首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel approach to measuring receptor-stimulated phosphoinositide hydrolysis was developed based on the principles of immobilized metal ion affinity chromatography (IMAC) and scintillation proximity assay (SPA). Hard Lewis metal ions, such as Zr(4+), Ga(3+), Al(3+), Fe(3+), Lu(3+), and Sc(3+), were immobilized on SPA beads via metal chelate and utilized as affinity ligands to entrap inositol phosphates. [3H]Inositol phosphates bound to IMAC-SPA beads through the strong interaction of their phosphate group with the immobilized metal ions. The binding brought [3H]inositol phosphates in close proximity to the scintillant embedded in the SPA beads, thereby allowing the radioactivity to be quantified. Quantification of [3H]inositol phosphate production in cells preincubated with [3H]inositol provided a highly sensitive measurement of phosphoinositide hydrolysis. The utility of this approach was demonstrated in measuring the response mediated by the G-protein-coupled neurokinin NK1 receptor and the tyrosine kinase-linked platelet-derived growth factor (PDGF) receptor. Substance P stimulated phosphoinositide hydrolysis concentration-dependently in CHO cells expressing NK1 receptors with a maximal 12-fold increase in inositol phosphate production. Similarly, PDGF-BB stimulated a 5-fold increase in phosphoinositide hydrolysis in quiescent Swiss 3T3 cells. This new approach is highly sensitive, fast, simple, easily performed on 96-well plates, and amenable for high-throughput screening.  相似文献   

2.
The relative capacities of muscarinic cholinergic receptor (MR) and bradykinin (BK)-receptor activation to increase phosphoinositide hydrolysis and to increase cytosolic Ca2+ were compared in NG108-15 neuroblastoma x glioma and 1321N1 human astrocytoma cells. In 1321N1 cells, the muscarinic cholinergic agonist carbachol and BK each stimulated a concentration-dependent accumulation of inositol phosphates (K0.5 approximately 10 microM and approximately 10 nM respectively) and a rapid increase in cytosolic Ca2+ as determined by quin2 fluorescence. In NG108-15 cells, BK alone stimulated a pertussis-toxin-insensitive accumulation of inositol phosphates (K0.5 approximately 10 nM) under conditions in which pertussis toxin completely inhibited MR-mediated inhibition of adenylate cyclase. BK also stimulated a rapid increase in cytosolic Ca2+ in NG108-15 cells. In contrast, no MR-mediated increase in phosphoinositide hydrolysis or change in cytosolic Ca2+ concentration was observed in NG108-15 cells. These results support the idea that MR selectively interact with either the cyclic AMP or the inositol phosphate second-messenger systems.  相似文献   

3.
In the presence of ouabain, prostaglandin (PG) E2 stimulated a gradual secretion of catecholamines from cultured bovine adrenal chromaffin cells. PGE2 or ouabain alone evoked a marginal secretory response. The synergism of ouabain was also observed with muscarine. PGE2, like muscarine, induced a concentration-dependent formation of inositol phosphates: rapid rises in inositol trisphosphate and inositol bisphosphate followed by a slower accumulation of inositol monophosphate. This effect on phosphoinositide metabolism was accompanied by an increase in cytosolic free Ca2+. The potency of PGs (PGE2 greater than PGF2 alpha greater than PGD2) to stimulate catecholamine release was well correlated with that to affect phosphoinositide metabolism and that to increase the level of intracellular Ca2+. PGE2 did not stimulate cAMP generation significantly in bovine chromaffin cells. The effect of PGE2 on catecholamine release was mimicked by 12-O-tetradecanoylphorbol 13-acetate and A23187, but not by the cAMP analogue dibutyryl cAMP nor by forskolin. These results indicate that PGE2 may enhance catecholamine release from chromaffin cells by activating protein kinase C in concert with the increment of intracellular Ca2+.  相似文献   

