首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The D variant of encephalomyocarditis virus (EMC-D virus) causes diabetes in mice by destroying pancreatic β cells. In mice infected with a low dose of EMC-D virus, macrophages play an important role in β-cell destruction by producing soluble mediators such as interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and nitric oxide (NO). To investigate the role of NO and inducible NO synthase (iNOS) in the development of diabetes in EMC-D virus-infected mice, we infected iNOS-deficient DBA/2 mice with EMC-D virus (2 × 102 PFU/mouse). Mean blood glucose levels in EMC-D virus-infected iNOS-deficient mice and wild-type mice were 205.5 and 466.7 mg/dl, respectively. Insulitis and macrophage infiltration were reduced in islets of iNOS-deficient mice compared with wild-type mice at 3 days after EMC-D virus infection. Apoptosis of β cells was decreased in iNOS-deficient mice, as evidenced by reduced numbers of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling-positive cells. There were no differences in mRNA expression of antiapoptotic molecules Bcl-2, Bcl-xL, Bcl-w, Mcl-1, cIAP-1, and cIAP-2 between wild-type and iNOS-deficient mice, whereas expression of proapoptotic Bax and Bak mRNAs was significantly decreased in iNOS-deficient mice. Expression of IL-1β and TNF-α mRNAs was significantly decreased in both islets and macrophages of iNOS-deficient mice compared with wild-type mice after EMC-D virus infection. Nuclear factor κB was less activated in macrophages of iNOS-deficient mice after virus infection. We conclude that NO plays an important role in the activation of macrophages and apoptosis of pancreatic β cells in EMC-D virus-infected mice and that deficient iNOS gene expression inhibits macrophage activation and β-cell apoptosis, contributing to prevention of EMC-D virus-induced diabetes.Type 1 diabetes results from absolute insulin deficiency caused by destruction of insulin-producing pancreatic β cells. The D variant of encephalomyocarditis virus (EMC-D virus) induces diabetes in genetically susceptible strains of mice by infecting and destroying β cells (13-18). In mice infected with a low dose (1 × 102 PFU/mouse) of EMC-D virus, macrophages play a central role in the destruction of pancreatic β cells (4, 5, 13-15), as evidenced by a significant increase in the incidence of diabetes if macrophages are activated prior to viral infection and complete prevention of EMC-D virus-induced diabetes if macrophages are inactivated prior to viral infection (4). Additional studies found that selective EMC-D viral infection of pancreatic β cells results in an initial recruitment of macrophages into the islets, followed by infiltration of other immunocytes, including T cells, natural killer cells, and B cells (5).EMC-D virus infects and activates macrophages without replication (13) and induces the production of soluble mediators such as interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), and inducible nitric oxide synthase (iNOS), which play important roles in the destruction of β cells (14). These infected macrophages express significantly more iNOS than either IL-1β or TNF-α (13). Treatment of EMC-D virus-infected mice with the tyrosine kinase inhibitor AG126, which inhibits nitric oxide (NO) production in EMC-D virus-infected macrophages, decreases the expression of IL-1β and TNF-α in the pancreatic islets and the incidence of diabetes and insulitis compared with those in vehicle-treated control mice (13). As well, treatment of EMC-D virus-infected mice with an iNOS inhibitor decreases the incidence of diabetes (14). These results suggest that iNOS and NO significantly contribute to the destruction of pancreatic β cells in mice infected with a low dose of EMC-D virus, although their roles are not fully understood.To directly test whether iNOS and NO play a critical role in the pathogenesis of EMC-D virus-induced diabetes in mice, we used iNOS knockout (KO) DBA/2 mice. We found that iNOS-deficient mice infected with EMC-D virus (2 × 102 PFU/mouse) showed a significantly lower incidence of diabetes. There was reduced expression of IL-1β and TNF-α in macrophages and decreased infiltration of immunocytes in the islets of iNOS-deficient mice, resulting in reduced apoptosis of β cells compared with that in EMC-D virus-infected wild-type mice. This study provides direct evidence of a role of NO in the activation of macrophages by EMC-D viral infection and in the pathogenesis of low-dose (2 × 102 PFU/mouse) EMC-D virus-induced diabetes.  相似文献   

