首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro-constructed heteroduplex DNAs with defined mismatches were corrected in Saccharomyces cerevisiae cells with efficiencies that were dependent on the mismatch. Single-nucleotide loops were repaired very efficiently; the base/base mismatches G/T, A/C, G/G, A/G, G/A, A/A, T/T, T/C, and C/T were repaired with a high to intermediate efficiency. The mismatch C/C and a 38-nucleotide loop were corrected with low efficiency. This substrate specificity pattern resembles that found in Escherichia coli and Streptococcus pneumoniae, suggesting an evolutionary relationship of DNA mismatch repair in pro- and eucaryotes. Repair of the listed mismatches was severely impaired in the putative S. cerevisiae DNA mismatch repair mutants pms1 and pms2. Low-efficiency repair also characterized pms3 strains, except that correction of single-nucleotide loops occurred with an efficiency close to that of PMS wild-type strains. A close correlation was found between the repair efficiencies determined in this study and the observed postmeiotic segregation frequencies of alleles with known DNA sequence. This suggests an involvement of DNA mismatch repair in recombination and gene conversion in S. cerevisiae.  相似文献   

2.
The use as genetic markers, during transformation of Streptococcus pneumoniae, of 19 sequences differing from wild type, located throughout the amiA locus, enabled us to examine the fate of 24 single- and 11 multiple-mismatches during recombination. Tentative mismatch ranking as a function of decreasing repair efficiency by the Hex mismatch repair system is G/T = A/C = G/G (maximum repair: 90-95%) greater than C/T (mostly 75 to 90% repair) greater than A/A (from 50 to 90% repair) greater than T/T (50-65% repair) greater than A/G (from 0 to 20% repair) greater than C/C. No indication of correction of the latter has been obtained. Over the limited number of samples examined, we observed no influence of the base composition of the surrounding sequence on correction efficiency for both transition mismatches and for G/G and C/C. Variations in the surrounding sequence affect repair of A/G and C/T, and, even more strongly, of A/A and T/T. No simple correlation to the G:C content of the surrounding sequence is apparent from our results, in contrast to the conclusion drawn for the Mut mismatch repair system of Escherichia coli. Examination of the fate of multiple mismatches suggests that C/C may sometimes impede recognition of otherwise corrected mismatches.  相似文献   

3.
The helix-coil transitions of the 16 octadecameric DNA duplexes dCGTCGTTTXACAACGTCG X dCGACGTTGTX1AAACGACG with A, T, G, and C for X and X1 were measured by UV-absorption. This sequence was taken from former studies of in vivo determination of efficiencies of mismatch repair (Kramer, Kramer, and Fritz (1984) Cell 38, 879-887). The thermodynamic parameters for double strand and mismatch formation have been obtained by evaluating the partition function of a stack model which allowed for loop formation. As a result the mismatches could be classified into wobble base pairs (T/G, G/G, C/A, A/A, A/G), open base pairs, i.e. permanent loops (T/T, C/T, T/C, C/C), and intermediate or weak base pairs (G/T, A/C, G/A). There is no correlation between Tm and the biological repair efficiency of X/X1. The structure classes, however, as described above show a close correlation: Open base pairs show the lowest repair efficiencies, whereas mismatches with high repair efficiency always belong to the structural class of wobble base pairs. Because of the palindromic nearest neighbors of the variation site X/X1, the influence of next-nearest neighbor interactions could be detected and be estimated to about 1 kJ/mol for one stack.  相似文献   

4.
A hypothesis that preferential rejection of donor markers by the hex system of pneumococcus is due to lethal double-strand breaks has been examined in terms of its implications for the extent of the excision required. Experiments reported here were directed at asking whether hex-dependent marker efficiency depends on the length of the donor deoxyribonucleic acid (DNA). In the absence of intracellular competition for hex function, there was no detectable effect of DNA size on hex-dependent marker efficiency as donor DNA was sheared from greater than 1 x 107 daltons to 3.6 x 105 daltons. The latter DNA was purified by two successive velocity fractionations to ensure that the activity seen was representative of DNA of that size. Quantitative examination of the system shows that, for the lethal event hypothesis to be true, the excision step has to remove an average of 7,000 to 10,000 nucleotides. This figure is so much greater than that seen in other excision processes that alternate hypotheses should be considered. The presently known properties of the hex system can be accounted for by a model invoking the migratory features of type I restriction enzymes.  相似文献   

