首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Conophylline: a novel differentiation inducer for pancreatic beta cells   总被引:3,自引:0,他引:3  
Reduction of the beta cell mass is critical in the pathogenesis of diabetes mellitus. The discovery of agents, which induce differentiation of pancreatic progenitors to beta cells, would be useful to develop a new therapeutic approach to treat diabetes. To identify a new agent to stimulate differentiation of pancreatic progenitor cells to beta cells, we screened various compounds using pancreatic AR42J cells, a model of pancreatic progenitor cells. Among various compounds and extracts tested, we found that conophylline, a vinca alkaloid extracted from leaves of a tropical plant Ervatamia microphylla, was effective in converting AR42J into endocrine cells. Conophylline reproduces the differentiation-inducing activity of activin A. Unlike activin A, however, conophylline does not induce apoptosis. To induce differentiation of AR42J cells, conophylline increases the expression of neurogenin-3 by activating p38 mitogen-activated protein kinase. Conophylline also induces differentiation in cultured pancreatic progenitor cells obtained from fetal and neonatal rats. More importantly, conophylline is effective in reversing hyperglycemia in neonatal streptozotocin-treated rats, and both the insulin content and the beta cell mass are increased by conophylline. Histologically, conophylline increases the numbers of ductal cells positive for pancreatic-duodenal-homeobox protein-1 and islet-like cell clusters. Conophylline and related compounds are useful in inducing differentiation of pancreatic beta cells both in vivo and in vitro.  相似文献   

4.
Endocrine differentiation in the early embryonic pancreas is regulated by Notch signaling. Activated Notch signaling maintains pancreatic progenitor cells in an undifferentiated state, whereas suppression of Notch leads to endocrine cell differentiation. Yet it is not known what mechanism is employed to inactivate Notch in a correct number of precursor cells to balance progenitor proliferation and differentiation. We report that an established Notch modifier, Manic Fringe (Mfng), is expressed in the putative endocrine progenitors, but not in exocrine pancreatic tissues, during early islet differentiation. Using chicken embryonic endoderm as an assaying system, we found that ectopic Mfng expression is sufficient to induce endodermal cells to differentiate towards an endocrine fate. This endocrine-inducing activity depends on inactivation of Notch. Furthermore, ectopic Mfng expression induces the expression of basic helix-loop-helix gene, Ngn3, and two zinc finger genes, cMyt1 and cMyt3. These results suggest that Mfng-mediated repression of Notch signaling could serve as a trigger for endocrine islet differentiation.  相似文献   

5.
6.
Lineage tracing follows the progeny of labeled cells through development. This technique identifies precursors of mature cell types in vivo and describes the cell fate restriction steps they undergo in temporal order. In the mouse pancreas, direct cell lineage tracing reveals that Pdx1- expressing progenitors in the early embryo give rise to all pancreatic cells. The progenitors for the mature pancreatic ducts separate from the endocrine/exocrine tissues before E12.5. Expression of Ngn3 and pancreatic polypeptide marks endocrine cell lineages during early embryogenesis, and these cells behave as transient progenitors rather than stem cells. In adults, Ngn3 is expressed within the endocrine islets, and the NGN3+ cells seem to contribute to pancreatic islet renewal. These results indicate the stage at which each progenitor population is restricted to a particular fate and provide markers for isolating progenitors to study their growth, differentiation, and the genes necessary for their development.  相似文献   

7.
Expansion of pancreatic beta cells in vivo or ex vivo, or generation of beta cells by differentiation from an embryonic or adult stem cell, can provide new expandable sources of beta cells to alleviate the donor scarcity in human islet transplantation as therapy for diabetes. Although recent advances have been made towards this aim, mechanisms that regulate beta cell expansion and differentiation from a stem/progenitor cell remain to be characterized. Here, we describe a protocol for an injury model in the adult mouse pancreas that can function as a tool to study mechanisms of tissue remodeling and beta cell proliferation and differentiation. Partial duct ligation (PDL) is an experimentally induced injury of the rodent pancreas involving surgical ligation of the main pancreatic duct resulting in an obstruction of drainage of exocrine products out of the tail region of the pancreas. The inflicted damage induces acinar atrophy, immune cell infiltration and severe tissue remodeling. We have previously reported the activation of Neurogenin (Ngn) 3 expressing endogenous progenitor-like cells and an increase in beta cell proliferation after PDL. Therefore, PDL provides a basis to study signals involved in beta cell dynamics and the properties of an endocrine progenitor in adult pancreas. Since, it still remains largely unclear, which factors and pathways contribute to beta cell neogenesis and proliferation in PDL, a standardized protocol for PDL will allow for comparison across laboratories.  相似文献   