4.
Cyclic AMP inhibition of phosphoinositide turnover in human neutrophils   总被引:10,自引:0,他引:10  
The effect of increased intracellular levels of cyclic AMP on phosphoinositide metabolism was studied in human neutrophils stimulated with fMet-Leu-Phe. Intracellular cyclic AMP was raised by preincubation either with dibutyryl cyclic AMP and theophylline or with prostaglandin E1. Concentrations of dibutyryl cyclic AMP and theophylline fully inhibitory for the metabolic responses inhibited phosphoinositide breakdown and phosphatidic acid formation to a large extent. The accumulation of the water-soluble inositol phosphates was also measured. In agreement with the data obtained on the phospholipids, inositol phosphate generation was found to be severely, though not completely, reduced. Treatment with dibutyryl cyclic AMP and theophylline also inhibited resynthesis of membrane inositol lipids. Treatment with prostaglandin E1 had a similar, though less, marked effect on inositol lipid turnover, which was parallel with a smaller inhibition of metabolic responses. We therefore suggest that the elevation of intracellular cyclic AMP mainly affects neutrophil responses by inhibiting the phosphoinositide cycle.  相似文献   

5.
The involvement of phosphoinositide hydrolysis in the action of oxytocin and vasopressin on the uterus was investigated in gestational myometrium and decidua cells by measuring the production of inositol phosphates. Both peptides stimulated a dose related increase in all three inositol phosphates in myometrium. This may be related to the control of sarcoplasmic Ca++ levels in the myometrium. Oxytocin and vasopressin also stimulated inositol 1-phosphate (IP) production in decidua cells. The hydrolysis of phosphatidylinositol by decidua homogenates exhibited a precursor-product relationship for diacylglycerol and arachidonic acid accumulation. Hence both peptides may mobilise free arachidonic acid, for prostaglandin biosynthesis, from decidua cell phosphoinositides by the sequential action of phospholipase C and diacylglycerol lipase.  相似文献   

6.
Parathyroid hormone (PTH) and prostaglandin E2 (PGE2) are physiological agonists which stimulate bone cells to resorb bone, a process by which the mineralized extracellular bone matrix is dissolved. Bone resorption has a key role in the maintenance of plasma calcium levels. It has been established that both PTH and PGE2 activate adenylate cyclase in osteoblasts, but it is apparent that (1) the two agents have qualitatively different effects on osteoblasts, and (2) the generation of cyclic AMP cannot account for all the effects of PTH on bone cell metabolism. Others have demonstrated that PTH and PGE2 may also elevate intracellular calcium levels, but the mechanism by which this is achieved has not been fully defined. Here we have investigated the effects of PTH on neonatal mouse osteoblasts in culture and shown that physiological concentrations of the hormone (50 nM) caused a small increase (22%) in total inositol phosphates accumulation, with a larger increase (40%) in inositol trisphosphate. We found that this activation occurred at lower concentration than was necessary to activate adenylate cyclase. PGE2 was a more effective activator of inositol phosphates accumulation than PTH, causing up to 300% increase in the total inositol phosphates after 30 min. Both PTH and PGE2 stimulated cyclic AMP accumulation, but the activation of adenylate cyclase by forskolin did not enhance inositol phosphates production. We conclude that both PTH and PGE2 stimulate phosphoinositide turnover in mouse osteoblasts and suggest that this mechanism may contribute to their elevation of intracellular calcium in bone cells.  相似文献   

7.
Schistosoma mansoni: characterization of phosphoinositide response.   总被引:1,自引:0,他引:1  
Signal transduction pathways may have important regulatory roles in cellular events in the human parasite Schistosoma mansoni. The presence of the phosphoinositide response in S. mansoni was examined by radiolabeling intact worms with 20 muCi of [3H]myoinositol for 24 hr and stimulating parasites with 25 mM NaF and 10 microM AlCl3 in the presence of 10 mM LiCl. Total inositol phosphates were increased within 2 min and maximal accumulation was achieved after 30 min. Similar results were seen with the non-hydrolyzable GTP analogues GTP gamma S and GppNHp while only minimal changes were detected with GMP. Neomycin inhibited NaF-induced inositol phosphate production. NaF stimulated a significant 3.6-fold increase of inositol phosphates in females compared to males. These data suggest that stimulation of guanine nucleotide-binding regulatory proteins activates phospholipase C resulting in production of inositol phosphates in S. mansoni.  相似文献   