5.
Specificity of mutations induced in transfected DNA by mammalian cells   总被引:29,自引:1,他引:28       下载免费PDF全文
DNA transfected into mammalian cells is subject to the high mutation frequency of approximately 1% per gene. We present data bearing on the derivation of the two main classes of mutations detected, base substitutions and deletions. The DNA sequence change is reported for nearly 100 independent base substitution mutations that occurred in shuttle vectors as a result of passage in simian cells. All of the mutations occur at G:C base pairs and involve either transition to A:T or transversion to T:A. To identify possible mutational intermediates, various topological forms of the vector DNA were introduced separately. Supercoiled and relaxed DNA are mutated at equal frequencies. However, linearized DNA leads to a greatly elevated frequency of deletions. Nicked and gapped templates stimulate both deletions and base substitutions. We discuss a model involving intracellular degradation of the transfected DNA which explains these observations.  相似文献   

6.
T C Brown  J Jiricny 《Cell》1988,54(5):705-711
Mismatches arise during recombination, as errors of DNA replication, and from deamination of 5-methylcytosine to thymine. We determined the efficiency and specificity of mismatch correction in simian cells. Analysis of plaques, obtained after transfection with SV40 DNA molecules harboring a single mispair in a defined orientation within the intron of the large T antigen gene, revealed that all types of base/base mispairs were corrected, albeit with different efficiencies and specificities. Heterogeneous mispairs G/T, A/C, C/T, and A/G, corrected with 96%, 78%, 72%, and 39% efficiencies, respectively, tended to be corrected to G/C. Homogeneous mispairs G/C, C/C, A/A, and T/T were corrected with 92%, 66%, 58%, and 39% efficiencies, respectively, and repair bias was influenced by mismatch flanking sequences.  相似文献   

7.
An endonuclease activity (called MS-nicking) for all possible base mismatches has been detected in the extracts of yeast, Saccharomyces cerevisiae. DNAs with twelve possible base mismatches at one defined position are cleaved at different efficiencies. DNA fragments with A/G, G/A, T/G, G/T, G/G, or A/A mismatches are nicked with greater efficiencies than C/T, T/C, C/A, and C/C. DNA with an A/C or T/T mismatch is nicked with an intermediate efficiency. The MS-nicking is only on one particular DNA strand, and this strand disparity is not controlled by methylation, strand break, or nature of the mismatch. The nicks have been mapped at 2-3 places at second, third, and fourth phosphodiester bonds 5' to the mispaired base; from the time course study, the fourth phosphodiester bond probably is the primary incision site. This activity may be involved in mismatch repair during genetic recombination.  相似文献   

8.
F. J. Wang  L. S. Ripley 《Genetics》1994,136(3):709-719
Most single base deletions detected after DNA polymerization in vitro directed by either Escherichia coli DNA polymerase I or its Klenow fragment are opposite Pu in the template. The most frequent study, were previously found to be associated with the consensus template context 5'-PyTPu-3'. In this study, the predictive power of the consensus sequence on single base deletion frequencies was directly tested by parallel comparison of mutations arising in four related DNAs differing by a single base. G, a deletion hotspot within the template context 5'-TTGA-3', was substituted by each of the 3 other bases. Previous studies had shown that deletions opposite the G were frequent but that deletions opposite its neighboring A were never detected. Based on the predictions of the consensus, the substitution of T for G should produce frequent deletions opposite the neighboring A due to its new 5'-TTTA-3' template context. This prediction was fulfilled; no deletions of this A were detected in the other templates. The consensus further predicted that deletions opposite template C would be lower than those opposite either A or G at the same site and this prediction was also fulfilled. The C substitution also produced a new hotspot for 1 bp deletions 14 bp away. The new hotspot depends on quasi-palindromic misalignment of the newly synthesized DNA strand during polymerization; accurate, but ectopically templated synthesis is responsible for this mutagenesis. Mutations templated by quasi-palindromic misalignments have previously been recognized when they produced complex sequence changes; here we show that this mechanism can produce frequent single base deletions. The unique stimulation of misalignment mutagenesis by the C substitution in the template is consistent with the singular ability of C at that site to contribute to extended complementary pairing during the DNA misalignment that precedes mutagenesis.  相似文献   

