首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We generated fusions between three Arabidopsis (Arabidopsis thaliana) tonoplast intrinsic proteins (TIPs; alpha-, gamma-, and delta-TIP) and yellow fluorescent protein (YFP). We also produced soluble reporters consisting of the monomeric red fluorescent protein (RFP) and either the C-terminal vacuolar sorting signal of phaseolin or the sequence-specific sorting signal of proricin. In transgenic Arabidopsis leaves, mature roots, and root tips, all TIP fusions localized to the tonoplast of the central vacuole and both of the lumenal RFP reporters were found within TIP-delimited vacuoles. In embryos from developing, mature, and germinating seeds, all three TIPs localized to the tonoplast of protein storage vacuoles. To determine the temporal TIP expression patterns and to rule out mistargeting due to overexpression, we generated plants expressing YFP fused to the complete genomic sequences of the three TIP isoforms. In transgenic Arabidopsis, gamma-TIP expression was limited to vegetative tissues, but specifically excluded from root tips, whereas alpha-TIP was exclusively expressed during seed maturation. delta-TIP was expressed in vegetative tissues, but not root tips, at a later stage than gamma-TIP. Our findings indicate that, in the Arabidopsis tissues analyzed, two different vacuolar sorting signals target soluble proteins to a single vacuolar location. Moreover, TIP isoform distribution is tissue and development specific, rather than organelle specific.  相似文献   

2.

Background  

The vegetative plant vacuole occupies >90% of the volume in mature plant cells. Vacuoles play fundamental roles in adjusting cellular homeostasis and allowing cell growth. The composition of the vacuole and the regulation of its volume depend on the coordinated activities of the transporters and channels localized in the membrane (named tonoplast) surrounding the vacuole. While the tonoplast protein complexes are well studied, the tonoplast itself is less well described. To extend our knowledge of how the vacuole folds inside the plant cell, we present three-dimensional reconstructions of vacuoles from tobacco suspension cells expressing the tonoplast aquaporin fusion gene BobTIP26-1::gfp.  相似文献   

3.
FK506-binding proteins (FKBPs) and cyclophilins, collectively called immunophilins, conserve peptidyl-prolyl cis/trans isomerase (PPIase) active sites, although many lack PPIase activity. The chloroplast thylakoid contains a large proportion of the plant immunophilin family, but their functions within this compartment are unclear. Some lumenal immunophilins are important for assembly of photosynthetic complexes, implicating them in the maintenance and turnover of the photosynthetic apparatus during acclimation processes. In this investigation into the functions of three FKBPs localized to the thylakoid of Triticum aestivum (wheat), we present the first evidence of PPIase activity in the thylakoid of a cereal plant, and also show that PPIase activity is not conserved in all lumenal FKBPs. Using yeast two-hybrid analysis we found that the PPIase-active FKBP13 interacts with the globular domain of the wheat Rieske protein, with potential impact on photosynthetic electron transfer. Specific interaction partners for PPIase-deficient FKBP16-1 and FKBP16-3 link these isoforms to photosystem assembly.  相似文献   

4.
Mature motor cells of Mimosa pudica that exhibit large and rapid turgor variations in response to external stimuli are characterized by two distinct types of vacuoles, one containing large amounts of tannins (tannin vacuole) and one without tannins (colloidal or aqueous vacuole). In these highly specialized cells we measured the abundance of two tonoplast proteins, a putative water-channel protein (aquaporin belonging to the [gamma]-TIPs [tonoplast intrinsic proteins]) and the catalytic A-subunit of H+-ATPase, using either high-pressure freezing or chemical fixation and immunolocalization. [gamma]-TIP aquaporin was detected almost exclusively in the tonoplast of the colloidal vacuole, and the H+-ATPase was also mainly localized in the membrane of the same vacuole. Cortex cells of young pulvini cannot change shape rapidly. Development of the pulvinus into a motor organ was accompanied by a more than 3-fold increase per length unit of membrane in the abundance of both aquaporin and H+-ATPase cross-reacting protein. These results indicate that facilitated water fluxes across the vacuolar membrane and energization of the vacuole play a central role in these motor cells.  相似文献   

