with partial enzyme deficiency suffer from skeletal muscle myopathy and experience shortened lifespan due to respiratory failure. The major advance has been the development of enzyme replacement therapy, which recently became available for Pompe patients. However, the effective clearance of skeletal muscle glycogen, as shown by both clinical and preclinical studies, has proven more difficult than anticipated.(2-4) Our recent work published in Annals of Neurology(5) was designed to cast light on the problem, and was an attempt to look beyond the lysosomes by analyzing the downstream events affected by the accumulation of undigested substrate in lysosomes. We have found that the cellular pathology in Pompe disease spreads to affect both endocytic (the route of the therapeutic enzyme) and autophagic (the route of glycogen) pathways, leading to excessive autophagic buildup in therapy-resistant skeletal muscle fibers of the knockout mice.  相似文献   

6.
We have previously described a specific, saturable receptor for rat collagenase-3 in the rat osteosarcoma cell line, UMR 106-01. Binding of rat collagenase-3 to this receptor is coupled to the internalization and eventual degradation of the enzyme and correlates with observed extracellular levels of the enzyme. In this study we have shown that decreased binding, internalization, and degradation of 125I-rat collagenase-3 were observed in cells after 24 h of parathyroid hormone treatment; these activities returned to control values after 48 h and were increased substantially (twice control levels) after 96 h of treatment with the hormone. Subcellular fractionation studies to identify the route of uptake and degradation of collagenase-3 localized intracellular accumulation of 125I-rat collagenase-3 initially in Golgi-associated lysosomes and later in secondary lysosomes. Maximal lysosomal accumulation of the radiolabel and stimulation of general lysosomal activity occurred after 72 h of parathyroid hormone treatment. Preventing fusion of endosomes with lysosomes (by temperature shift, colchicine, or monensin) resulted in no internalized 125I-collagenase-3 in either lysosomal fraction. Treatment of UMR cells with the above agents or ammonium chloride decreased excretion of 125I-labeled degradation products of collagenase-3. These experiments demonstrated that degradation of collagenase-3 required receptor-mediated endocytosis and sequential processing by endosomes and lysosomes. Thus, parathyroid hormone regulates the expression and synthesis of collagenase-3 as well as the abundance and functioning of the collagenase-3 receptor and the intracellular degradation of its ligand. The coordinate changes in the secretion of collagenase-3 and expression of the receptor determine the net abundance of the enzyme in the extracellular space.  相似文献   

7.
Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alpha-glucosidase, the enzyme involved in the breakdown of glycogen, is deficient or absent. Clinically the disease manifests as a cardiac and skeletal muscle myopathy. The current enzyme replacement therapy (ERT) clears lysosomal glycogen effectively from the heart but less so from skeletal muscle. In our Pompe model, the poor muscle response to therapy is associated with the presence of pools of autophagic debris. To clear the fibers of the autophagic debris, we have generated a Pompe model in which an autophagy gene, Atg7, is inactivated in muscle. Suppression of autophagy alone reduced the glycogen level by 50–60%. Following ERT, muscle glycogen was reduced to normal levels, an outcome not observed in Pompe mice with genetically intact autophagy. The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbed autophagy.Key words: Pompe disease, lysosomal glycogen storage, myopathy, Atg7, enzyme replacement therapy  相似文献   

8.
9.
The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcεRI) expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcεRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcεRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment.  相似文献   

10.
Rapid plasma membrane resealing is essential for cellular survival. Earlier studies showed that plasma membrane repair requires Ca2+-dependent exocytosis of lysosomes and a rapid form of endocytosis that removes membrane lesions. However, the functional relationship between lysosomal exocytosis and the rapid endocytosis that follows membrane injury is unknown. In this study, we show that the lysosomal enzyme acid sphingomyelinase (ASM) is released extracellularly when cells are wounded in the presence of Ca2+. ASM-deficient cells, including human cells from Niemann-Pick type A (NPA) patients, undergo lysosomal exocytosis after wounding but are defective in injury-dependent endocytosis and plasma membrane repair. Exogenously added recombinant human ASM restores endocytosis and resealing in ASM-depleted cells, suggesting that conversion of plasma membrane sphingomyelin to ceramide by this lysosomal enzyme promotes lesion internalization. These findings reveal a molecular mechanism for restoration of plasma membrane integrity through exocytosis of lysosomes and identify defective plasma membrane repair as a possible component of the severe pathology observed in NPA patients.  相似文献   