2.
Abstract: Rat brain glial cells have the capacity to express a calcium-independent form of nitric oxide synthase (iNOS). To test if iNOS induction required tyrosine kinase activity, we made use of genistein, a selective inhibitor of tyrosine kinases. In both primary astrocyte cultures and C6 glioma cells, the presence of genistein prevented both lipopolysaccharide- and cytokine-induced NOS activity in a dose-dependent manner. The presence of tyrphostin-25 (10 µ M ), which is highly specific for tyrosine kinases, also blocked iNOS induction. Additional characterization showed that genistein blocked iNOS induction in a dose-dependent manner (IC50 of ∼ 40 µ M ), that the continuous presence of genistein was not necessary to observe inhibition, and that preincubation with genistein led to higher levels of inhibition than the simultaneous addition of genistein and inducers. The decrease in iNOS activity due to genistein was accompanied by a decrease in iNOS mRNA level as detected by a specific PCR assay. These results indicate that induction of astroglial iNOS expression requires tyrosine kinase activity.  相似文献   

3.
Chromoblastomycosis is a chronic and progressive deep mycosis that is usually found in tropical and subtropical areas. Fonsecaea pedrosoi is considered its most frequent etiologic agent and causes a typical granulomatous inflammatory response, whose degree reflects the immune status of the host. Since macrophages play a fundamental role in the control of the infection, this study aimed at investigating the production of oxygen reactive specimens, the phagocytic capacity and the production of nitric oxide (NO) by macrophages employing in vitro assays and an in vivo model of chromoblastomycosis. Our results demonstrated that, during the infection, peritoneal macrophages show an increased phagocytic capacity and H2O2 production, but also a reduced ability to produce NO. Moreover, F. pedrosoi stimulated H2O2 production in vitro but not the synthesis of NO. The incubation of IFNγ and LPS-stimulated macrophages with melanin, obtained from the fungus, inhibited NO production. Examination of the liver and spleen of infected animals, at day 30 or 60 following inoculation, showed a progressive increase in the number and size of granulomas, indicating that macrophages are properly mobilized and activated. Our data suggest that the inability of the host to clear F. pedrosoi, leading to a chronic disease, is due, at least in part, to the inhibition of NO synthesis by macrophages by fungus-produced melanin.  相似文献   

4.
5.
6.
Trichomonas vaginalis commonly causes vaginitis and perhaps cervicitis in women and urethritis in men and women. Macrophages are important immune cells in response to T. vaginalis infection. In this study, we investigated whether human macrophages could be involved in inflammation induced by T. vaginalis. Human monocyte-derived macrophages (HMDM) were co-cultured with T. vaginalis. Live, opsonized-live trichomonads, and T. vaginalis lysates increased proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6 by HMDM. The involvement of nuclear factor (NF)-κB signaling pathway in cytokine production induced by T. vaginalis was confirmed by phosphorylation and nuclear translocation of p65 NF-κB. In addition, stimulation with live T. vaginalis induced marked augmentation of nitric oxide (NO) production and expression of inducible NO synthase (iNOS) levels in HMDM. However, trichomonad-induced NF-κB activation and TNF-α production in macrophages were significantly inhibited by inhibition of iNOS levels with L-NMMA (NO synthase inhibitor). Moreover, pretreatment with NF-κB inhibitors (PDTC or Bay11-7082) caused human macrophages to produce less TNF-α. These results suggest that T. vaginalis stimulates human macrophages to produce proinflammatory cytokines, such as IL-1, IL-6, and TNF-α, and NO. In particular, we showed that T. vaginalis induced TNF-α production in macrophages through NO-dependent activation of NF-κB, which might be closely involved in inflammation caused by T. vaginalis.  相似文献   