9.
A model system is developed to test oligonucleotide-directed mutations: T----C transition, T and C deletions (delta T and delta C), C insertion, double mutations (A----G, delta T), (T----C, A----G), and large oligonucleotide deletions (36 or 44 nucleotides). The system includes 9 variants of the phage M13 DNA carrying fragment of beta-galactosidase gene, and oligodeoxyribonucleotides partially noncomplementary to DNA sequence of this gene. Six variants are obtained by the site-localized mutagenesis, the other were described earlier. Induced mutations are easily tested by phenotype change of transformed bacteria (Lac+----Lac-); by formation or loss of the sites for BamHI and EcoRI restrictases; by DNA hybridization with 32P-labeled oligonucleotides; and by DNA sequencing by the Sanger method. The system is used to study the role of some factors, such as completeness of RF DNA synthesis, thermal stability of the oligonucleotide: DNA complex, quality of enzymes and substrates used in polymerase reaction, mutation type or the efficiency of mutagenesis. A number of unexpected mutations were observed in the course of oligonucleotide-directed mutagenesis. Lower yields of some mutants induced by oligonucleotides are shown to be due to the action of repair systems of bacteria.  相似文献   

10.
Phage T1 transduces phage Mu PFU from Mu-lysogenic donor cells to sensitive recipient cells. The efficiency of transduction depends on the chromosomal location of the Mu prophage. T1, therefore, appears to package different regions of the bacterial chromosome with different efficiencies. Although T1 transduces bacterial markers with different efficiencies, there is no direct correlation between the efficiency of transduction of a bacterial marker and the efficiency of transduction of Mu PFU from donor cells with the Mu prophage located in that marker.  相似文献   

11.
CRISPR-based base editors (BEs) are widely used to induce nucleotide substitutions in living cells and organisms without causing the damaging DNA double-strand breaks and DNA donor templates. Cytosine BEs that induce C:G to T:A conversion and adenine BEs that induce A:T to G:C conversion have been developed. Various attempts have been made to increase the efficiency of both BEs; however, their activities need to be improved for further applications. Here, we describe a fluorescent reporter-based drug screening platform to identify novel chemicals with the goal of improving adenine base editing efficiency. The reporter system revealed that histone deacetylase inhibitors, particularly romidepsin, enhanced base editing efficiencies by up to 4.9-fold by increasing the expression levels of proteins and target accessibility. The results support the use of romidepsin as a viable option to improve base editing efficiency in biomedical research and therapeutic genome engineering.  相似文献   

12.
Processing of mispaired and unpaired bases in heteroduplex DNA in E. coli   总被引:1,自引:0,他引:1  
Bacteriophage lambda and phi X 174 DNAs, carrying sequenced mutations, have been used to construct in vitro defined species of heteroduplex DNA. Such heteroduplex DNAs were introduced by transfection, as single copies, into E. coli host cells. The progeny of individual heteroduplex molecules from each infective center was analyzed. The effect of the presence of GATC sequences (phi X 174 system) and of their methylation (lambda system) was tested. The following conclusions can be drawn: some mismatched base pairs trigger the process of mismatch repair, causing a localized strand-to-strand information transfer in heteroduplex DNA: transition mismatches G:T and A:C are efficiently repaired, whereas the six transversion mismatches are not always readily recognized and/or repaired. The recognition of transversion mismatches appears to depend on the neighbouring nucleotide sequence; single unpaired bases (frameshift mutation "mismatches") are recognized and repaired, some equally efficiently on both strands (longer and shorter), some more efficiently on the shorter (-1) strand; large non-homologies (about 800 bases) are not repaired by the Mut H, L, S, U system, but some other process repairs the non-homology with a relatively low efficiency; full methylation of GATC sequences inhibits mismatch repair on the methylated strand: this is the chemical basis of strand discrimination (old/new) in mismatch correction; unmethylated GATC sequences appear to improve mismatch repair of a G:T mismatch in phi X 174 DNA, but there may be some residual mismatch repair in GATC-free phi X 174, at least for some mismatches.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
N4-Aminocytidine, a nucleoside analog, is a potent mutagen towards phages, bacteria, Drosophila and mammalian cells in culture. In vitro, biochemical studies indicate that this reagent acts by being incorporated into DNA. To elucidate the mechanism of N4-aminocytidine mutagenesis, it is essential to identify the nature of DNA sequence alterations taking place during the mutagenesis. We have analyzed the nucleotide sequence changes in the lac promoter-lacZ alpha region of M13mp2 phage induced by treatment of phage-infected Escherichia coli with N4-aminocytidine. The sequence alterations of DNA samples from 89 mutants of the phage were determined. These mutants had single point mutations, except one mutant, in which a double point mutation was detected. Several hot spots were found: however, there are no apparent relations to particular DNA sequences regarding the locations of these spots. All the mutations are transitions; neither transversions nor deletions/insertions were found. A feature in these transitions is that the A/T to G/C and G/C to A/T changes occur at approximately equal rates. The overall picture of the mutagenesis is consistent with a scheme in which misincorporation and misreplication caused by the modified cytosine structure are the key steps in the DNA replication leading to transitions. Similar nucleotide alterations were found for the mutagenesis induced by an alkylated derivative, N'-methyl-N4-aminocytidine. N4-Aminocytidine also induced reversions of these mutants; both A/T to G/C and G/C to A/T transitions again took place.  相似文献   