11.
《Autophagy》2013,9(8):1078-1089
Autophagy, an intracellular system for delivering portions of cytoplasm and damaged organelles to lysosomes for degradation/recycling, plays a role in many physiological processes and is disturbed in many diseases. We recently provided evidence for the role of autophagy in Pompe disease, a lysosomal storage disorder in which acid alphaglucosidase, the enzyme involved in the breakdown of glycogen, is deficient or absent. Clinically the disease manifests as a cardiac and skeletal muscle myopathy. The current enzyme replacement therapy (ERT) clears lysosomal glycogen effectively from the heart but less so from skeletal muscle. In our Pompe model, the poor muscle response to therapy is associated with the presence of pools of autophagic debris. To clear the fibers of the autophagic debris, we have generated a Pompe model in which an autophagy gene, Atg7, is inactivated in muscle. Suppression of autophagy alone reduced the glycogen level by 50–60%. Following ERT, muscle glycogen was reduced to normal levels, an outcome not observed in Pompe mice with genetically intact autophagy. The suppression of autophagy, which has proven successful in the Pompe model, is a novel therapeutic approach that may be useful in other diseases with disturbed autophagy.  相似文献   

12.
13.
Autophagic response to strenuous exercise in mouse skeletal muscle fibers   总被引:3,自引:0,他引:3  
Strenuous physical exercise induces necrosis of skeletal muscle fibers and increases lysosomal enzyme activities in surviving muscle fibers. This study examines the ultrastructural basis of the stimulation of the lysosomal system in mouse vastus medialis muscle during the appearance and repair of exercise-induced (9 h of running) injuries. Necrotic fibers appeared the day after exercise and an inflammatory response with the replacement of necrotic fibers by phagocytes was highest 2-3 days after exertion. Ultrastructural study of surviving muscle fibers revealed numerous autophagic vacuoles, residual bodies, and spheromembranous structures at the periphery of myofibers, especially in fibers adjacent to necrotic fibers. The autophagic response was most prominent between 2 and 7 days after exertion. Autophagic vacuoles with double or single limiting membranes contained mitochondria at various stages of degradation. Vacuolar and multilamellar structures were also observed in regenerating muscle fibers. The structure of injured skeletal muscle fibers returned to normal within 2 weeks. It is proposed that increased autophagic activity could be related to the breakdown of cellular constituents of surviving muscle fibers to provide structural elements for regenerating muscle fibers.  相似文献   

14.
Receptor internalization is recognized as an important mechanism for rapidly regulating cell surface numbers of receptors. However, there are conflicting results on the existence of rapid endocytosis of gamma-aminobutyric acid, type B (GABAB) receptors. Therefore, we analyzed internalization of GABAB receptors expressed in HEK 293 cells qualitatively and quantitatively using immunocytochemical, cell surface enzyme-linked immunosorbent assay, and biotinylation methods. The data indicate the existence of rapid constitutive receptor internalization, with the first endocytosed receptors being observed in proximity of the plasma membrane after 10 min. After 120 min, a loss of about 40-50% of cell surface receptors was detected. Stimulation of GABAB receptors with GABA or baclofen did not enhance endocytosis of receptors, indicating the lack of agonist-induced internalization. The data suggest that GABAB receptors were endocytosed via the classical dynamin- and clathrin-dependent pathway and accumulated in an endosomal sorting compartment before being targeted to lysosomes for degradation. No evidence for recycling of receptors back to the cell surface was found. In conclusion, the results indicate the presence of constitutive internalization of GABAB receptors via clathrin-coated pits, which resulted in lysosomal degradation of the receptors.  相似文献   