7.
Abstract: Oxygen free radicals and nitric oxide (NO) have been proposed to be involved in acute CNS injury produced by cerebral ischemia; however, controversy remains regarding how they cause injury. Because superoxide generation is triggered during reperfusion, the cytotoxic oxidant peroxynitrite could be formed, but it is not known if this occurs. Dot blot and immunohistochemistry studies were performed on the magnitude and time course of tyrosine nitration and inducible NO synthase (NOS2) in the postischemic rat pup brain. Neonatal ischemia was induced by permanent left middle cerebral artery occlusion in association with 1-h occlusion of the left common carotid artery in 7-day-old Wistar pups. Nitrotyrosine (NT) immunoreactivity was evident in the blood vessels close to the cortical infarct at 48–72 h of recovery, and T lymphocytes were involved with this production. NOS2 immunoreactivity was seen in neutrophils in the same vessels and in the parenchyma at 72 h of recirculation. Whereas NT staining decreased with time, NOS2-positive neutrophils could be still detected in arachnoid vessels at 14 days of recirculation. We conclude that perivascular reactions mediated by peroxynitrite are important in the cascade of events that lead to brain oxidative stress in neonatal ischemia. Moreover, NO-related species may serve as a signaling function instead of directly mediating toxicity.  相似文献   

8.
9.
Indoleamine 2,3-dioxygenase (IDO) and nitric oxide synthase (NOS) type II are induced in macrophages by interferon (IFN)-γ and lipopolysaccharide (LPS). Nitric oxide has been previously shown to inhibit IDO activity. We studied whether metabolites of tryptophan via the IDO pathway could alter NOS II activity. In RAW 264.7 cells, the phenolic antioxidant 3-hydroxyanthranilic acid (OH-AA), but not anthranilic acid, inhibited citrulline synthesis by NOS II at sub-millimolar concentrations, when added 1 h before IFN-γ and LPS. OH-AA inhibited NOS II activity in cytosolic extracts, suggesting a direct action of OH-AA on NOS II protein. Moreover, expression of NOS II mRNA and activation of the nuclear factor κB (NF-κB) in RAW 264.7 cells were decreased by a pretreatment with OH-AA, but not anthranilic acid, before addition of IFN-γ and LPS. This pretreatment also inhibited activation of NF-κB in response to TNF-α in lymphoblastoid J.Jhan5-1 cells. Finally, expression of a long terminal repeat of the human immunodeficiency virus (HIV-LTR)-driven luciferase reporter gene, controlled by NF-κB activation, was severely decreased by OH-AA or 3-hydroxykynurenine in J.Jhan5-1 cells. Other tryptophan derivatives were inactive. These data identify OH-AA as an aminophenolic tryptophan derivative inhibiting NF-κB activation and impairing both NOS II expression and activity in a millimolar concentration range.  相似文献   

10.
Abstract: Several studies suggest that nitric oxide (NO) contributes to cell death following activation of NMDA receptors in cultured cortical, hippocampal, and striatal neurons. In the present study we investigated whether 7-nitroindazole (7-NI), a specific neuronal nitric oxide synthase inhibitor, can block dopaminergic neurotoxicity seen in mice after systemic administration of MPTP. 7-NI dose-dependently protected against MPTP-induced dopamine depletions using two different dosing regimens of MPTP that produced varying degrees of dopamine depletion. At 50 mg/kg of 7-NI there was almost complete protection in both paradigms. Similar effects were seen with MPTP-induced depletions of both homovanillic acid and 3,4-dihydroxyphenylacetic acid. 7-NI had no significant effect on dopamine transport in vitro and on monoamine oxidase B activity both in vitro and in vivo. One mechanism by which NO is thought to mediate its toxicity is by interacting with superoxide radical to form peroxynitrite (ONOO), which then may nitrate tyrosine residues. Consistent with this hypothesis, MPTP neurotoxicity in mice resulted in a significant increase in the concentration of 3-nitrotyrosine, which was attenuated by treatment with 7-NI. Our results suggest that NO plays a role in MPTP neurotoxicity, as well as novel therapeutic strategies for Parkinson's disease.  相似文献   

11.