8.
The polyphosphoinositides, PIP and PIP2, have been proposed to regulate actin polymerization in vivo because they dissociate actin/gelsolin complexes in vitro. We tested this hypothesis by comparing the ability of EGF and bradykinin to affect PI metabolism and the actin cytoskeleton in A431 cells. EGF, but not bradykinin, was found to induce ruffling and dissociation of actin/gelsolin complexes in these cells. However, both EGF and bradykinin stimulated the accumulation of inositol phosphates in [3H]inositol-labeled cells indicating that stimulation of PI turnover is not sufficient for the induction of changes in actin/gelsolin complex levels. EGF stimulated a twofold increase in the level of PIP in A431 cells. Other phosphoinositide levels were not markedly altered. Treatment of the cells with cholera toxin abrogated the EGF-induced rise in PIP levels without altering the dissociation of actin from gelsolin. These data indicate that increases in PIP and/or PIP2 are not necessary for dissociation of actin/gelsolin complexes. Overall, these experiments suggest that in A431 cells, the effects of EGF on the actin cytoskeleton are unlikely to be mediated through changes in PIP or PIP2 levels.  相似文献   

9.
Previous studies have indicated the existence of two separate pools of phosphoinositides in WRK-1 cells; one is labile and hormone-sensitive with respect to turnover, while the other is stable. Hormonal stimulation results in a rapid increase in 32Pi incorporation into the sensitive pool, while in the absence of hormone, incorporation of 32Pi into this pool is slow. Results are quite different when [3H]inositol is the precursor utilized. Incorporation of [3H]inositol into hormone-sensitive phosphoinositides is not stimulated in the presence of hormone, suggesting entry of this exogenous precursor into the cycle by a route other than the resynthetic phase of the cycle. Furthermore, failure of hormone to induce loss of [3H]phosphoinositide in pulse-chase experiments in the absence of lithium suggests reutilization of the [3H]inositol moiety generated by phosphodiesteratic cleavage of hormone-sensitive phosphoinositide. Time course studies indicate that the relative rates of incorporation of [3H]inositol into sensitive and insensitive phosphoinositide remain constant from 2 to 24 h. Several factors are capable of increasing [3H]inositol incorporation into hormone-insensitive phosphoinositide including vasopressin, calcium ionophores, and manganese. On the other hand, vasopressin treatment appears to decrease incorporation of [3H]inositol into the hormone-sensitive pool, probably by shifting the equilibrium between phosphoinositides and inositol phosphates, since the decrease in radioactivity observed in the phosphoinositides is equaled by the increase observed in that in the inositol phosphates.  相似文献   

10.
The effects of atrial natriuretic factor (ANF) on phosphoinositide hydrolysis were examined in preparations of cultured bovine aortic smooth muscle cells. In homogenates or particulate fractions from cultured bovine aortic smooth muscle cells, ANF and atriopeptin I increased the formation of inositol phosphates and GTPase activity. The effects on inositol phosphates were markedly enhanced with guanosine 5'[gamma-thio]triphosphate. Both atrial peptides also stimulated the formation of diacylglycerol in intact cultured cells. In these experiments, atriopeptin I was about 10-fold more potent than ANF. These studies indicate that atrial peptides have stimulatory effects on phosphoinositide hydrolysis which are mediated through a guanine nucleotide regulatory protein. The greater potency of atriopeptin I on GTPase activity and the accumulation of inositol phosphates suggests that the nonguanylate cyclase-coupled receptor for ANF (ANF-R2) mediates the stimulatory effects of ANF on phosphoinositide hydrolysis through a guanine nucleotide regulatory protein.  相似文献   