5.
The Arabidopsis thaliana Tonoplast Intrinsic Protein 1;1 (AtTIP1;1) is a member of the tonoplast aquaporin family. The tissue-specific expression pattern and intracellular localization of AtTIP1;1 were characterized using GUS and GFP fusion genes. Results indicate that AtTIP1;1 is expressed in almost all cell types with the notable exception of meristematic cells. The highest level of AtTIP1;1 expression was detected in vessel-flanking cells in vascular bundles. AtTIP1;1-GFP fusion protein labelled the tonoplast of the central vacuole and other smaller peripheral vacuoles. The fusion protein was not found evenly distributed along the tonoplast continuum but concentrated in contact zones of tonoplasts from adjacent vacuoles and in invaginations of the central vacuole. Such invaginations may result from partially engulfed small vacuoles. A knockout mutant was isolated and characterized to gain insight into AtTIP1;1 function. No phenotypic alteration was found under optimal growth conditions indicating that AtTIP1;1 function is not essential to the plant and that some members of the TIP family may act redundantly to facilitate water flow across the tonoplast. However, a conditional root phenotype was observed when mutant plants were grown on a glycerol-containing medium.  相似文献   

6.
The hydrolysis of ATP(4-) by the plasmalemma and tonoplast H(+)/ATPases and by the tonoplast pyrophosphatase results in the export of a proton to the apoplast or vacuole with remaining in the cytoplasm. As the enzymes that synthesize ATP(4-) require as a substrate it is proposed that protons are an essential substrate for ATP(4-) synthesis. Thus, the entry of protons to the cytoplasm by sym- and antiports will control the rate of ATP(4-) synthesis. Evidence is adduced that plants control the tension on the water column by removing water to or from the 'cellular reservoir' and guard cells by generating osmotic gradients. Schemes are presented that propose a series of metabolic changes that result in a seamless transition through the following states: (1) the import of K(+), Cl(-) and water from the apoplast to the vacuole, the K(+) being admitted to the cytoplasm via a Ca(2+)-activated K(+)-H(+) symport and the water via a Ca(2+)-activated aquaporin; (2) the continued import of K(+) and water from the apoplast to the vacuole with the concomitant export of protons and the synthesis of malate from glucose in the cytoplasm for importation into the vacuole; (3) when the tension on the water column is optimal, respiration and photosynthesis is maximal resulting in biosynthetic reactions and growth; (4) when tension on the water column increases, K(+), Cl(-) and water are exported from the vacuole to the apoplast; (5) the continued export of K(+) and water from the vacuole to the apoplast with malate for export being synthesized in the cytoplasm; the export of K(+) resulting in the acidification of the vacuole; and (6) a further increase in tension results in the deactivation of the plasmalemma H(+)/ATPase by a further increase in cytoplasmic Ca(2+) which also indirectly activates the alternative oxidase. It is suggested that mitochondrial pyruvate is partly oxidized by the TCA cycle and is partly exported to the cytoplasm where it is carboxylated to form malate(1-) for continued export to the apoplast. K(+) is transferred from the vacuole to the apoplast, the K(+) being replaced by protons from the export of mitochondrial pyruvate. The maintenance of the tonoplast electrochemical gradient is thought to result in an increase in the pH of the apoplast which may cause the hydrolysis of abscisic acid precursors with the resulting abscisic acid opening Ca(2+) channels so that the above events are reinforced. (7) This mode is proposed to continue by the metabolism of glucose to four phosphoenolpyruvate, three of which are carboxylated to malate(1-) for continued export to the apoplast with K(+) from the vacuole, the 'stress-tolerant quiescent state'.  相似文献   

7.
8.
Protoplasts isolated from pear fruit at the end of the cell‐division stage, 30 days after flowering (DAF), had already formed a large central vacuole and the vacuole occupied most of the protoplast. The changes in protein composition and density of the tonoplast (vacuolar membrane) were investigated during fruit development. After a linear sucrose density gradient centrifugation, the distribution of tonoplasts at 30 and 48 DAF was broad and began to narrow with further fruit development. This suggests that the tonoplast of young fruit is heterogeneous and becomes homogeneous with fruit development. The apparent density of the tonoplast at 30 DAF was approximately 1.12 g ml−1; it decreased with fruit development and was finally 1.09 g ml−1 in mature fruit. The phospholipid amount on the basis of tonoplast protein was 0.80 mg mg−1 at 30 DAF. It increased with fruit development, and finally reached 7.49 mg mg−1. This result indicates that the decrease in the density of the tonoplast was caused by the increase in the ratio of phospholipid to membrane protein. The protein composition of the tonoplast at each stage was quite different. The level of polypeptides of 94, 70, 61, 52, 48 and 41 kDa was low in young fruit and high in the middle or later stages of fruit development. In contrast, the level of a 76‐kDa polypeptide was high in young fruit and decreased with fruit development. Although their functions are still unclear, these tonoplast proteins may play important roles in fruit development.  相似文献   