15.
The dynamics of the guanylate cyclase receptor of atrial natriuretic factor (GCA-ANF receptor) were investigated in cultured glomerular mesangial and renomedullary interstitial cells from the rat. In these cells, the GCA-ANF receptor did not mediate internalization and lysosomal hydrolysis of 125I-ANF1-28 and did not undergo ligand-induced endocytosis. Glomerular mesangial cells were able, however, to mediate internalization and lysosomal hydrolysis of 125I-ANF1-28 via clearance ANF (C-ANF) receptors and to promote rapid receptor-mediated internalization and lysosomal hydrolysis of 125I-(Sar1) angiotensin II. Radioligand specifically bound to surface GCA-ANF receptors was rapidly dissociated at 37 degrees C (k(off) greater than 0.8 min-1), with a Q10(30-37 degrees C) greater than 6. The dissociation was markedly slower at subphysiological temperatures (Q10(4-30 degrees C), 2-3) or in the presence of 0.5 mM amiloride. The results demonstrate that the GCA-ANF receptor, contrary to C-ANF receptors and most other polypeptide hormone receptors, is a membrane resident protein that does not mediate internalization and lysosomal hydrolysis of ligand. The termination of the interaction of ANF with GCA-ANF receptors results from a physiological process that leads to rapid dissociation of receptor-ligand complexes. The unique dynamics of GCA-ANF receptor-ligand complexes are likely to contribute importantly to stimulus-response homeostasis of ANF.  相似文献   

16.
Lysosomes play a central role in the degradation of proteins and other macromolecules. The mechanisms by which receptors are transferred to lysosomes for constitutive degradation are poorly understood. We have analyzed the processes that lead to the lysosomal delivery of the Fc receptor, FcRn. These studies provide support for a novel pathway for receptor delivery. Specifically, unlike other receptors that enter intraluminal vesicles in late endosomes, FcRn is transferred from the limiting membrane of such endosomes to lysosomes, and is rapidly internalized into the lysosomal lumen. By contrast, LAMP-1 persists on the limiting membrane. Receptor transfer is mediated by tubular extensions from late endosomes to lysosomes, or by interactions of the two participating organelles in kiss-and-linger-like processes, whereas full fusion is rarely observed. The persistence of FcRn on the late endosomal limiting membrane, together with selective transfer to lysosomes, allows this receptor to undergo recycling or degradation. Consequently, late endosomes have functional plasticity, consistent with the presence of the Rab5 GTPase in discrete domains on these compartments.  相似文献   

17.
We investigated the effects of (dihydro)cytochalasin B, colchicine, monensin and trifluoperazine on uptake and processing of large unilamellar liposomes by rat Kupffer cells in maintenance culture. The phospholipid vesicles were labeled in the lipid moiety with phosphatidyl[14C]choline and contained [3H]inulin or [125I]iodoalbumin as nondegradable and degradable markers of the aqueous vesicle content, respectively. Cytochalasin B and dihydrocytochalasin B, inhibitors of microfilament function, reduced inert inulin label uptake by 75% maximally, but residual uptake was not followed by release of lipid degradation products from the cells. By contrast, colchicine, an inhibitor of microtubule assembly, reduced uptake of liposomal inulin by maximally 55% but could not inhibit release of lipid degradation products from the cells. It is concluded that the cytochalasins partly inhibit uptake but fully prevent the arrival of internalized liposomes in the lysosomal compartment, while the action of colchicine is to slow down the overall process of uptake and subsequent transportation to the lysosomes. Monensin reduced inulin uptake to an extent similar to that found with colchicine, but reversibly blocked degradation of liposomal lipid and encapsulated protein. The kinetics of degradation of liposomal constituents suggests that residual uptake in the presence of monensin represents accumulation in an intracellular compartment. Trifluoperazine did not affect binding, internalization or degradation of encapsulated protein at low concentration (6 microM), but completely inhibited release of liposomal lipid degradation products under these conditions. At intermediate concentration (14 microM), the drug also reduced the internalization, while a high concentration (22 microM) was required to inhibit protein degradation as well. We conclude that trifluoperazine has multiple sites of action in the uptake and processing of liposomal constituents by Kupffer cells.  相似文献   