14.
Wang J  Yu S  Jiao S  Lv X  Ma M  Zhu BZ  Du Y 《Mutation research》2012,729(1-2):16-23
Tetrachlorohydroquinone (TCHQ) is a major toxic metabolite of the widely used wood preservative, pentachlorophenol (PCP), and it has also been implicated in PCP genotoxicity. However, the underlying mechanisms of genotoxicity and mutagenesis induced by TCHQ remain unclear. In this study, we examined the genotoxicity of TCHQ by using comet assays to detect DNA breakage and formation of TCHQ-DNA adducts. Then, we further verified the levels of mutagenesis by using the pSP189 shuttle vector in A549 human lung carcinoma cells. We demonstrated that TCHQ causes significant genotoxicity by inducing DNA breakage and forming DNA adducts. Additionally, DNA sequence analysis of the TCHQ-induced mutations revealed that 85.36% were single base substitutions, 9.76% were single base insertions, and 4.88% were large fragment deletions. More than 80% of the base substitutions occurred at G:C base pairs, and the mutations were G:C to C:G, G:C to T:A or G:C to A:T transversions and transitions. The most common types of mutations in A549 cells were G:C to A:T (37.14%) and A:T to C:G transitions (14.29%) and G:C to C:G (34.29%) and G:C to T:A (11.43%) transversions. We identified hotspots at nucleotides 129, 141, and 155 in the supF gene of plasmid pSP189. These mutation hotspots accounted for 63% of all single base substitutions. We conclude that TCHQ induces sequence-specific DNA mutations at high frequencies. Therefore, the safety of using this product would be carefully examined.  相似文献   

15.
A series of spontaneous and ethyl methanesulfonate-induced 6-thioguanine-resistant mutants were isolated in the CHO-10T5 cell line. This cell line was constructed by the introduction of a shuttle vector containing the Escherichia coli gpt gene into a hypoxanthine-guanine phosphoribosyltransferase deficient derivative of the Chinese hamster cell line CHO-K1. Shuttle vector sequences were recovered from many of the mutant cell lines by the COS cell fusion technique and the DNA base sequence of the gpt genes was determined whenever possible.

The base sequences were determined for gpt genes recovered from 29 spontaneous mutants. Of these 29 mutants, 9 have single base substitutions, 1 has a small duplication, 17 have simple deletions, 1 has a deletion with additional bases inserted at the deletion site, and 1 has no change in the gpt coding sequence. Many of the deletions were less than 20 basepairs in length and several occurred in a region previously observed to be a hotspot for spontaneous deletions. The generation of the deletion/insertion mutation may have involved a quasi-palindromic intermediate.

A total of 59 ethyl methansesulfonate-induced mutants were isolated and vector sequences were recovered from 50 mutants. All 50 mutants sequenced had single base substitutions and most (45) were G:C to A:T transitions. While there were no strong hotspots in this collection of mutations, the site distribution was obviously nonrandom. Many of the G:C to A:T transitions either produced a nonsense codon or occurred at glycine codons.  相似文献   


16.
O Fleck  P Schr    J Kohli 《Nucleic acids research》1994,22(24):5289-5295
We have performed band-shift assays to identify mismatch-binding proteins in cell extracts of Schizosaccharomyces pombe. By testing heteroduplex DNA containing either a T/G or a C/C mismatch, two distinct band shifts were produced in the gels. A low mobility complex was observed with the T/G substrate, while a high mobility complex was present with C/C. Further analysis of the mismatch-binding specificities revealed that the T/G binding activity also binds to T/C, C/T, T/T, T/-, A/-, C/-, G/-, G/G, A/A, A/C, A/G, G/T, G/A, and C/A substrates with varying efficiencies, but not binds to C/C. The C/C binding activity efficiently binds to C/C, T/C, C/T, C/A, A/C, C/-, and weakly also to T/T, while all other mispairs are not recognized. Protein extracts of a mutant strain, defective in the mutS homologue swi4, displayed both mismatch-binding activities. Thus, swi4 does not encode for either one of the mismatch-binding proteins.  相似文献   