9.
The FK506-binding proteins (FKBPs) belong to the peptidyl prolyl cis-trans isomerase (PPIase) family, and catalyse the rotation of the peptide bond preceding a proline. They are conserved in organisms from bacteria to man. In order to understand the function of plant FKBP isoforms, we have produced transgenic wheat plants overexpressing each of the two wheat FKBPs: wFKBP73 (which is expressed in young vegetative and reproductive tissues under normal growth conditions) and wFKBP77 (which is induced by heat stress). Transgenic lines overexpressing wFKBP77 at 25°C showed major morphological abnormalities, specifically relating to height, leaf shape, spike morphology and sterility. In these plants, the levels of hsp90 mRNA were over two fold higher than in controls, indicating a common regulatory pathway shared between wFKBP77 and Hsp90. Transgenic lines overexpressing wFKBP73 showed normal vegetative morphology, but the grain weight and composition was altered, corresponding to changes in amylase activity during seed development.  相似文献   

10.
A remarkable amount, of water is transported in the gastrointestinal (GI) organs to fulfil the secretory and absorptive functions of the GI tract. However, the molecular basis of water movement in the GI epithelial barriers is still poorly known. Important clues about the mechanisms by which water is transported in the GI tract were provided by the recent identification of multiple aquaporin water channels expressed in GI tissues. Here we define the mRNA and protein expression and the cellular and subcellular distribution of aquaporin-8 (AQP8) in the rat GI tract. By semi-quantitative RT-PCR the AQP8 mRNA was detected in duodenum, proximal jejunum, proximal colon, rectum, pancreas and liver and, to a lesser extent, in stomach and distal colon. Immunohistochemistry using affinity-purified antibodies revealed AQP8 staining in the absorptive epithelial cells of duodenum, proximal jejunum, proximal colon and rectum where labeling was largely intracellular and confined to the subapical cytoplasm. Confirming previous results, AQP8 staining was seen at the apical pole of pancreatic acinar cells. Interestingly, both light and immunoelectron microscopy analyses showed AQP8 reactivity in liver where labeling was associated to hepatocyte intracellular vesicles and over the plasma membrane delimiting the bile canaliculi. A complex pattern was observed by immunoblotting with total membranes of the above GI organs incubated with affinity-purified anti-AQP8 antibodies which revealed multiple bands with molecular masses ranging between 28 and 45 kDa. This immunoblotting pattern was not modified after deglycosylation with N-glycosidase F except the 34-kDa band of liver that, as already reported, was partially down-shifted to 28 kDa. No bands were detected after preadsorption of the anti-AQP8 antibodies with the immunizing peptide. The cellular and subcellular distribution of AQP8 suggest physiological roles for this aquaporin in the absorption of water in the intestine and the secretion of bile and pancreatic juice in liver and pancreas, respectively. The large intracellular expression of AQP8 may indicate its recycling between the cytoplasmic compartment and the plasma membrane. The cytoplasmic localization observed may also relate to the involvement of AQP8 in processes of intracellular osmoregulation.  相似文献   

11.
Neye H 《Regulatory peptides》2001,97(2-3):147-152
Immunophilins are known as intracellular receptors for the immunosuppressant drugs, cyclosporin A, FK506, and rapamycin. They can be divided into two groups, cyclophilins that bind cyclosporin A and FK506 binding proteins (FKBPs) that bind FK506 and rapamycin. Many efforts were made to elucidate the physiological role of the immunophilins. Many of them are involved in intracellular signalling as they bind to calcium channels or to steroid receptor complexes. A yeast two-hybrid screen was used to identify further target proteins that interact with known proteins. Recently, a 48-kDa FKBP associated protein (FAP48) was isolated that binds to FKBP12 and FKBP52. Binding of FAP48 to FKBPs is inhibited by the macrolide FK506 indicating that the binding sites on the immunophilins coincide with the binding site for FK506. A peptidyl-prolyl motif on FAP48 should be responsible for the binding of the protein to FKBPs. We sequentially point mutated proline sites on FAP48 and checked the mutant proteins for interaction with FKBP12 and FKBP52. Mutation of proline 219 to alanine leads to a loss of interaction indicating that a cysteinyl prolyl site might be responsible for the binding of FAP48 to FKBPs. Thus we identified proline 219 being essential for the interaction.  相似文献   