8.
The endocrine pancreas is comprised of beta and alpha cells producing the glucostatic hormones insulin and glucagon, respectively, and arises during development by the differentiation of stem/progenitor cells in the foregut programmed by the beta cell lineage-specific homeodomain protein Idx-1. Brain-4 (Brn-4) is expressed in the pancreatic anlaga of the mouse foregut at e10 in the alpha cells and transactivates glucagon gene expression. We expressed Brn-4 in pancreatic precursors or beta cell lineage in transgenic mice by placing it under either Idx-1 or insulin promoter (rat insulin II promoter) control, respectively. Idx-1 expression occurs at developmental day e8.5, and insulin expression occurs at e9.5, respectively. Misexpression of Brn-4 by the Idx-1 promoter results in ectopic expression of the proglucagon gene in insulin-expressing pancreatic beta cells, whereas misexpression by rat insulin II promoter did not. The early developmental expression of Brn-4 appears to be a dominant regulator of the glucagon expressing alpha cell lineage, even in the context of the beta cell lineage.  相似文献   

9.
10.
The nature and even existence of adult pancreatic endocrine stem or progenitor cells is a subject of controversy in the field of beta-cell replacement for diabetes. One place to search for such cells is in the nonendocrine fraction of cells that remain after islet isolation, which consist of a mixture of epithelia and mesenchyme. Culture in G418 resulted in elimination of the mesenchymal cells, leaving a highly purified population of nonendocrine pancreatic epithelial cells (NEPECs). To evaluate their differentiation potential, NEPECs were heritably marked and transplanted under the kidney capsule of immunodeficient mice. When cotransplanted with fetal pancreatic cells, NEPECs were capable of endocrine differentiation. We found no evidence of beta-cell replication or cell fusion that could have explained the appearance of insulin positive cells from a source other than NEPECs. Nonendocrine-to-endocrine differentiation of NEPECs supports the existence of endocrine stem or progenitor cells within the epithelial compartment of the adult human pancreas.  相似文献   

11.
12.
Gene expression cascades in pancreatic development   总被引:28,自引:0,他引:28  
  相似文献   

13.
14.
Relatively little is known about the developmental signals that specify the types and numbers of pancreatic cells. Previous studies suggested that Notch signaling in the pancreas inhibits differentiation and promotes the maintenance of progenitor cells, but it remains unclear whether Notch also controls cell fate choices as it does in other tissues. To study the impact of Notch in progenitors of the beta cell lineage, we generated mice that express Cre-recombinase under control of the Pax4 promoter. Lineage analysis of Pax4(+) cells demonstrates they are specified endocrine progenitors that contribute equally to four islet cell fates, contrary to expectations raised by the dispensable role of Pax4 in the specification of the alpha and PP subtypes. In addition, we show that activation of Notch in Pax4(+) progenitors inhibits their differentiation into alpha and beta endocrine cells and shunts them instead toward a duct fate. These observations reveal an unappreciated degree of developmental plasticity among early endocrine progenitors and raise the possibility that a bipotent duct-endocrine progenitor exists during development. Furthermore, the redirection of Pax4(+) cells from alpha and beta endocrine fates toward a duct cell type suggests a positive role for Notch signaling in duct specification and is consistent with the more widely defined role for Notch in cell fate determination.  相似文献   

15.
S Alpert  D Hanahan  G Teitelman 《Cell》1988,53(2):295-308
Insulin appears in the developing mouse pancreas at embryonic day 12 (e12). Transgenic mice harboring three distinct hybrid genes utilizing insulin gene regulatory information first express the transgene product two days earlier, at e10, in a few cells of the pancreatic bud. Throughout development and postnatal life, all of the insulin-producing (beta) cells coexpress the hybrid insulin gene. In addition, islet cells containing glucagon, somatostatin, pancreatic polypeptide, and the neuronal enzyme tyrosine hydroxylase coexpress the transgene when they first arise. Similarly, coexpression of these normally distinct islet cell markers occurs during differentiation of the four endocrine cell types. The transgene product also appears transiently during embryogenesis in cells of the neural tube and in neural crest. The results suggest a common precursor for the endocrine cells of the pancreas. Moreover, they imply a relationship between neural and pancreatic endocrine tissue.  相似文献   