11.
In order to elucidate the role of guanine-nucleotide-binding proteins (G-proteins) in endothelial prostacyclin (PGI2) production, human umbilical vein endothelial cells, prelabelled with either [3H]inositol or [3H]arachidonic acid, were stimulated with the non-specific G-protein activator aluminium fluoride (AlF4-). AlF4- caused a dose- and time-dependent generation of inositol phosphates, release of arachidonic acid and production of PGI2. The curves for the three events were similar. When the cells were stimulated in low extracellular calcium (60 nM), they released [3H]arachidonic acid and produced PGI2, but depleting the intracellular Ca2+ stores by pretreatment with the Ca2+ ionophore A23187 totally inhibited both events, although the cells still responded when extracellular Ca2+ was added. The Ca2+ ionophore did not inhibit the generation of inositol phosphates in cells maintained at low extracellular Ca2+. Pertussis toxin pretreatment (14 h) altered neither inositol phosphate nor PGI2 production in response to AlF4-. To investigate the functional role of the diacylglycerol/protein kinase C arm of the phosphoinositide system, the cells were pretreated with the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate (TPA) or the protein kinase C inhibitor 1-(5-isoquinolinylsulphonyl)-2-methylpiperazine (H7). TPA inhibited the AlF4(-)-induced inositol phosphate generation but stimulated both the release of arachidonic acid and the production of PGI2. H7 had opposite effects both on inositol phosphate generation and on PGI2 production. These results suggest that AlF4(-)-induced PGI2 production is mediated by a pertussis-toxin-insensitive G-protein which activates the phosphoinositide second messenger system. This production of PGI2 can be modulated by protein kinase C activation, both at the level of inositol phosphate generation and at the level of arachidonic acid release.  相似文献   

12.
We have investigated the effect of angiotensin II, bradykinin, insulin and insulin-like growth factor I on phosphoinositide turnover in intact rat glomeruli and tubules. Angiotensin II produced a dose-dependent increase in inositol monophosphate formation with an IC50 of 10(-7)M, when added to isolated rat glomeruli. Angiotensin II-stimulated inositol phosphates formation was inhibited by the angiotensin receptor antagonist [Sar-Leu8]angiotensin II, indicating that the above response was mediated through activation of an angiotensin receptor in intact glomeruli. Besides angiotensin, in intact glomeruli, only bradykinin stimulated a phosphoinositide response, while in intact proximal tubules, none of the agonists tested produced an activation of the inositol phosphate formation. Angiotensin II- and bradykinin-stimulated inositol phosphate accumulation in intact glomeruli was inhibited by phorbol myristate acetate, an activator of protein kinase C.  相似文献   

13.
Human T lymphocytes stimulated with phytohaemagglutinin undergo a single round of cell division. Further proliferation is dependent on the lymphokine interleukin-2 (IL2) [(1987) Immunology 60, 7-12]. We show here that binding of IL2 to its receptors on the lymphocyte surface triggers the generation of cyclic AMP. In contrast, generation of inositol phosphates from the breakdown of inositol lipids was not detected. We suggest that cyclic AMP may play a role in the transduction of the IL2 proliferative signal in T lymphocytes.  相似文献   

14.
S Marc  D Leiber    S Harbon 《The Biochemical journal》1988,255(2):705-713
1. In the intact guinea-pig myometrium, carbachol and oxytocin stimulated a specific receptor-mediated phospholipase C activation, catalysing the breakdown of PtdIns(4,5)P2 with the sequential generation of InsP3, InsP2 and InsP. Stimulation of muscarinic receptors also triggered an inhibition of cyclic AMP accumulation caused by prostacyclin. 2. NaF plus AlCl3 mimicked the effects of carbachol and oxytocin by inducing, in a dose-dependent manner, the generation of all three inositol phosphates as well as uterine contractions. AlCl3 enhanced the fluoride effect, supporting the concept that A1F4- was the active species. Under similar conditions, fluoroaluminates activated the guanine nucleotide regulatory protein Gi, reproducing the inhibitory effect of carbachol on cyclic AMP concentrations. 3. Both carbachol- and oxytocin-mediated increases in inositol phosphates, as well as contractions, were insensitive to pertussis toxin, under conditions where the expression of Gi was totally prevented. Cholera toxin, which activates Gs and enhances cyclic AMP accumulation, failed to affect basal or oxytocin-evoked inositol phosphate generation, but induced a slight, though consistent, attenuation of the muscarinic inositol phosphate response, which was similarly evoked by forskolin. 4. The data provide evidence that, in the myometrium, (a) a G protein mediates the generation of inositol phosphates and the Ca2+-dependent contractile event, (b) the relevant G protein that most probably couples muscarinic and oxytocin receptors to phospholipase C is different from Gi and Gs, the proteins that couple receptors to adenylate cyclase, and (c) cyclic AMP does not seem to control the phosphoinositide cycle, but rather exerts a negative regulation at the muscarinic-receptor level.  相似文献   