12.
The immunophilin, FK506-binding protein (FKBP12), is an essential component of the ryanodine receptor channel complex of skeletal muscle (RyR1) and modulates intracellular calcium signaling from the nedoplasmic reticulum. The cardiac muscle RyR isoform (RyR2) specifically associates with a distinct FKBP isoform, FKBP12.6. Previous studies have led to the proposal that the central domain of RyR1 exclusively mediates the interaction with FKBP12. To characterize the topography of the FKBP 12.6 binding site on the human cardiac RyR2, we have applied complementary protein-protein interaction methods using both in vivo yeast two-hybrid analysis and in vitro immunoprecipitation experiments. Our results indicate an absence of interaction of FKBP12/12.6 with fragments containin the central domain of either RyR1, RyR2, or RyR3. Furthermore, no interaction was detected between FKBP12.6 with a series of overlapping fragments encompassing the entire RyR2, either individually or in multiple combination. We also found that a distinct, alternatively spliced variant of FKBP12.6 was unable to interact with RyR. In contrast, we successfully demonstrated a robust association between the cytoplasmic domain of transforming growth factor-β receptor type I and both FKBP12 and FKBP12.6 in parallel positive control experiments, as well as between native RyR2 and FKBP12.6. These results suggest that the specific interaction of FKBP12.6 with RyR2, and generally of FKBPs with any RyR isoform, is not readily reconstituted by peptide fragments corresponding to central RyR domains. Further structural analysis will be necessary to unravel this intricate signaling system and the current model of FKBP-12-RyR interaction via a single, central RyR, epitope may therefore require revision.  相似文献   

13.
The FK506-binding proteins (FKBPs) are a class of peptidyl-prolyl cis/trans isomerase enzymes, some of which can also operate as molecular chaperones. FKBPs comprise a large ubiquitous family, found in virtually every part of the cell and involved in diverse processes from protein folding to stress response. Higher plant genomes typically encode about 20 FKBPs, half of these found in the chloroplast thylakoid lumen. Several FKBPs in plants are regulators of hormone signalling pathways, with important roles in seed germination, plant growth and stress response. Some FKBP isoforms exists as homologous duplicates operating in finely tuned mechanisms to cope with abiotic stress. In order to understand the roles of the plant FKBPs, especially in view of the warming environment, we have identified and analysed the gene families encoding these proteins in rice using computational approaches. The work has led to identification of all FKBPs from the rice genome, including novel high molecular weight forms. The rice FKBP family appears to have evolved by duplications of FKBP genes, which may be a strategy for increased stress tolerance.  相似文献   

14.
The receptors for the immunosuppression drugs FK506 and rapamycin are called FKBPs (FK506-binding proteins). FKBPs comprise a large family; they are found in many species, including bacteria, fungi, animals, and plants. As a class of peptidyl-prolyl cis-trans isomerase enzymes, the FKBP genes have been the focus of recent studies on plant stress tolerance and immunology. We identified and analyzed gene families encoding these proteins in maize using computational and molecular biology approaches. Thirty genes were found to encode putative FKBPs according to their FK506-binding domain. The FKBP genes can be classified into single domain and multiple domain members based on the number of the domains. By analysis of the physical locations, the 30 FKBP genes were found to be widely distributed on 10 chromosomes. After analysis of the FKBP phylogenetic tree in the maize genome, we found that the 30 genes revealed two major clades. Gene duplication played a major role in the evolution of FKBP genes, which suggests that the FKBP genes in maize have a pattern significantly different from that of these genes in rice. Based on semi-quantitative RT-PCR, we found that the 30 FKBPs were expressed differently in various tissues in maize, which suggests that FKBP genes play different roles in each tissue. Several FKBPs were expressed at higher levels in roots, indicating that these genes in maize may have similar or overlapping functions.  相似文献   

15.
FK506 binding proteins (FKBPs) belong to the family of peptidyl prolyl cis-trans isomerases (PPIases) catalyzing the cis/trans isomerisation of Xaa-Pro bonds in oligopeptides and proteins. FKBPs are involved in folding, assembly and trafficking of proteins. However, only limited knowledge is available about the roles of FKBPs in the endoplasmic reticulum (ER) and their interaction with other proteins. Here we show the ER located Neurospora crassa FKBP22 to be a dimeric protein with PPIase and a novel chaperone activity. While the homodimerization of FKBP22 is mediated by its carboxy-terminal domain, the amino-terminal domain is a functional FKBP domain. The chaperone activity is mediated by the FKBP domain but is exhibited only by the full-length protein. We further demonstrate a direct interaction between FKBP22 and BiP, the major Hsp70 chaperone in the ER. The binding to BiP is mediated by the FKBP domain of FKBP22. Interestingly BiP enhances the chaperone activity of FKBP22. Both proteins form a stable complex with an unfolded substrate protein and thereby prevent its aggregation. These results suggest that BiP and FKBP22 form a folding helper complex with a high chaperoning capacity in the ER of Neurospora crassa.  相似文献   