Background

Microparticles (MPs) are vesicles released from plasma membrane upon cell activation and during apoptosis. Human T lymphocytes undergoing activation and apoptosis generate MPs bearing morphogen Shh (MPsShh+) that are able to regulate in vitro angiogenesis.

Methodology/Principal Findings

Here, we investigated the ability of MPsShh+ to modulate neovascularization in a model of mouse hind limb ischemia. Mice were treated in vivo for 21 days with vehicle, MPsShh+, MPsShh+ plus cyclopamine or cyclopamine alone, an inhibitor of Shh signalling. Laser doppler analysis revealed that the recovery of the blood flow was 1.4 fold higher in MPsShh+-treated mice than in controls, and this was associated with an activation of Shh pathway in muscles and an increase in NO production in both aorta and muscles. MPsShh+-mediated effects on flow recovery and NO production were completely prevented when Shh signalling was inhibited by cyclopamine. In aorta, MPsShh+ increased activation of eNOS/Akt pathway, and VEGF expression, being inhibited by cyclopamine. By contrast, in muscles, MPsShh+ enhanced eNOS expression and phosphorylation and decreased caveolin-1 expression, but cyclopamine prevented only the effects of MPsShh+ on eNOS pathway. Quantitative RT-PCR revealed that MPsShh+ treatment increased FGF5, FGF2, VEGF A and C mRNA levels and decreased those of α5-integrin, FLT-4, HGF, IGF-1, KDR, MCP-1, MT1-MMP, MMP-2, TGFβ1, TGFβ2, TSP-1 and VCAM-1, in ischemic muscles.

Conclusions/Significance

These findings suggest that MPsShh+ may contribute to reparative neovascularization after ischemic injury by regulating NO pathway and genes involved in angiogenesis.  相似文献   

12.
13.
在报道视黄酸(RA)是人肝癌细胞株SMMC-7721分化诱导剂的基础上,本文继续报道8-溴-环磷酸腺苷对该细胞也有分化诱导作用,两者都抑制细胞的增殖,降低γ-谷氨酰转肽酶(γ-GT)比活力和升高(ALP)碱性磷酸酶的比活力。在10μmol/LRA和0.5mmol/L-8-Br-cAMP处理细胞1、3、5天后,胞液和膜性组分中的酪氨酸蛋白激酶(TPK)的比活力均降低,其中RA对胞液TPK的作用在早期较明显,约降低30%,而对膜性TPK的影响则随培养天数而逐渐增加,至第5天下降达50%以上。8Br-cAMP则相反,对胞浆TPK的抑制主要发生在3天以后;约抑制43—53%,而对膜性组分则抑制率逐日降低,在第一天较为明显。因TPK是一个细胞增殖恶变的标志,故RA和8-溴-cAMP对TPK的抑制进一步证明这两种分化诱导剂对SMMC-7721细胞的逆转作用。  相似文献   

14.
Ovarian cancer G protein-coupled receptor 1 (OGR1) is a proton-sensing molecule that can detect decreases in extracellular pH that occur during inflammation. Although OGR1 has been shown to have pro-inflammatory functions in various diseases, its role in autoimmunity has not been examined. We therefore sought to determine whether OGR1 has a role in the development of T cell autoimmunity by contrasting the development of experimental autoimmune encephalomyelitis between wild type and OGR1-knockout mice. OGR1-knockout mice showed a drastically attenuated clinical course of disease that was associated with a profound reduction in the expansion of myelin oligodendrocyte glycoprotein 35-55-reactive T helper 1 (Th1) and Th17 cells in the periphery and a reduced accumulation of Th1 and Th17 effectors in the central nervous system. We determined that these impaired T cell responses in OGR1-knockout mice associated with a reduced frequency and number of dendritic cells in draining lymph nodes during EAE and a higher production of nitric oxide by macrophages. Our studies suggest that OGR1 plays a key role in regulating T cell responses during autoimmunity.  相似文献   