15.
NK cells mediate both direct cytotoxicity against a variety of tumor cells and indirect (FcR-dependent) cytotoxicity against antibody-coated targets. When cloned human NK cells (CD16+/CD3-) were exposed to NK-sensitive targets for 30 min, the level of inositol phosphates rose two to five times above background. The rise in inositol phosphates induced by NK-sensitive targets was paralleled by an increase in intracellular free calcium concentration ([Ca2+]i). A panel of tumor cells that were resistant to NK cell lysis did not stimulate significant levels of inositol phosphate production and did not induce an elevation of intracellular free calcium. Ligation of the FcR (CD16) with the mAb 3G8 also triggered phosphoinositide turnover. Kinetic experiments demonstrated that stimulation by either susceptible target cells or by FcR ligation led to rapid (less than 1 min) generation of the Ca2+-mobilizing second messenger, inositol trisphosphate, with slower accumulation of inositol bisphosphate and inositol monophosphate. Previous studies have demonstrated that activation of the cAMP-dependent second messenger pathway strongly inhibits NK cell-mediated cytotoxic functions. Treatment of NK effector cells with forskolin to elevate intracellular cAMP levels resulted in a concentration-dependent inhibition of phosphoinositide hydrolysis induced by both NK-sensitive targets and 3G8-mediated FcR ligation. These results suggest that phosphoinositide turnover represents a critical early event in the human NK cell cytolytic process. Moreover, the potent inhibitory effect of cAMP on NK cell cytotoxicity may be explained by the uncoupling of NK receptors from phospholipase C-mediated phosphoinositide hydrolysis.  相似文献   

16.
The biochemical pathways through which tumor cell locomotion is mediated are poorly understood. Autocrine motility factor (AMF), which is produced by and stimulates motility in A2058 human melanoma cells, was used to characterize phosphoinositide (PtdIns) metabolism activated in association with tumor cell motility. AMF stimulated up to a 400% increase in de novo incorporation of 3H-myo-inositol into cellular lipids beginning 40 minutes after exposure. In cells prelabeled with 3H-myo-inositol, AMF stimulated a 200% increase in total inositol phosphates (inositol monophosphate, InsP1; inositol bisphosphate, InsP2; inositol trisphosphate, InsP3) after 90 minutes of exposure, with a 300% maximal increase in InsP3 at 120 minutes. InsP1 and InsP2 were maximally increased 130% of control values. Treatment with AMF stimulated a parallel dose-dependent increase in both motility and PtdIns levels. We have shown previously that the A2058 motile response to AMF is inhibited markedly by cell pretreatment with pertussis toxin (PT). Inositol phosphate production was inhibited by a 2-hour pretreatment of cells with PT (0.5 microgram/ml). PT treatment of A2058 membranes was associated with ADP-ribosylation of a 40-kDa protein consistent with the presence of an alpha subunit of a guanine nucleotide-binding protein (G protein). These data indicate that AMF elicits increases in cell motility and phosphoinositide metabolism via a PT-sensitive G protein signal transduction pathway.  相似文献   