18.
Trafficking of the TrkA receptor after stimulation by NGF is of emerging importance in structural cells in the context of airway inflammatory diseases. We have recently reported the expression of functional TrkA receptors in human airway smooth muscle cells (HASMC). We have here studied the TrkA trafficking mechanisms in these cells. TrkA disappearance from the cell membrane was induced within 5 min of NGF (3pM) stimulation. Co-immunoprecipitation of clathrin-TrkA was revealed, and TrkA internalisation inhibited either by clathrin inhibitors or by siRNA inducing downregulation of endogenous clathrin. TrkA internalised receptors were totally degraded in lysosomes, with no recycling phenomenon. Newly synthesized TrkA receptors were thereafter re-expressed at the cell membrane within 10 h. TrkA re-synthesis was inhibited by blockade of clathrin-dependent internalisation, but not of TrkA receptors lysosomal degradation. Finally, we observed that NGF multiple stimulations progressively increased TrkA expression in HASMC, which was associated with an increase in NGF/TrkA-dependent proliferation. In conclusion, we show here the occurrence of clathrin-dependent TrkA internalisation and lysosomal degradation in the airway smooth muscle, followed by upregulated re-synthesis of functional TrkA receptors and increased proliferative effect in the human airway smooth muscle. This may have pathophysiological consequences in airway inflammatory diseases.  相似文献   

19.
Neuraminidase 1 is a negative regulator of lysosomal exocytosis   总被引:1,自引:0,他引:1  
Lysosomal exocytosis is a Ca2+-regulated mechanism that involves proteins responsible for cytoskeletal attachment and fusion of lysosomes with the plasma membrane. However, whether luminal lysosomal enzymes contribute to this process remains unknown. Here we show that neuraminidase NEU1 negatively regulates lysosomal exocytosis in hematopoietic cells by processing the sialic acids on the lysosomal membrane protein LAMP-1. In macrophages from NEU1-deficient mice, a model of the disease sialidosis, and in patients' fibroblasts, oversialylated LAMP-1 enhances lysosomal exocytosis. Silencing of LAMP-1 reverts this phenotype by interfering with the docking of lysosomes at the plasma membrane. In neu1-/- mice the excessive exocytosis of serine proteases in the bone niche leads to inactivation of extracellular serpins, premature degradation of VCAM-1, and loss of bone marrow retention. Our findings uncover an unexpected mechanism influencing lysosomal exocytosis and argue that exacerbations of this process form the basis for certain genetic diseases.  相似文献   

20.
《Autophagy》2013,9(4):318-320
In Pompe disease, a deficiency of lysosomal acid alpha-glucosidase, intralysosomal glycogen accumulates in multiple tissues, with skeletal and cardiac muscle most severely affected.1 Complete enzyme deficiency results in rapidly progressive infantile cardiomyopathy and skeletal muscle myopathy that is fatal within the first two years of life. Patients with partial enzyme deficiency suffer from skeletal muscle myopathy and experience shortened lifespan due to respiratory failure. The major advance has been the development of enzyme replacement therapy, which recently became available for Pompe patients. However, the effective clearance of skeletal muscle glycogen, as shown by both clinical and pre-clinical studies, has proven more difficult than anticipated.2-4 The work published in Annals of Neurology5 was designed to cast light on the problem, and was an attempt to look beyond the lysosomes by analyzing the downstream events affected by the accumulation of undigested substrate in lysosomes. We have found thatthe cellular pathology in Pompe disease spreads to affect both endocytic (the route of the therapeutic enzyme) and autophagic (the route of glycogen) pathways, leading to excessive autophagic buildup in therapy-resistant skeletal muscle fibers of the knockout mice.

Addendum to:

Dysfunction of Endocytic and Autophagic Pathways in a Lysosomal Storage Disease

Tokiko Fukuda, Lindsay Ewan, Martina Bauer, Robert J. Mattaliano, Kristien Zaal,Evelyn Ralston, Paul H. Plotz and Nina Raben

Ann Neurol 2006; 59:700-8  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号