17.
2-Hydroxyadenine (2-OH-A), a product of DNA oxidation, is a potential source of mutations. We investigated how representative DNA polymerases from the A, B and Y families dealt with 2-OH-A in primer extension experiments. A template 2-OH-A reduced the rate of incorporation by DNA polymerase alpha (Pol alpha) and Klenow fragment (Kf(exo-)). Two Y family DNA polymerases, human polymerase eta (Pol eta) and the archeal Dpo4 polymerase were affected differently. Bypass by Pol eta was very inefficient whereas Dpo4 efficiently replicated 2-OH-A. Replication of a template 2-OH-A by both enzymes was mutagenic and caused base substitutions. Dpo4 additionally introduced single base deletions. Thermodynamic analysis showed that 2-OH-A forms stable base pairs with T, C and G, and to a lesser extent with A. Oligonucleotides containing 2-OH-A base pairs, including the preferred 2-OH-A:T, were recognized by the human MutSalpha mismatch repair (MMR). MutSalpha also recognized 2-OH-A located in a repeat sequence that mimics a frameshift intermediate.  相似文献   

18.
The Escherichia coli mismatch repair system does not recognize and/or repair all mismatched base pairs with equal efficiency: whereas transition mismatches (G X T and A X C) are well repaired, the repair of some transversion mismatches (e.g. A X G or C X T) appears to depend on their position in heteroduplex DNA of phage lambda. Undecamers were synthesized and annealed to form heteroduplexes with a single base-pair mismatch in the centre and with the five base pairs flanking each side corresponding to either repaired or unrepaired heteroduplexes of lambda DNA. Nuclear magnetic resonance (n.m.r.) studies show that a G X A mismatch gives rise to an equilibrium between fully helical and a looped-out structure. In the unrepaired G X A mismatch duplex the latter predominates, while the helical structure is predominant in the case of repaired G X A and G X T mismatches. It appears that the E. coli mismatch repair enzymes recognize and repair intrahelical mismatched bases, but not the extrahelical bases in the looped-out structures.  相似文献   

19.
Very short patch repair: reducing the cost of cytosine methylation   总被引:11,自引:1,他引:10  
In Escherichia coli and related bacteria, the product of gene dcm methylates the second cytosine of 5'-CCWGG sequences (where W is A or T). Deamination of 5-methylcytosine (5meC) results in C to T mutations. The mutagenic potential of 5meC is reduced by a system called very short patch (VSP) repair, which replaces T with C. T:G and U:G mispairs in the methylatable sequence and in related sequences are recognized by the product of vsr , a gene adjacent to dcm . Vsr creates a nick just 5' of the mispaired pyrimidine to initiate the repair. Additional products known to be required for VSP repair are DNA polymerase I and DNA ligase. MutS and MutL have a stimulatory role but are not required. The ability of Vsr to recognize T:G mispairs in sequences related to CCWGG is probably responsible for over- and under-representation of certain tetranucleotides in the E. coli genome. Although VSP repair reduces spontaneous mutations at 5meCs in replicating bacteria, mutation hot-spots persist at these sites. Under conditions that more accurately mimic the natural environment of E. coli , VSP repair appears to be effective in preventing mutation at 5meC.  相似文献   

20.
The sequences of more than 600 frameshift mutations produced as a consequence of in vitro DNA replication on an oligonucleotide-primed, single-stranded DNA template by the Escherichia coli polymerase I enzyme (PolI) or its large fragment derivative (PolLF) were compared. Four categories of mutants were found: (1) single-base deletions, (2) base substitutions, (3) multiple-base deletions and (4) complex frameshift mutations that change both the base sequence and the number of bases in a concerted mutational process. The template sequence 5'-Py-T-G-3', previously identified as a PolLF hotspot for single-base deletions opposite G, is also a hotspot for PolI. A PolI-specific warm spot for single-base deletions was identified. Among base substitutions, transitions were more frequent than transversions. Transversions were mediated by (template)G.G, (template)G.A, and (template)C.T mispairs. Multiple-base deletions were found only after PolI replication. Although each of these deletions can be explained by a misalignment mediated by directly repeated DNA sequences, deletion frequencies were often different for repeats of the same length. Both PolI and PolLF produced many complex frameshift mutants. The new sequences at the mutant sites are exactly complementary to nearby DNA sequences in the newly synthesized DNA strand. In each case, palindromic complementarity could mediate the misalignment needed to initiate the mutational process. The misaligned DNA synthesis accounts for the nucleotide changes at the mutant site and for homology that could direct realignment of the DNA onto the template. Most of the complex mutant sequences could be initiated by either intramolecular misalignments involving fold-back structures in newly synthesized DNA or by strand-switching during strand-displacement synthesis. The striking differences between the specificities of complex frameshift mutations and multiple-base deletions by PolI and PolLF identify the existence of polymerase-specific determinants that influence the frequency and specificity of misalignment-mediated frameshifts and deletions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号