15.
氧化修饰LDL(OX-LDL)可抑制脂多糖(LPS)诱导的巨噬细胞NO释放, 而正常(N-LDL)和乙酰化LDL(AC-LDL)则没有抑制作用.OX-LDL对NO释放的抑制作用随LDL修饰程度的升高而增强,且具有浓度和时间效应.狭缝杂交结果显示OX-LDL处理可使LPS诱导的巨噬细胞NOS mRNA含量下降,提示OX-LDL对NO释放的抑制作用可能发生在转录水平.  相似文献   

16.
17.

Background

Cellular senescence can be a functional barrier to carcinogenesis. We hypothesized that inflammation modulates carcinogenesis through senescence and DNA damage response (DDR). We examined the association between senescence and DDR with macrophage levels in inflammatory bowel disease (IBD). In vitro experiments tested the ability of macrophages to induce senescence in primary cells. Inflammation modulating microRNAs were identified in senescence colon tissue for further investigation.

Methodology/Principal Findings

Quantitative immunohistochemistry identified protein expression by colon cell type. Increased cellular senescence (HP1γ; P = 0.01) or DDR (γH2A.X; P = 0.031, phospho-Chk2, P = 0.014) was associated with high macrophage infiltration in UC. Co-culture with macrophages (ANA-1) induced senescence in >80% of primary cells (fibroblasts MRC5, WI38), illustrating that macrophages induce senescence. Interestingly, macrophage-induced senescence was partly dependent on nitric oxide synthase, and clinically relevant NO• levels alone induced senescence. NO• induced DDR in vitro, as detected by immunofluorescence. In contrast to UC, we noted in Crohn’s disease (CD) that senescence (HP1γ; P<0.001) and DDR (γH2A.X; P<0.05, phospho-Chk2; P<0.001) were higher, and macrophages were not associated with senescence. We hypothesize that nitric oxide may modulate senescence in CD; epithelial cells of CD had higher levels of NOS2 expression than in UC (P = 0.001). Microarrays and quantitative-PCR identified miR-21 expression associated with macrophage infiltration and NOS2 expression.

Conclusions

Senescence was observed in IBD with senescence-associated β-galactosidase and HP1γ. Macrophages were associated with senescence and DDR in UC, and in vitro experiments with primary human cells showed that macrophages induce senescence, partly through NO•, and that NO• can induce DDR associated with senescence. Future experiments will investigate the role of NO• and miR-21 in senescence. This is the first study to implicate macrophages and nitrosative stress in a direct effect on senescence and DDR, which is relevant to many diseases of inflammation, cancer, and aging.  相似文献   

18.
Four undescribed phenolic glycosides including three stilbene derivatives ( 1 and 3 ) and sodium salt of 3 ( 2 ), and a chalcone glycoside ( 4 ), together with thirteen known compounds ( 5 – 17 ) were isolated from the leaves of Syzygium attopeuense (Gagnep.) Merr. & L.M.Perry. Their chemical structures were elucidated to be (Z)-gaylussacin ( 1 ), 6′′-O-galloylgaylussacin sodium salt ( 2 ), 6′′-O-galloylgaylussacin ( 3 ), 4′-O-[β-D-glucopyranosyl-(1→6)-glucopyranosyl]oxy-2′-hydroxy-6′-methoxydihydrochalcone ( 4 ), gaylussacin ( 5 ), pinosilvin 3-O-β-D-glucopyranoside ( 6 ), myricetin-3-O-(2′′-O-galloyl)-α-L-rhamnopyranoside ( 7 ), myricetin-3-O-(3′′-O-galloyl)-α-L-rhamnopyranoside ( 8 ), myricetin-3-O-α-L-rhamnopyranoside ( 9 ), quercitrin ( 10 ), myricetin-3-O-β-D-glucopyranoside ( 11 ), myricetin-3-O-β-D-galactopyranoside ( 12 ), quercetin 3-O-α-L-arabinopyranoside ( 13 ), myricetin-3-O-2′′-O-galloyl)-α-L-arabinopyranoside ( 14 ), (+)-gallocatechin ( 15 ), (−)-epigallocatechin ( 16 ), and 3,3’,4’-trimethoxyellagic acid 4-O-β-D-glucopyranoside ( 17 ) by the analysis of HR-ESI-MS, 1D and 2D NMR spectra in comparison with the previously reported data. Compounds 1–3 , 5 , and 6 significant inhibition of NO production in LPS-activated RAW264.7 cells, with IC50 values ranging from 18.37±1.38 to 35.12±2.53 μM, compared to a positive control (dexamethasone) with an IC50 value of 15.37±1.42 μM.  相似文献   