16.
17.
Human embryonic stem cells (hESCs) have the ability to form cells derived from all three germ layers, and as such have received significant attention as a possible source for insulin-secreting pancreatic beta-cells for diabetes treatment. While considerable advances have been made in generating hESC-derived insulin-producing cells, to date in vitro-derived glucose-responsive beta-cells have remained an elusive goal. With the objective of increasing the in vitro formation of pancreatic endocrine cells, we examined the effect of varying initial cell seeding density from 1.3 x 104 cells/cm2 to 5.3 x 104 cells/cm2 followed by a 21-day pancreatic endocrine differentiation protocol. Low density-seeded cells were found to be biased toward the G2/M phases of the cell cycle and failed to efficiently differentiate into SOX17-CXCR4 co-positive definitive endoderm cells leaving increased numbers of OCT4 positive cells in day 4 cultures. Moderate density cultures effectively formed definitive endoderm and progressed to express PDX1 in approximately 20% of the culture. High density cultures contained approximately double the numbers of PDX1 positive pancreatic progenitor cells and also showed increased expression of MNX1, PTF1a, NGN3, ARX, and PAX4 compared to cultures seeded at moderate density. The cultures seeded at high density displayed increased formation of polyhormonal pancreatic endocrine cell populations co-expressing insulin, glucagon and somatostatin. The maturation process giving rise to these endocrine cell populations followed the expected cascade of pancreatic progenitor marker (PDX1 and MNX1) expression, followed by pancreatic endocrine specification marker expression (BRN4, PAX4, ARX, NEUROD1, NKX6.1 and NKX2.2) and then pancreatic hormone expression (insulin, glucagon and somatostatin). Taken together these data suggest that initial cell seeding density plays an important role in both germ layer specification and pancreatic progenitor commitment, which precedes pancreatic endocrine cell formation. This work highlights the need to examine standard culture variables such as seeding density when optimizing hESC differentiation protocols.  相似文献   

18.
19.
The pdx1 gene is essential for pancreatic organogenesis in humans and mice; pdx1 mutations have been identified in human diabetic patients. Specific inactivation of pdx1 in adult beta cells revealed that this gene is required for maintenance of mature beta cell function. In the following study, a Cre-lox strategy was used to remove pdx1 function specifically from embryonic beta cells beginning at late-gestation, prior to islet formation. Animals in which pdx1 is lost in insulin-producing cells during embryogenesis had elevated blood glucose levels at birth and were overtly diabetic by weaning. Neonatal and adult mutant islets showed a dramatic reduction in the number of insulin(+) cells and an increase in both glucagon(+) and somatostatin(+) cells. Lineage tracing revealed that excess glucagon(+) and somatostatin(+) cells did not arise by interconversion of endocrine cell types. Examination of mutant islets revealed a decrease in proliferation of insulin-producing cells just before birth and a concomitant increase in proliferation of glucagon-producing cells. We propose that pdx1 is required for proliferation and function of the beta cells generated at late gestation, and that one function of normal beta cells is to inhibit the proliferation of other islet cell types, resulting in the appropriate numbers of the different endocrine cell types.  相似文献   

20.
To investigate the precise role of Notch/Rbp-j signaling in the pancreas, we inactivated Rbp-j by crossing Rbp-j floxed mice with Pdx.cre or Rip.cre transgenic mice. The loss of Rbp-j at the initial stage of pancreatic development induced accelerated alpha and PP cell differentiation and a concomitant decrease in the number of Neurogenin3 (Ngn3)-positive cells at E11.5. Then at E15, elongated tubular structures expressing ductal cell markers were evident; however, differentiation of acinar and all types of endocrine cells were reduced. During later embryonic stages, compensatory acinar cell differentiation was observed. The resultant mice exhibited insulin-deficient diabetes with both endocrine and exocrine pancreatic hypoplasia. In contrast, the loss of Rbp-j specifically in beta cells did not affect beta cell number and function. Thus, our analyses indicate that Notch/Rbp-j signaling prevents premature differentiation of pancreatic progenitor cells into endocrine and ductal cells during early development of the pancreas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号