16.
Immunophilins are intracellular receptors of immunosuppressive drugs, carrying peptidyl-prolyl cis-trans isomerase activity, with a general role in protein folding but also involved in specific regulatory mechanisms. Four immunophilins of the FKBP-type (FK506-binding proteins) were identified in the genome of Neurospora crassa. Previously, FKBP22 has been located in the endoplasmic reticulum as part of chaperone/folding complexes and FKBP13 has been found to have a dual location in the cytoplasm and mitochondria. FKBP11 is apparently located exclusively in the cytoplasm. It is not expressed during vegetative development of the fungus although its expression can be induced with calcium and during sexual development. Overexpression of the respective gene appears to confer a growth advantage to the fungus in media containing some divalent ions. FKBP50 is a nuclear protein and its genetic inactivation leads to a temperature-sensitive phenotype. None of these proteins is, alone or in combination, essential for N. crassa, as demonstrated by the isolation of a mutant strain lacking all four FKBPs.  相似文献   

17.
Tonoplast intrinsic protein isoforms as markers for vacuolar functions   总被引:21,自引:0,他引:21       下载免费PDF全文
GY Jauh  TE Phillips    JC Rogers 《The Plant cell》1999,11(10):1867-1882
Plant cell vacuoles may have storage or lytic functions, but biochemical markers specific for the tonoplasts of functionally distinct vacuoles are poorly defined. Here, we use antipeptide antibodies specific for the tonoplast intrinsic proteins alpha-TIP, gamma-TIP, and delta-TIP in confocal immunofluorescence experiments to test the hypothesis that different TIP isoforms may define different vacuole functions. Organelles labeled with these antibodies were also labeled with antipyrophosphatase antibodies, demonstrating that regardless of their size, they had the expected characteristics of vacuoles. Our results demonstrate that the storage vacuole tonoplast contains delta-TIP, protein storage vacuoles containing seed-type storage proteins are marked by alpha- and delta- or alpha- and delta- plus gamma-TIP, whereas vacuoles storing vegetative storage proteins and pigments are marked by delta-TIP alone or delta- plus gamma-TIP. In contrast, those marked by gamma-TIP alone have characteristics of lytic vacuoles, and results from other researchers indicate that alpha-TIP alone is a marker for autophagic vacuoles. In root tips, relatively undifferentiated cells that contain vacuoles labeled separately for each of the three TIPs have been identified. These results argue that plant cells have the ability to generate and maintain three separate vacuole organelles, with each being marked by a different TIP, and that the functional diversity of the vacuolar system may be generated from different combinations of the three basic types.  相似文献   

18.
19.
A thiol-endoprotease induced during the senescence of unpollinated ovaries of Pisum sativum L. cv. Alaska has been localized at both cellular and subcellular levels using purified antibodies. Immunoblot analysis showed a single band of 30 kDa in extracts from senescent ovaries 3 and 4 days post-anthesis. Immunolocalization showed the accumulation of the protease within the exocarp and in the outer cell layers of the mesocarp of the senescent ovaries, although with an asymmetric distribution as illustrated in transverse sections. Ultrastructural localization indicates that the protease is associated with the tonoplast and with electron dense materials within the vacuole, where lysis of cell components occurs in senescent ovaries.  相似文献   

20.
The Schizosaccharomyces pombe gene, fkp39(+), encoding a homolog of FKBP(FK506 binding protein)-type peptidyl prolyl cis-trans isomerase (PPIase), was isolated and the primary structure was determined. This gene product (SpFkbp39p) showed PPIase enzymatic activity in a chymotrypsin-dependent enzyme assay involving recombinant SpFkbp39p. Comparison of the primary structures of the catalytic domains of FKBPs, including SpFkbp39p, revealed that FKBPs could be classified into four groups. This categorization corresponding to the known subcellular localization of the FKBPs, makes the prediction of the subcellular localization of FKBPs based on their primary structures feasible. SpFkbp39p was considered to be a member of the nuclear-type FKBP group from this relationship between primary structure and subcellular localization. An immunofluorescence assay against HA-epitope-tagged SpFkbp39p revealed that SpFkbp39p is localized to the nucleus, as predicted. Residues conserved in a "group-specific" manner in the catalytic domain were mapped to their corresponding three-dimensional positions; these "group-specific" residues were located in close proximity in distinct regions mostly on the protein surface, which implies the presence of "group-specific" regulatory functional regions. We also found that nuclear-type FKBPs, including SpFkbp39p, have two highly conserved domains other than catalytic ones, with further basic and acidic charged regions, especially in the case of nuclear-type FKBPs. This is the first report indicating that there is a rule for the relationship between the subcellular localization and structure of the catalytic domain of a FKBP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号