17.
Normal human diploid fibroblasts (WS-1 cells) were growth-arrested under serum-free conditions for 48 hr. The addition of fetal bovine serum (10% final concentration) to these cells stimulated [3H]-thymidine incorporation into DNA and phosphoinositide breakdown over nine-fold. Thrombin, at concentrations above 0.1 unit/ml (u/ml), was also effective at stimulating DNA synthesis and phosphoinositide breakdown as well as causing a rise in intracellular pH. In contrast, the peptide bombesin (concentrations ranging from 1 nM to 100 nM) stimulated phosphoinositide breakdown but did not enhance DNA synthesis or cause an increase in cytoplasmic pH. The time course of accumulation of inositol phosphates differed in response to these agents. The thrombin effect peaked rapidly and leveled off after 5 min while the bombesin effect showed a constant increase for 30 min. Serum showed an intermediate response. The different rates of inositol phosphate accumulation observed with the two growth factors is viewed as representing a difference in the mechanism of phosphoinositide turnover. The relationship between the difference in phosphoinositide turnover and the initiation of DNA synthesis is also discussed.  相似文献   

18.
C6 rat glioma cells persistently infected with subacute sclerosing panencephalitis virus (C6/SSPE) were treated with measles antiserum and purified anti-measles IgG. This stimulated phosphoinositide breakdown and an increase in inositol phosphates. In uninfected C6 cells, however, only fetal calf serum (FCS), but not measles antiserum could induce inositol polyphosphate production.  相似文献   

19.
Stimulation of cultured rabbit aortic vascular smooth muscle cells (VSMC) with serotonin (5HT) induced a rapid generation of inositol phosphates from receptor-mediated hydrolysis of inositol phospholipids. Pretreatment of these cells with 500ng/ml of pertussis toxin for 24h prior to addition of 5HT reduced 5HT-induced formation of inositol phosphates. Phorbol esters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA) or phorbol-12,13-dibutyrate (PDBu), are known to activate protein kinase C (PKC), but their role on cultured VSMC stimulated by 5HT has not been defined. TPA exhibited a rapid inhibition of 5HT-stimulated phosphoinositide breakdown, although 4 alpha-phorbol-12,13-didecanoate (4 alpha PDD), an inactive phorbol ester, did not inhibit it. These data suggest that a guanine nucleotide inhibitory (Gi) protein couples 5HT receptor to phospholipase C and TPA modulates 5HT-stimulated hydrolysis of inositol phospholipids in cultured VSMC through activation of PKC.  相似文献   

20.
Highly purified platelet-derived growth factor (PDGF) or recombinant PDGF stimulate DNA synthesis in quiescent Swiss 3T3 cells. The dose-response curves for the natural and recombinant factors were similar, with half-maximal responses at 2-3 ng/ml and maximal responses at approx. 10 ng/ml. Over this dose range, both natural and recombinant PDGF stimulated a pronounced accumulation of [3H]inositol phosphates in cells labelled for 72 h with [3H]inositol. In addition, mitogenic concentrations of PDGF stimulated the release of 45Ca2+ from cells prelabelled with the radioisotope. However, in comparison with the response to the peptide mitogens bombesin and vasopressin, a pronounced lag was evident in both the generation of inositol phosphates and the stimulation of 45Ca2+ efflux in response to PDGF. Furthermore, although the bombesin-stimulated efflux of 45Ca2+ was independent of extracellular Ca2+, the PDGF-stimulated efflux was markedly inhibited by chelation of external Ca2+ by using EGTA. Neither the stimulation of formation of inositol phosphates nor the stimulation of 45Ca2+ efflux in response to PDGF were affected by tumour-promoting phorbol esters such as 12-O-tetradecanoylphorbol 13-acetate (TPA). In contrast, TPA inhibited phosphoinositide hydrolysis and 45Ca2+ efflux stimulated by either bombesin or vasopressin. Furthermore, whereas formation of inositol phosphates in response to both vasopressin and bombesin was increased in cells in which protein kinase C had been down-modulated by prolonged exposure to phorbol esters, the response to PDGF was decreased in these cells. These results suggest that, in Swiss 3T3 cells, PDGF receptors are coupled to phosphoinositidase activation by a mechanism that does not exhibit protein kinase C-mediated negative-feedback control and which appears to be fundamentally different from the coupling mechanism utilized by the receptors for bombesin and vasopressin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号