19.
Pimaradienoic acid (PA; ent-pimara-8(14),15-dien-19-oic acid) is a pimarane diterpene found in plants such as Vigueira arenaria Baker (Asteraceae) in the Brazilian savannas. Although there is evidence on the analgesic and in vitro inhibition of inflammatory signaling pathways, and paw edema by PA, its anti-inflammatory effect deserves further investigation. Thus, the objective of present study was to investigate the anti-inflammatory effect of PA in carrageenan-induced peritoneal and paw inflammation in mice. Firstly, we assessed the effect of PA in carrageenan-induced leukocyte recruitment in the peritoneal cavity and paw edema and myeloperoxidase activity. Next, we investigated the mechanisms involved in the anti-inflammatory effect of PA. The effect of PA on carrageenan-induced oxidative stress in the paw skin and peritoneal cavity was assessed. We also tested the effect of PA on nitric oxide, superoxide anion, and inflammatory cytokine production in the peritoneal cavity. PA inhibited carrageenan-induced recruitment of total leukocytes and neutrophils to the peritoneal cavity in a dose-dependent manner. PA also inhibited carrageenan-induced paw edema and myeloperoxidase activity in the paw skin. The anti-inflammatory mechanism of PA depended on maintaining paw skin antioxidant activity as observed by the levels of reduced glutathione, ability to scavenge the ABTS cation and reduce iron as well as by the inhibition of superoxide anion and nitric oxide production in the peritoneal cavity. Furthermore, PA inhibited carrageenan-induced peritoneal production of inflammatory cytokines TNF-α and IL-1β. PA presents prominent anti-inflammatory effect in carrageenan-induced inflammation by reducing oxidative stress, nitric oxide, and cytokine production. Therefore, it seems to be a promising anti-inflammatory molecule that merits further investigation.  相似文献   

20.
The receptor for gonadotropin-releasing hormone (GnRH) belongs to the G protein-coupled receptors (GPCRs), and its stimulation activates extracellular signal-regulated protein kinase (ERK). We found that the transactivation of ErbB4 was involved in GnRH-induced ERK activation in immortalized GnRH neurons (GT1–7 cells). We found also that GnRH induced the cleavage of ErbB4. In the present study, we examined signal transduction for the activation of ERK and the cleavage of ErbB4 after GnRH treatment. Both ERK activation and ErbB4 cleavage were completely inhibited by YM-254890, an inhibitor of Gq/11 proteins. Down-regulation of protein kinase C (PKC) markedly decreased both ERK activation and ErbB4 cleavage. Experiments with two types of PKC inhibitors, Gö 6976 and bisindolylmaleimide I, indicated that novel PKC isoforms but not conventional PKC isoforms were involved in ERK activation and ErbB4 cleavage. Our experiments indicated that the novel PKC isoforms activated protein kinase D (PKD) after GnRH treatment. Knockdown and inhibitor experiments suggested that PKD1 stimulated the phosphorylation of Pyk2 by constitutively activated Src and Fyn for ERK activation. Taken together, it is highly possible that PKD1 plays a critical role in signal transduction from the PKC pathway to the tyrosine kinase pathway. Activation of the tyrosine kinase pathway may be involved in the progression of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号